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a b s t r a c t

The maximizing set and minimizing set method is a popular ranking approach for fuzzy
numbers, which ranks them based on their left, right and total utilities. This paper presents
an alternative ranking approach for fuzzy numbers called area ranking based on positive
and negative ideal points, which defines two new alternative indices for the purpose of
ranking. The two new indices are defined in terms of a decision maker (DM)’s attitude
towards risks and the left and the right areas between fuzzy numbers and the two ideal
points. It is shown that the area ranking approach has strong discrimination power and
can rank fuzzy numbers that are unable to be discriminated by the maximizing set and
minimizing set method. It is also shown that the DM’s attitude towards risks may have a
significant impact on the ranking of fuzzy numbers. As a side product, a newdefuzzification
formula is also developed and discussed.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Ranking fuzzy numbers is a very important issue in fuzzy sets theory and applications, and has been extensively
researched in the past. A significant number of ranking approaches have been suggested in the literature [1–28]. Some of
them have been reviewed and compared by Bortolan and Degani [29], Chen and Hwang [30], and Wang and Kerre [31,32].
Among the ranking approaches, the maximizing set and minimizing set method proposed by Chen [4] is a very popular
approach that has received high citations and wide applications [33–37]. By introducing a maximizing set and aminimizing
set at the same time, themethod compares and ranks fuzzy numbers in terms of their left, right and total utilities, which are
computed based on the introduced maximizing set and minimizing set. In real applications, however, it is found that when
the fuzzy numbers to be compared have the same left, right and total utilities, they cannot be ranked by the maximizing
set and minimizing set method. To overcome this drawback, the current paper proposes an alternative ranking approach
for fuzzy numbers called area ranking based on positive and negative ideal points. The area ranking approach defines two
new alternative indices for comparing and ranking fuzzy numbers, which are defined in terms of a decision maker (DM)’s
attitude towards risks and the left and the right areas between the fuzzy numbers and the two ideal points. The proposed
area ranking approach proves to have very strong discrimination power and to be able to rank fuzzy numbers that cannot
be discriminated by the maximizing set and minimizing set method due to their equal total utilities.
The paper is organized as follows. Section 2 briefly reviews the maximizing set and minimizing set method. In Section 3,

we propose the area ranking approach and define twonewalternative indices for comparing and ranking fuzzy numbers. The
proposed area ranking approach is examined with five numerical examples in Section 4. The paper concludes in Section 5.
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2. The maximizing set and minimizing set method

Let Ã be a normal fuzzy number, whose membership function µÃ is defined as

µÃ(x) =


f L
Ã
(x), a ≤ x ≤ b,
1, b ≤ x ≤ c
f R
Ã
(x), c ≤ x ≤ d,
0, otherwise,

(1)

where f L
Ã
: [a, b] → [0, 1] and f R

Ã
: [c, d] → [0, 1] are two continuous mappings from the real line R to the closed

interval [0, 1]. The former is a strictly increasing function called left membership function and the latter is a monotonically
decreasing function called right membership function. If b 6= c , Ã is referred to as a fuzzy interval or a flat fuzzy number.
If f L
Ã
and f R

Ã
are both linear, then Ã is referred to as a trapezoidal fuzzy number and is usually denoted by Ã = (a, b, c, d),

which is plotted in Fig. 1. In particular, when b = c , the trapezoidal fuzzy number is reduced to a triangular fuzzy number,
denoted by Ã = (a, b, d). So, triangular fuzzy numbers are special cases of trapezoidal fuzzy numbers.
Alternatively, a fuzzy number can also be generally expressed as

µÃ(x) =


L
(
m− x
α

)
, −∞ < x < m,

1, m ≤ x ≤ n,

R
(
x− n
β

)
, m < x < +∞,

(2)

which is referred to as L–R fuzzy number, denoted by Ã = (m, n, α, β)LR, where m ≤ n, α ≥ 0 and β ≥ 0 are respectively
the left-hand and the right-hand spreads, and L

(m−x
α

)
and R

(
x−n
β

)
are continuous and non-increasing functions satisfying

L(0) = R(0) = 1 and L(1) = R(1) = 0. When L and R are both linear functions, the L–R fuzzy number Ã = (m, n, α, β)LR
becomes a trapezoidal fuzzy number Ã = (a, b, c, d)with a = m− α, b = m, c = n and d = n+ β .
Suppose there are N fuzzy numbers Ã1, . . . , ÃN to be compared or ranked, whose membership functions are denoted by

µÃi(x), i = 1, . . . ,N . The maximizing set and minimizing set method first defines a maximizing set M̃ and a minimizing set
G̃, whose membership functions are respectively defined as [4]

µM̃(x) =
{
[(x− xmin)/(xmax − xmin)]k , xmin ≤ x ≤ xmax
0 otherwise, (3)

µG̃(x) =
{
[(xmax − x)/(xmax − xmin)]k , xmin ≤ x ≤ xmax
0 otherwise, (4)

where xmin = inf X , xmax = Sup X , X =
⋃N
i=1 Xi, Xi = {x|µÃi(x) > 0}, and k is a constant reflecting the DM’s attitude towards

risks with k > 1 representing risk-seeking, k < 1 risk-aversion and k = 1 risk-neutral [36,37]. Usually, k is set as one. Fig. 2
shows the graphical representations of the maximizing set and minimizing set.
In Fig. 2, the maximizing set M̃ and the minimizing set G̃ intersect the right and left membership functions of fuzzy

number Ãi respectively at points Mi and Gi. In the case that Ãi is a trapezoidal fuzzy number, i.e. Ãi = (ai, bi, ci, di), the
coordinates ofMi and Gi can be determined by the following equations:

xMi =
dixmax − cixmin

(di − ci)+ (xmax − xmin)
, (5)

uMi =
di − xMi
di − ci

=
di − xmin

(di − ci)+ (xmax − xmin)
, (6)

xGi =
bixmax − aixmin

(bi − ai)+ (xmax − xmin)
, (7)

uGi =
xGi − ai
bi − ai

=
xmax − ai

(bi − ai)+ (xmax − xmin)
, (8)

where uMi = supx
(
µM̃(x) ∧ µÃi(x)

)
is referred to as the right utility value of the fuzzy number Ãi and uGi = supx(

µG̃(x) ∧ µÃi(x)
)
as the left utility value. It is obvious that the farther the Ãi away from the minimizing set G̃, the smaller

the uGi , and the closer the Ãi to the maximizing set M̃ , the larger the uMi . So, the final total utility value of the Ãi is defined
as [4]

uT (i) = [uMi + 1− uGi ]/2, i = 1, . . . ,N. (9)
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Fig. 1. Membership functions of trapezoidal fuzzy numbers.

Fig. 2. Graphical representations of maximizing set and minimizing set.

Fig. 3. The maximizing and minimizing sets for fuzzy numbers Ã, B̃ and C̃ .

If the N fuzzy numbers to be compared are trapezoidal fuzzy numbers, i.e. Ãi = (ai, bi, ci, di), i = 1, . . . ,N , then (11) can be
further written as

uT (i) =
1
2

(
di − xmin

di − ci + xmax − xmin
+

bi − xmin
bi − ai + xmax − xmin

)
, i = 1, . . . ,N. (10)

The greater the uT (i), the bigger the fuzzy number Ãi and the higher its ranking order. The N fuzzy numbers Ã1, . . . , ÃN
can therefore be ranked according to their total utilities. Such a ranking approach is referred to as the maximizing set and
minimizing set method in the literature.

3. Area ranking of fuzzy numbers

The maximizing set and minimizing set method proves to be very successful in ranking fuzzy numbers with different
left, right and total utilities. However, if the fuzzy numbers to be compared have the same left, right and/or total utilities
as shown in Fig. 3, the maximizing set and minimizing set method is found ineffective and the fuzzy numbers cannot be
ranked by the method. Consider for example three triangular fuzzy numbers: Ã = (5.06, 5.06, 10), B̃ = (3.53, 6, 8.47) and
C̃ = (2, 6.94, 6.94). For these three fuzzy numbers, we have xmax = 10 and xmin = 2. It is easy to verify that Ã, B̃ and C̃
have the same left, right and total utilities which are 0.618, 0.618 and 0.5, respectively, and cannot be distinguished by the
maximizing set and minimizing set method.
To overcome this difficulty, we consider introducing a positive ideal point and a negative ideal point, respectively,

rather than the maximizing set and the minimizing set. The positive and negative ideal points are respectively defined
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Fig. 4. Area ranking based on the positive and negative ideal points.

Fig. 5. Fuzzy numbers with equal left and right areas.

as xmax = Sup X and xmin = inf X , where X =
⋃N
i=1 Xi and Xi = {x|µÃi(x) > 0}. Note that the positive and negative ideal

points are crisp numbers, but can be seen as special cases of fuzzy numbers.
Let Ãi be one of the fuzzy numbers to be compared or ranked, whose membership function is defined by Eq. (1). The

gaps between Ãi and the negative ideal point as well as the positive ideal point form two areas as shown in Fig. 4, which are
referred to as the left and right areas, respectively. The two areas are defined by the following equations:

SL(i) =
∫ ai

xmin
dx+

∫ bi

ai

(
1− f L

Ãi
(x)
)
dx = (bi − xmin)−

∫ bi

ai
f L
Ãi
(x)dx, (11)

SR(i) =
∫ di

ci

(
1− f R

Ãi
(x)
)
dx+

∫ xmax

di
dx = (xmax − ci)−

∫ di

ci
f R
Ãi
(x)dx. (12)

In particular, for trapezoidal fuzzy numbers the two areas are computed as

SL(i) = (bi − xmin)−
∫ bi

ai

(
x− ai
bi − ai

)
dx =

ai + bi
2
− xmin, (13)

SR(i) = (xmax − ci)−
∫ di

ci

(
di − x
di − ci

)
dx = xmax −

ci + di
2

. (14)

It is evident that the farther the Ãi away from the negative ideal point xmin, the bigger the area SL(i), and the closer the Ãi to
the positive ideal point xmax, the smaller the area SR(i). In other words, larger SL and smaller SR mean bigger fuzzy numbers.
However, it is not enough to consider only the two areas SL and SR. In some cases, different fuzzy numbers may have

equal left and right areas, as shown in Fig. 5, in which the two fuzzy numbers Ã and B̃ have equal left and right areas, but
their risks (or uncertainties) are different due to their different support intervals and shapes. Therefore, the DM’s attitude
towards risks should be considered.
By considering the DM’s risk attitude, we define two new alternative Ranking Indices based on Areas (RIA) for comparing

and ranking fuzzy numbers:

RIA1(i) =
1
2

[(
SL(i)

xmax − xmin

)
rL(i)+

(
1−

SR(i)
xmax − xmin

)
rR(i)

]
, (15)

RIA2(i) =
SL(i)rL(i)

SL(i)rL(i)+ SR(i)r ′R(i)
, (16)
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where SL(i)/ (xmax − xmin) and SR(i)/ (xmax − xmin) are respectively the percentages of the left area SL(i) and the right area
SR(i) in the total area of the rectangle encompassed by the ideal points, as illustrated in Fig. 4, and

rL(i) = 1+ (α − 0.5)
bi − ai

xmax − xmin
, (17)

rR(i) = 1+ (α − 0.5)
di − ci

xmax − xmin
, (18)

r ′R(i) = 1− (α − 0.5)
di − ci

xmax − xmin
, (19)

in which rL(i) is a left risk factor, both rR(i) and r ′R(i) are right risk factors defined for different purposes, and 0 ≤ α ≤ 1
is the DM’s attitude towards risks with α = 0.5 representing risk-neutral, 0.5 < α ≤ 1 risk-seeking and 0 ≤ α < 0.5
risk-aversion. Both RIA1 and RIA2 are defined to be positive and dimensionless. Either of them can be used for comparing
and ranking purposes. The bigger the two indices, the higher the fuzzy number is ranked.
RIA1 is similar to Eq. (9) in mathematical form. The only differences between them lie in that the utilities in (9) are

replaced by the percentages in (15) and that the DM’s attitude towards risks is taken into consideration in (15) while Eq. (9)
does not. Since the right area SR(i) is the smaller the better, it is converted into a benefit type index, i.e.1−SR(i)/ (xmax − xmin)
for additionwith the percentage of the left area SL(i). RIA2 is a relative closeness index taken from TOPSIS, a popularmultiple
attribute decision making approach known as Technique for Order Preference by Similarity to Ideal Solution [38], which
selects the best alternative as the one closest to the positive ideal solution and farthest from the negative ideal solution.
The difference between RIA2 and the relative closeness in TOPSIS lies in that the former uses areas to measure the relative
closeness of each fuzzy number relative to the positive ideal point, whereas the latter utilizes Euclidean distances tomeasure
the relative closeness of each decision alternative relative to the positive ideal solution. The concept of relative closeness
has recently been utilized for ranking fuzzy numbers by Wang et al. [25], but their relative closeness index was defined in

a slightly different way as di =
dLi
1+dRi
, where dLi and d

R
i are the left and right deviation degrees of the fuzzy number Ãi with

respect to the minimal and maximal reference sets, which are two fuzzy sets rather than crisp numbers. RIA1 and RIA2 are
essentially alternative to each other. Either of them can be used for comparing and ranking fuzzy numbers. We offer the two
indices in the text to give the readers an alternative choice and to provide them with more flexibility in deciding on which
one to use.
The risk factors in Eqs. (17)–(19) are defined to reflect the impacts of the DM’s attitude towards risks on RIA1 and RIA2.

Intuitively, risk-neutral should have no impact on them, whereas risk-seeking and risk-aversion should respectively have
a positive and a negative impact on the two ranking indices. If we utilize α = 0.5 to represent risk-neutral, then the risk
factors should meet the conditions of rL(i) = rR(i) = 1 for α = 0.5, rL(i) > 1 and rR(i) > 1 if 0.5 < α ≤ 1 which stands for
risk-seeking, and rL(i) < 1 and rR(i) < 1 if 0 ≤ α < 0.5 which indicates risk-aversion. Bigger impact means higher risk. The
left risk is intuitively highly correlated with the left-hand spread, namely, the difference between ai and bi. The bigger the
spread, the higher the left risk. When ai = bi, there should be no left risk. For simplicity, we define the left risk as a linear
function of bi − ai, as indicated by Eq. (17). As such, we define the right risk to be a linear function of di − ci, as shown by
Eq. (18).
It is worth pointing out that since the risk factor r ′R(i) appears on the denominator of Eq. (16), its value is thus defined by

Eq. (19) to be less than one for risk-seeking, (i.e. 0.5 < α ≤ 1) to make a positive impact on RIA2 and to be greater than one
for risk-aversion to maintain a negative impact on RIA2.
For risk-neutral DMs, i.e. α = 0.5, both RIA1 and RIA2 have their simplest forms, as shown below:

RIA1(i) =
1
2

(
1+

SL(i)
xmax − xmin

−
SR(i)

xmax − xmin

)
, (20)

RIA2(i) =
SL(i)

SL(i)+ SR(i)
. (21)

Substituting (11) and (12) into (20), we get

RIA1(i) =
1

xmax − xmin

[
1
2

(
bi + ci +

∫ di

ci
f R
Ãi
(x)dx−

∫ bi

ai
f L
Ãi
(x)dx

)
− xmin

]
. (22)

Let

x0 =
1
2

(
bi + ci +

∫ di

ci
f R
Ãi
(x)dx−

∫ bi

ai
f L
Ãi
(x)dx

)
. (23)

It is easy to see that x0 has nothing to do with the positive and negative ideal points. If we rewrite Eq. (23) as∫ bi

ai
f L
Ãi
(x)dx+ (x0 − bi) = (ci − x0)+

∫ di

ci
f R
Ãi
(x)dx, (24)
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Fig. 6. Defuzzification of symmetrical fuzzy intervals by simple partition.

Table 1
Area ranking of triangular fuzzy numbers Ã, B̃ and C̃ in Example 1.

DM’s risk attitude (α) RIA1 RIA2 Ranking
Ã B̃ C̃ Ã B̃ C̃

0 0.430 0.423 0.415 0.486 0.423 0.358 Ã > B̃ > C̃
0.5 0.537 0.500 0.463 0.553 0.500 0.447 Ã > B̃ > C̃
1 0.644 0.577 0.511 0.642 0.577 0.514 Ã > B̃ > C̃

then we can further see that for a symmetrical fuzzy interval, the both sides of the equation happen to divide the area of Ãi
into two equivalent parts, as shown in Fig. 6. The Eq. (23), however, does notmake any assumption about the shapes of fuzzy
numbers and is thus applicable to normal fuzzy numbers of any shape. For example, if Ãi is a triangular fuzzy number, say
Ãi = (ai, bi, ci), then it is computed from (23) that x0 =

ai+2bi+ci
4 ; if Ãi is a trapezoidal fuzzy number, then it is derived from

(23) that x0 =
ai+bi+ci+di

4 no matter whether Ãi = (ai, bi, ci, di) is symmetrical or non-symmetrical. Since the expression
x0 =

ai+bi+ci+di
4 is consistent with the defuzzification formula developed by Chen [39–42], who defuzzified a trapezoidal

fuzzy number by simply dividing it into two equivalent areas, such a consistency and the good property that x0 has nothing
to do with the positive and negative ideal points enable us to have sufficient reason to view x0 defined by Eq. (23) as a
defuzzified value of fuzzy number Ãi. It provides a more general formula for defuzzifying normal fuzzy numbers than the
defuzzification formula x0 =

ai+bi+ci+di
4 proposed by Chen [39–42]. The former, i.e. Eq. (23), is applicable to normal fuzzy

numbers of any shape, whereas the latter is only suitable to the trapezoidal fuzzy numbers satisfying bi ≤
ai+bi+ci+di

4 ≤ ci,
otherwise x0 =

ai+bi+ci+di
4 cannot be derived by dividing the area of Ãi into two equivalent areas.

Due to the fact that the positive and negative ideal points xmax and xmin are both the same for the fuzzy numbers that are
to be compared together, Eqs. (22) and (23) clearly reveal that by RIA1 the comparison of fuzzy numbers comes down to the
comparison of their defuzzified values and the comparison has nothing to do with the defined positive and negative ideal
points. Such a conclusion, however, only holds for risk-neutral DMs.

4. Numerical examples

We now turn to verifying the validity of the proposed area ranking approach. Five numerical examples are examined
in this section to show good discrimination powers of RIA1 and RIA2 in comparing and ranking fuzzy numbers. The results
obtained by the maximizing set and minimizing set method are also provided and discussed.

Example 1. Consider three triangular fuzzy numbers Ã = (5.06, 5.06, 10), B̃ = (3.53, 6, 8.47) and C̃ = (2, 6.94, 6.94),
as shown in Fig. 7. These three fuzzy numbers are found to have equal left, right and total utilities and therefore cannot be
ranked by the maximizing set and minimizing set method. They have been re-examined using the area ranking approach
developed in this paper. The results are shown in Table 1, from which it is clear that the three triangular fuzzy numbers are
all ranked by RIA1 and RIA2 nomatter what an attitude the DM has towards risks. The two ranking indices produce the same
ranking: Ã > B̃ > C̃ , which is not affected by the DM’s risk attitude.

Example 2. Consider three trapezoidal fuzzy numbers Ã = (2, 7, 10, 15), B̃ = (3, 6, 11, 14) and C̃ = (4, 5, 12, 13), as
shown in Fig. 8. For these three trapezoidal fuzzy numbers, we have xmin = 2 and xmax = 15. It is found that the three
trapezoidal fuzzy numbers have different left and right utilities, but their total utilities are all the same (see Table 2).
Therefore, they cannot be discriminated by the maximizing set and minimizing set method. By computing their left and
right areas, it is also found that the three trapezoidal fuzzy numbers have the same left and right areas, which are shown in
the last two columns of Table 2. This reveals that they cannot be discriminated by considering only the two areas either. To
rank the three fuzzy numbers, DM’s attitude towards risks has to be taken into consideration. Table 3 shows area rankings
for DMswith different attitudes towards risks. It is observed that risk-neutral DMs view the three trapezoidal fuzzy numbers
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Fig. 7. Fuzzy numbers Ã, B̃ and C̃ in Example 1.

Fig. 8. Fuzzy numbers Ã, B̃ and C̃ in Example 2.

Table 2
Utilities and areas of trapezoidal fuzzy numbers Ã, B̃ and C̃ in Example 2.

Fuzzy number Utilities Areas
uM uG uT SL SR

Ã 0.722 0.722 0.5 2.5 2.5
B̃ 0.750 0.750 0.5 2.5 2.5
C̃ 0.786 0.786 0.5 2.5 2.5

Table 3
Area rankings of the trapezoidal fuzzy numbers Ã, B̃ and C̃ in Example 2.

DM’s risk attitude (α) RIA1 RIA2 Ranking
Ã B̃ C̃ Ã B̃ C̃

0 0.404 0.442 0.481 0.404 0.442 0.481 C̃ > B̃ > Ã
0.5 0.500 0.500 0.500 0.500 0.500 0.500 Ã ∼ B̃ ∼ C̃
1 0.596 0.558 0.519 0.596 0.558 0.519 Ã > B̃ > C̃

as no difference and risk-seeking DMs prefer Ã to B̃ to C̃ , whereas risk-averse DMs think C̃ is better than B̃, which is better
than Ã. Obviously, DMs’ attitudes towards risks have significant impacts on the final ranking of the three trapezoidal fuzzy
numbers.

Example 3. Consider two L–R fuzzy numbers Ã1 = (6, 6, 3, 3)LR and Ã2 = (6, 6, 1, 1)LR which are taken from Wang
et al. [25] and were investigated by Chen and Lu [6]. Fig. 9 shows the pictures of the two L–R fuzzy numbers. According
to the computational results in Wang et al. [25], the two L–R fuzzy numbers have the same mode and symmetric spreads,
most of existing ranking approaches cannot thus distinguish them. For instance, by using the ranking approaches in [3,10,
24,27] and the maximizing set and minimizing set method of Chen [4], the ranking of Ã1 and Ã2 is always the same, i.e.
Ã1 ∼ Ã2. Wang et al. [25] utilized their ranking approach and got the ranking Ã2 > Ã1. They believed that decision makers
preferred the result Ã2 > Ã1 intuitionally. Does the DM really prefer Ã2 to Ã1?We do not think this is always the case. It can
be seen from Fig. 9 that Ã1 has higher risk than Ã2. For a risk-seeking DM, he/she would prefer Ã1 to Ã2 rather than Ã2 to Ã1.
If the DM is risk-averse, then he/she would prefer Ã2 to Ã1. For a risk-neutral DM, he/she does not care too much about the
risks of the two fuzzy numbers and would like each of them equally. Table 4 shows the results and the rankings of the two
L–R fuzzy numbers obtained by the area ranking approach, which are fully consistent with the results analyzed above. This
shows the strong discrimination power of the proposed area ranking approach and its good advantages.
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Fig. 9. Fuzzy numbers Ã1 and Ã2 in Example 3.

Fig. 10. Fuzzy numbers Ã1, Ã2 and Ã3 in Example 4.

Table 4
Area ranking of L–R fuzzy numbers Ã1 and Ã2 in Example 3.

DM’s risk attitude (α) RIA1 RIA2 Ranking
Ã1 Ã2 Ã1 Ã2

0 0.375 0.458 0.375 0.458 Ã2 > Ã1
0.5 0.500 0.500 0.500 0.500 Ã1 ∼ Ã2
1 0.625 0.542 0.625 0.542 Ã1 > Ã2

Table 5
Area ranking of L–R fuzzy numbers Ã1 , Ã2 and Ã3 in Example 4.

DM’s risk attitude (α) RIA1 RIA2 Ranking
Ã1 Ã2 Ã3 Ã1 Ã2 Ã3

0 0.375 0.513 0.531 0.375 0.597 0.615 Ã3 > Ã2 > Ã1
0.5 0.500 0.613 0.625 0.500 0.655 0.667 Ã3 > Ã2 > Ã1
1 0.625 0.712 0.719 0.625 0.722 0.727 Ã3 > Ã2 > Ã1

Example 4. Consider the example investigated by Abbasbandy and Asady [1] and Wang et al. [25], which contains three
L–R fuzzy numbers Ã1 = (6, 6, 1, 1)LR, Ã2 = (6, 6, 0.1, 1)LR and Ã3 = (6, 6, 0, 1)LR to be compared and ranked, as shown in
Fig. 10. Table 5 gives the results obtained by the area ranking approach, fromwhich it is seen clearly that the three L–R fuzzy
numbers are always ranked as Ã3 > Ã2 > Ã1 regardless of the DM’s attitude towards risks. Such a ranking is not only fully
consistent with the ranking obtained by the maximizing set and minimizing set method, which calculates the total utilities
of the three L–R fuzzy numbers as uT (1) = 0.5, uT (2) = 0.571 and uT (3) = 0.583, but also consistent with the ranking
obtained by the sign distance method of Abbasbandy and Asady [1] and the ranking approach of Wang et al. [25]. Table 6
summarizes the ranking results obtained by different methods, where the ranking Ã2 > Ã3 > Ã1 by the method of Chu and
Tsao [10] and the ranking Ã1 > Ã2 > Ã3 by the CV index of Cheng [8] are thought of to be unreasonable and not consistent
with human intuition [25].

Example 5. Consider the two sets of fuzzy numbers taken from Yao and Wu [27]:

Set 1: Ã1 = (0.5, 0.5, 0.1, 0.5)LR, Ã2 = (0.7, 0.7, 0.3, 0.2)LR and Ã3 = (0.9, 0.9, 0.5, 0.1)LR;
Set 2: B̃1 = (0.4, 0.7, 0.1, 0.2)LR, B̃2 = (0.7, 0.7, 0.4, 0.2)LR and B̃3 = (0.7, 0.7, 0.2, 0.2)LR,
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Fig. 11. Fuzzy numbers Ã1, Ã2 and Ã3 in Example 5.

Fig. 12. Fuzzy numbers B̃1, B̃2 and B̃3 in Example 5.

Table 6
Ranking results of the L–R fuzzy numbers Ã1 , Ã2 and Ã3 in Example 4 by different approaches [25].

Ranking approach Ã1 Ã2 Ã3 Ranking

Wang et al. [25] 0.25 0.5339 0.5625 Ã3 > Ã2 > Ã1
Sign distance (p = 1) [1] 6.12 12.45 12.5 Ã3 > Ã2 > Ã1
Sign distance (p = 2) [1] 8.52 8.82 8.85 Ã3 > Ã2 > Ã1
Chu and Tsao [10] 3 3.126 3.085 Ã2 > Ã3 > Ã1
Cheng’s distance index [8] 6.021 6.349 6.7519 Ã3 > Ã2 > Ã1
Cheng’s CV index [8] 0.028 0.0098 0.0089 Ã1 > Ã2 > Ã3

Table 7
Area ranking of L–R fuzzy numbers Ã1 , Ã2 and Ã3 in Example 5.

DM’s risk attitude (α) RIA1 RIA2 Ranking
Ã1 Ã2 Ã3 Ã1 Ã2 Ã3

0 0.208 0.375 0.542 0.115 0.375 0.729 Ã3 > Ã2 > Ã1
0.5 0.333 0.500 0.667 0.167 0.500 0.833 Ã3 > Ã2 > Ã1
1 0.458 0.625 0.792 0.271 0.625 0.885 Ã3 > Ã2 > Ã1

Table 8
Area ranking of L–R fuzzy numbers B̃1 , B̃2 and B̃3 in Example 5.

DM’s risk attitude (α) RIA1 RIA2 Ranking
B̃1 B̃2 B̃3 B̃1 B̃2 B̃3

0 0.385 0.458 0.556 0.282 0.533 0.682 B̃3 > B̃2 > B̃1
0.5 0.458 0.583 0.667 0.333 0.667 0.750 B̃3 > B̃2 > B̃1
1 0.531 0.708 0.778 0.394 0.762 0.808 B̃3 > B̃2 > B̃1

which are shown in Figs. 11 and 12, respectively. According to the computational results by Wang et al. [25], most of the
ranking approaches inclusive of their approach rank the fuzzy numbers in Set 1 as Ã3 > Ã2 > Ã1 and those in Set 2 as
B̃3 > B̃2 > B̃1. These rankings are also achieved by the area ranking approach regardless of the DM’s attitude towards
risks, as revealed by Tables 7 and 8. It is also found that the maximizing set and minimizing set method calculates the total
utilities of Ã1, Ã2 and Ã3 as 0.344, 0.5 and 0.656, respectively, and the total utilities of B̃1, B̃2 and B̃3 as 0.445, 0.575 and 0.625,
respectively, which give the same rankings for the two sets of fuzzy numbers.
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5. Conclusions

In this paper we have developed an area ranking approach for fuzzy numbers by introducing a positive and a negative
ideal point, respectively. The area ranking approach considers not only the left and right areas between fuzzy numbers and
the two ideal points, but also the DM’s attitude towards risks, which has rarely been considered in existing fuzzy ranking
approaches. Two new alternative indices have been defined for the purpose of ranking and tested with five numerical
examples. It has been shown that the proposed area ranking approach has very strong discrimination power and can
compare and rank fuzzy numbers that are unable to be ranked by the maximizing set and minimizing set method. It has
also been shown that the DM’s attitude towards risks may have a significant impact on the ranking of fuzzy numbers. In
comparisonwith those approaches that do not consider theDM’s attitude towards risks, the proposed area ranking approach
is more flexible and more practical.
Wehave also comeupwith a defuzzification formula,which turns out to bemore general than that proposedbyChen [39–

42]. The new defuzzification formula is not only suitable for trapezoidal and triangular fuzzy numbers, but also suitable for
any L–R fuzzy numbers. It is therefore expected to have more applications in the future.
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