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SUMMARY

Genetic screens in invertebrates have discovered
many synaptogenic genes and pathways. However,
similar genetic studies have not been possible in
mammals. We have optimized an automated high-
throughput platform that employs automated liquid
handling and imaging of primary mammalian neu-
rons. Using this platform, we have screened 3,200
shRNAs targeting 800 proteins. One of the hits iden-
tified was LRP6, a coreceptor for canonical Wnt
ligands. LRP6 regulates excitatory synaptogenesis
and is selectively localized to excitatory synapses.
In vivo knockdown of LRP6 leads to a reduction in
the number of functional synapses. Moreover, we
show that the canonical Wnt ligand, Wnt8A, pro-
motes synaptogenesis via LRP6. These results pro-
vide a proof of principle for using a high-content
approach to screen for synaptogenic factors in the
mammalian nervous system and identify and charac-
terize a Wnt ligand receptor complex that is critical
for the development of functional synapses in vivo.

INTRODUCTION

Synaptogenesis is a highly specialized and complex phenome-

non that involves precise target recognition by the pre- and post-

synaptic machinery (McAllister, 2007; Okabe, 2012; Shen and

Scheiffele, 2010; Siddiqui and Craig, 2011). Secreted ligands

and cell surface molecules play key roles in the identification of

the target and also initiate assembly of synaptic modules.

Once a growth cone arrives in close proximity of its target site

on the dendrite, a series of events act in an orchestrated fashion

that includes assembly of macromolecular complexes required

for signaling, adhesion, and neurotransmission (Chih et al.,

2005; Dalva et al., 2000; Garner et al., 2000; Graf et al., 2004;

Penzes et al., 2003; Scheiffele et al., 2000; Shen and Scheiffele,

2010; Williams et al., 2010). A rich repertoire of cell adhesion and
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signaling molecules allows for the construction of synapses with

diverse structural and functional identities (O’Rourke et al.,

2012). Molecular pathways that can selectively regulate the

development of excitatory or inhibitory synapses fulfill the need

for maintaining a dynamic balance between excitation and

inhibition to ensure proper functioning of neuronal networks.

Thus, it is of the utmost importance to identify the building blocks

that define a synapse subtype. Moreover, the fact that many

neurological disorders have been attributed to morphological

defects at the synaptic level (Melom and Littleton, 2011; Mitchell,

2011) make it important to discover the genes that regulate the

development and maturation of a wide array of synapse sub-

types. However, despite a significant effort put into understand-

ing synaptogenesis at the molecular level, master molecule(s)

has remained elusive. In invertebrates, many genome-wide

genetic screens have been carried out that led to the discovery

of a handful of candidates involved in synapse development

and maturation (Aberle et al., 2002; Featherstone et al., 2000;

Kurusu et al., 2008; Schaefer et al., 2000). In the mammalian

CNS, however, such screens have not been performed at a scale

comparable to what has been possible in invertebrates.

Biochemical approaches have proven useful in discovering

some important genes involved in synaptogenesis at the neuro-

muscular junction such as Agrin and FGF-2, or Thrombospondin

in retinal ganglion neurons (Allen et al., 2012; Christopherson

et al., 2005; Nitkin et al., 1987; Peng et al., 1991), but such efforts

have not had much success for synapses in the CNS. In recent

years, a strategy of pooling and deconvoluting siRNA (Paradis

et al., 2007) or ORF-cDNA clones has led to the discovery of

novel synaptogenic proteins in the mammalian CNS (Linhoff

et al., 2009; Takahashi et al., 2011).

Here, we adapted a high-content approach to develop a

platform that can be employed in high-throughput screening

for synaptogenic molecules using primary neuronal cultures.

Employing automated high-content liquid handling and high-

throughput image acquisition to screen several thousand

shRNAs, we identified several factors, including LRP6, a core-

ceptor for Wnt ligands and signaling hub in canonical Wnt

signaling (Pinson et al., 2000; Tamai et al., 2000; Wehrli et al.,

2000), as a potential synaptogenic factor. Although the
hors
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importance of canonical Wnt signaling in the development of the

neuromuscular junction in Drosophila melanogaster is well

established (Koles and Budnik, 2012;Miech et al., 2008; Packard

et al., 2002), the localization and function of any of the Wnt

receptors at mammalian central synapses in vivo are unknown.

Because Wnt receptors determine the nature of Wnt signaling

triggered by a complex family of Wnt ligands (van Amerongen

et al., 2008), knowledge of localization and function of Wnt

receptors is critical. Hence, we carried out a detailed character-

ization of the role of LRP6 in central synapse formation. We show

that LRP6 is exclusively localized to excitatory postsynaptic

densities (PSDs) and is critical for synapse formation in vitro. In

addition, we found that Wnt8A, a Wnt ligand that is predomi-

nantly expressed in forebrain, and is known to interact with

LRP6, promotes excitatory synaptogenesis in vitro. Further-

more, we confirm that LRP6 is critical for the formation of func-

tional excitatory synapses in vivo.

RESULTS

Optimization of shRNA High-Content Handling for
Screening
To develop the high-throughput shRNA screen, we optimized

automated culturing and immunolabeling using automated

high-content liquid handling. A flowchart to outline the strategy

is shown in Figure 1A where neurons were handled using amulti-

drop and robotic arm-assisted 96-well plate washing system.

Once we optimized the cell density and the steps in robotic

handling and image acquisition, we assessed the physiological

health of neurons in a depolarization-induced CREB phosphory-

lation assay (Sheng et al., 1990). Neurons plated and handled in

a high-content fashion were depolarized at 14 DIV with 50 mM

KCl and probed with CREB and phospho-CREB antibodies.

We found that neurons under such conditions robustly re-

sponded to depolarization, as evident by a significant increase

in phospho-CREB signal in the nucleus indicating good

physiological health (Figure 1B). Next, we tested the method

for specificity and efficiency of immunolabeling of synaptic and

somatodendritic markers. As shown in Figure 1C, immunolabel-

ing with MAP-2, PSD95, and Gephyrin, well-characterized

markers for somatodendritic regions, excitatory synapses, and

inhibitory synapses, respectively, confirmed the morphological

integrity of neurons as well as the specificity of acquired signals

in automated handling and imaging.

With an optimized platform to carry out an assay using primary

hippocampal neurons, we initiated a pilot shRNA screen to

search for synaptogenic factors in the mammalian CNS. The

Sigma-Aldrich MISSION shRNA Library available at the time of

our initial screen offered four to five shRNAs for each target

gene to enhance the possibility of efficient knockdown of a given

target. However, a major limitation of the MISSION shRNA

Library is that it did not have a reporter gene appropriate for

assessing infection efficiency. The library employs a Puromycin

selection marker that works on the principle of conferring resis-

tance to infected neurons against the protein synthesis inhibitor

Puromycin. For nonneuronal cells and for young neurons that are

not extensively connected in a network, Puromycin works suit-

ably, but once neurons are mature, activity in the network be-
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comes critical for neuronal survival. In such a scenario, the death

of even 50% of uninfected neurons will have adverse effects on

the health of infected neurons despite Puromycin resistance.

Thismakes Puromycin an unsuitable selectionmarker for mature

neuronal networks. However, by assessing the effect of Puromy-

cin on younger neurons, we found that the majority of the

infected wells, when treated with Puromycin, showed a survival

rate of more than 75% (Figure S1), suggesting a high probability

of infection. We also tested a few sample shRNA clones to

assess the potency of shRNA and efficiency of knockdown. As

shown in an example in Figure S2, we observed a significant

knockdown of Gephyrin by two out of five shRNA clones.

Next, we selected 800 transmembrane and secreted

candidate proteins with four shRNAs against each (i.e., 3,200

shRNA clones) and designed a high-throughput screen to look

for synaptogenic factors. Neurons were infected with lentiviral

particles at 4 DIV, and fixed and immunostained at 13 DIV using

the high-content handling methodology optimized earlier.

Because there is currently no appropriate efficient automated

image analysis tool that can carry out reliable quantitative anal-

ysis, we short-listed the hits by manual browsing of the wells.

The wells that had a noticeably changed pattern for PSD95/

Gephyrin staining were quantified in a low-throughput manner.

Potential shRNA hits were subcloned into the pSuper plasmid

that allows more efficient expression of shRNA. This was fol-

lowed by secondary screening to address whether the shRNA

clone can knock down its endogenous target and to assess

the reproducibility of the primary screen.

To address the first question, we electroporated shRNA into

dissociated hippocampal neurons, and 5 days postelectropora-

tion and plating, lysed the neurons and probed for putative target

protein. To address the second question, we transfected hippo-

campal neurons with shRNA in pSuper plasmid backbone along

with GFP at 7 DIV and analyzed synapse number at 14 DIV.

shRNAs that showed an effect on puncta number and knocked

down their putative target protein were considered as positive

hits. We describe here LRP6 as one of the hits that was discov-

ered following this strategy and validated its role in the develop-

ment of functional excitatory synapses (Figures 1 and 2).

LRP6 Regulates Excitatory Synapse Development
In the first round of the screen, wells infected with shRNA-

lentiviral particles targeting LRP6 (shRNA-LRP6) showed a

significant reduction in the number of PSD95 puncta, but no

change in Gephyrin puncta (Figures 1D and 1E). shRNA-LRP6

significantly and specifically reduced endogenous LRP6 levels

but had no effect on total PSD95 levels in hippocampal neurons.

Next, we tested if knockdown of endogenous LRP6 led to a

reduction in the number of morphological synapses labeled

with pre- and postsynaptic markers. We expressed shRNA-

LRP6 in dissociated neurons at 7 DIV and analyzed the number

of excitatory and inhibitory synapses at 14 DIV using PSD95/

VGluT1 and Gephyrin/VGAT immunostaining, respectively.

Knockdown of LRP6 selectively reduced the number of excit-

atory synapses (Figure 2A, i–iv) and did not have any effect on

inhibitory synapse number (Figure 2B). Reduction in excitatory

synapse number was also reflected by a loss of spines as a result

of LRP6 knockdown (Figure 2Av). The effect caused by the
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Figure 1. Strategy for High-Content Handling of Hippocampal Neurons

(A) Outline of high-content methodology.

(B) Neurons are physiologically responsive to changes in activity in the network as evident by enhanced phosphorylation of CREB in response to KCl-induced

depolarization. Each dot in the pCREB/CREB signal plot represents signal intensity from phospho-CREB (pCREB) and total CREB antibodies. Panels where

neurons were depolarized with KCl show a significant increase in the number of cells with higher pCREB signal intensity.

(C) Immunolabeling performed in an automated fashion is efficient and specific as shown by differential labeling with MAP-2, PSD95, and Gephyrin.

(D) One of the hits identified in the loss-of-function genetic screen is LRP6. Right panel shows a representative ROI from the well that received shRNA lentivirus

against LRP6, and left panel shows ROI from the control well. shRNA-LRP6 led to reduction in PSD95 clustering in comparison to control.

(E) Quantification of a well that received shRNA-LRP6 shows a significant reduction in PSD95-to-Gephyrin puncta ratio (n = 30 ROIs from each well; p < 0.05,

t test).

(F) shRNA-LRP6 that caused reduction in PSD95 clusters reduces levels of endogenous LRP6 protein significantly in neurons.

All error bars are SEM.

See also Figures S1 and S2.
shRNA could be rescued by shRNA-resistant human LRP6. In

summary, we confirmed LRP6 as a bona fide hit in dissociated

neuronal cultures that plays an important specific role in excit-

atory synapse development.

LRP6 Is Selectively Localized to Excitatory Synapses
To investigate the subcellular localization of endogenous LRP6,

we immunostained dissociated neurons using LRP6 antibodies

in conjunction with synaptic markers. First, we tested the spec-
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ificity of antibodies in the neurons that were transiently trans-

fected with shRNA-LRP6. We saw a significant reduction in

LRP6 immunolabeling in neurons transfected with shRNA-

LRP6 in comparison to neighboring untransfected neurons

(Figure S3A). Specificity of the antibodies was also evident in

western blot of total protein lysate from neurons electroporated

with shRNA-LRP6 (Figure S3B). Next, in immunolocalization

studies, LRP6 showed a punctate pattern with enrichment in

spine heads. LRP6 was selectively colocalized with PSD95 and
hors



Figure 2. LRP6 Is Required Selectively for Excitatory Synaptogenesis

(A) (i–iv) The loss of LRP6 leads to reduction in excitatory synapses as evident by the reduced number of PSD95 and vGluT1 puncta (n = 20 each). Human LRP6

(hLRP6) that has sequencemismatch with shRNA against mouse/rat LRP6 can rescue the phenotype from effect of shRNA. (v) The loss of LRP6 causes reduction

in spine density that can be rescued by hLRP6 (n = 20 each).

(B) (i and ii) Knockdown of LRP6 does not affect formation of inhibitory synapses because there was no change in the number of Gephyrin and vGAT puncta in

neurons that were transfected with shRNA-LRP6 (n = 12; p < 0.05, t test).

Merged frames show GFP (green), PSD95 (red), and vGluT1 (blue) in (A), and GFP (green), Gephyrin (red), and vGAT (blue) in (B).

All error bars are SEM.
vGluT1 at excitatory synapses (Figure 3A). In contrast, LRP6 did

not show significant colocalization with inhibitory postsynaptic

marker Gephyrin (Figures 3B and 3C). To confirm the synaptic
Cell Re
localization with an alternative biochemical method, we pre-

pared PSD fractions and probed the samples with LRP6

antibodies. Supporting the immunostaining data, LRP6 showed
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Figure 3. LRP6 Is Localized at Excitatory

Synapses in Mature Neurons

(A) Immunolabeling of endogenous LRP6, PSD95,

and presynaptic marker vGluT1 reveals that LRP6

is present at excitatory synapses.

(B) LRP6 does not show any significant level of

colocalization with Gephyrin (Geph.), a post-

synaptic marker for inhibitory synapses. Merged

frames show LRP6 (red), PSD95 (green), and

vGluT1/Gephyrin (blue).

(C) Quantification of overlap between LRP6 and

PSD95 clusters in comparison to LRP6 and Ge-

phyrin clusters reveals significant colocalization

between LRP6 and PSD95, but not between LRP6

and Gephyrin (n = 15 each; p < 0.001, t test)

(D) In biochemical fractions of PSDs from mouse

brain, endogenous LRP6 is detected in synapto-

somal (Syn.) fractions including PSD fractions I, II,

and III synaptic fractions. Synaptophysin (Syn-

apto.) was used as a presynaptic marker for PSD

samples.

All error bars are SEM.

See also Figure S3.
a pattern similar to that of PSD95 and GluA1 (Figure 3D) and was

found to be a component of PSD fractions I, II, and III. Taken

together, these results suggest that LRP6 is predominantly local-

ized at excitatory synapses.

Wnt8A, a Ligand for LRP6, Promotes Excitatory Synapse
Development
There are 19 Wnt ligands, few of which have been studied in

the context of excitatory neurotransmission in the CNS. Wnt7a

is the only well-characterized canonical Wnt ligand for its role

in activity-dependent spine development and synapse formation

in the mammalian CNS in vivo. However, expression analysis of

different Wnts in the Allen Mouse Brain Atlas revealed that

Wnt8A is expressed at relatively higher levels in comparison to

other Wnt ligands in the forebrain area (Figure 4A; Lein et al.

2007). Although a functional interaction between Wnt8A and

LRP6 has been described by Itasaki et al. (2003), the role of

Wnt8a in synapse development is unknown.

First, to confirm the interaction between Wnt8A and LRP6, we

tested if Wnt8A can associate with endogenous LRP6. HEK cells

that have endogenous LRP6 were transfected with Wnt8A-myc

cDNA. HEK cell lysate was subjected to immunoprecipitation

with myc antibodies and probed for endogenous LRP6. In agree-

ment with previous findings, we observed the pull down of

endogenous LRP6 in Wnt8A-myc-transfected cells, but not in

mock-transfected cells (data not shown).

Next, to determine whether Wnt8A has synaptogenic activity,

neurons (11 DIV) were treated with conditioned media for 24 hr

and analyzed for changes in synapse number. We observed

that cultured neurons treated with Wnt8A condition media

had an increased density of PSD95 and vGluT1 puncta but un-

changed levels of Gephyrin puncta (Figures 4C and 4D),

suggesting that Wnt8A specifically promotes formation and

maturation of excitatory synapses. Next, we asked if LRP6 is

required for the synaptogenic action of Wnt8A. To test this, we

transfected neurons with shRNA against LRP6 and treated

neurons with mock-conditioned media or Wnt8A-conditioned
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media. Confirming the role of LRP6 in synaptogenic action of

Wnt8A, transfected neurons showed no increase in PSD95 and

vGluT1 puncta (Figures 4E and 4F). Wnt8A potently increased

the number of excitatory synapses in neurons transfected with

scrambled shRNA (Figure S4). To investigate if Wnt8a is neces-

sary for formation of excitatory synapses, we took a loss-of-

function approach where we generated lentiviral particles

carrying GFP and shRNA against Wnt8a. Neurons were infected

with lentivirus on 4 DIV and tested for Wnt8A expression at 11

DIV. As shown in Figure S5A, we saw a significant reduction in

Wnt8A levels in neuronal cultures. Next, we infected three sets

of neuronal cultures at 4 DIV: one set was infected with control

lentiviral particles, and two sets were infected with Wnt8A-

targeting lentiviral particles. One of these two sets infected

with Wnt8A-targeting lentiviral particles received Wnt8A-condi-

tioned media every 24 hr from 10 to 14 DIV to compensate for

the loss of endogenous Wnt8A. Neurons were fixed and immu-

nostained at 14 DIV. We observed a significant decrease in the

number of excitatory synapses in response to Wnt8A knock-

down that could be rescued by exogenous application of

Wnt8a (Figures S5B and S5C). Together, these data demon-

strate that Wnt8a is necessary for formation of excitatory synap-

ses, and it regulates excitatory synapse formation through LRP6.

Because LRP6 phosphorylation is one of the key events in

the relay of Wnt signaling, we asked if Wnt8a could lead to

changes in the phosphorylation status of LRP6. To test this,

we preparedWnt8A-conditionedmedia fromWnt8A-transfected

HEK cells and control-conditioned media from mock-trans-

fected HEK cells. Neurons were treated with Wnt8a-conditioned

media for 3 hr, lysed, and probedwith Phospho-LRP6 antibodies

that recognized LRP6 phosphorylated at Serine residue (Tamai

et al., 2004). We observed an increase in phosphorylation of

LRP6 in response to Wnt8a treatment, suggesting a direct

regulation of LRP6 phosphorylation by Wnt8a in neurons (Fig-

ures 5A and 5B). Next, we asked if LRP6 phosphorylation is

one of the key steps required for synaptogenesis. To test this,

we generated an LRP6 phosphomutant, LRP6S1490A, where
hors



Figure 4. Wnt8A Induces Excitatory Synap-

togenesis

(A) Wnt8A is significantly enriched in forebrain.

Image is from the Allen Mouse Brain Atlas,

Allen Institute for Brain Science; http://mouse.

brain-map.org/gene/show/20652 (Lein et al. 2007).

(B) Wnt8A-conditioned media were prepared by

overexpression of Wnt8A-myc in HEK cells. Neu-

rons were treated with Wnt8A-conditioned media

or mock-conditionedmedia for 24 hr. Wb, western

blot.

(C) Neurons treated with Wnt8A show a significant

increase in PSD95 and vGluT1 puncta, but no ef-

fect on Gephyrin puncta. CM, conditioned media.

(D) Quantification of PSD95, vGluT1, and Gephyrin

puncta revealed a selective and significant increase

inexcitatory synapses (n=15each;p<0.005, t test).

(E) shRNA-mediated knockdown of LRP6 di-

minishes the effect of Wnt8A.

(F)Quantificationof vGLUT1-positivePSD95puncta

is shown.

Merged frames in (C) include PSD95 (red), vGluT1

(green), and Gephyrin (blue), and GFP (green),

PSD95 (red), and vGluT1 (blue) in (E).

All error bars are SEM.

See also Figures S4 and S5.
we replaced Serine-1490 with Alanine. As shown in Figure 5C,

LRP6S1490A was targeted to dendritic spines in a fashion

similar to that of wild-type LRP6. To determine if LRP6 phos-

phorylation is critical for synapse formation, we transfected

neurons with an shRNA against LRP6 in conjunction with wild-

type LRP6 or LRP6S1490A. Wild-type LRP6 efficiently rescued

the loss of endogenous LRP6, but LRP6S1490A failed to rescue

the effect of shRNA on synapse formation as well as on the

formation of dendritic spines (Figures 5D and 5E). These results

suggest that phosphorylation of LRP6 at Serine-1490 is crucial

for the assembly of the synaptic apparatus.
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LRP6 Is Required for Functional
Synapse Development In Vivo
Studies in dissociated hippocampal

neurons allow a wide range of manipula-

tions and analysis at a higher resolution

but have the limitation of belonging to a

two-dimensional neuronal network sys-

tem that may not truly recapitulate the

complex development of three-dimen-

sional brain architecture. To test if the

role of LRP6 in synapse development

observed in vitro holds true for the devel-

oping intact brain, and also if loss of LRP6

in fact leads to reduction in the number of

functional synapses in vivo, we knocked

down LRP6 in layer II/III cortical neurons

by in utero electroporation of shRNA-

LRP6 and dsRed at E15.5. Acute slices

from animals at the age of postnatal day

21–28 (P21–P28) were prepared, and

immunolabeled with antibodies against
dsRed to analyze spine growth. Spines are the primary site for

excitatory synapses and an accurate morphometric parameter

to assess synapse density in vivo (Knott et al., 2006). Confirming

in vitro results, we observed a significant reduction in the number

of spines on the dendrites of layer II/III neurons in somatosensory

cortex in animals expressing shRNA-LRP6 in comparison to the

animals expressing scrambled shRNA (Figure 6). In addition, the

effect on spine numbers caused by the shRNA-LRP6 could be

rescued by shRNA-resistant human LRP6.

To test further if the reduction in spine number truly reflects a

decrease in the number of functional synapses, we prepared
cember 12, 2013 ª2013 The Authors 1335
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Figure 5. LRP6 Undergoes Wnt-Dependent Phosphorylation to Promote Synaptogenesis

(A and B) Wnt8A treatment leads to enhanced phosphorylation of LRP6.

(C) Transient transfection of VSVG-tagged LRP6 cDNA shows that LRP6S1490A is targeted to dendritic spine in a fashion similar to that of wild-type (WT) LRP6.

Merged frame includes GFP (green), LRP6 and PSD95 (red), and vGluT1 (blue).

(D and E) Wild-type but not LRP6S1490A can rescue the effect of shRNA. Data in (E) were normalized to the average of the wild-type LRP6 rescue data set (n = 14

each; p < 0.05, t test).

All error bars are SEM.

1336 Cell Reports 5, 1330–1341, December 12, 2013 ª2013 The Authors



Figure 6. LRP6 Is Required for Spine Forma-

tion In Vivo

(A–C) In utero electroporation of shRNA and dsRed

at the E15.5 stage result in efficient labeling of

pyramidal neurons in layer II/III neurons in the so-

matosensory cortex of P28 animals.

(D and E) Neurons transfected with shRNA-LRP6 and

dsRed have a significantly decreased number of

spines in comparison to neurons transfected with

scrambled shRNA and dsRed. This reduction in

spine number is rescued by hLRP6 (n = 12; p < 0.05,

t test).

All error bars are SEM.
slices from animals expressing either shRNA-LRP6 or scrambled

shRNA and carried out analysis of miniature excitatory post-

synaptic currents (mEPSCs). Further validating our earlier

studies, we found that neurons expressing shRNA-LRP6 had a

significant reduction in mEPSC frequency with relatively un-

changed amplitude in comparison to neighboring untransfected

neurons (Figure 7). In contrast, neurons expressing scrambled

shRNA had no difference in frequency in comparison to neigh-

boring untransfected neurons. Moreover, the effect caused by

the shRNA-LRP6 could be rescued by shRNA-resistant human

LRP6. Together, these results establish LRP6 as a bona fide hit

of our screen that is critical for the development of functional

excitatory synapses in vitro as well as in vivo.

DISCUSSION

We have optimized a high-throughput assay using primary

neuronal cultures that can be employed for a diverse range of

screening methods. With the exception of automated image

analysis for complex synaptic patterns, we have carried out a

loss-of-function screen to discover synaptogenic proteins in a

fully automated manner. Traditionally, larger-scale screening

has required the use of simpler culture systems. Hence, most
Cell Reports 5, 1330–1341, D
screens are limited to nonneuronal cells

or neuroblastoma cell lines (Jain and Heu-

tink, 2010). The fragile nature of neurons

and lack of versatile methods for gene

delivery have posed significant challenges

to the use of primary neuronal cultures in a

high-throughput assay. Optimization of

high-content culturing, genetic manipula-

tions, immunostaining, and image acquisi-

tion of primary neuronal networks is the first

major contribution of this work, and over-

comes the conventional challenges of a

larger screen requiring simpler cellular

systems, to a significant extent. Notably,

assays that have a simple readout param-

eter such as the ratio of total CREB to

phosphorylated CREB fluorescent signal

intensities (Figure 1), or expression of GFP

or lack thereof, can be analyzed in high-

throughput fashion enabling truly large-
scale high-throughput screens in neurons. Reporter assays

such as Wnt-regulated TCF/LEF can also be successfully em-

ployed in this platform to discover neuron-specific genetic com-

ponents of the cascade or drug-like small molecule modulators

of these pathways in neurons. This platform can be further opti-

mized to discover regulators of activity-dependent protein traf-

ficking, e.g., chemical LTP (long-term potentiation) paradigms

can be employed in conjunction with surface labeling of AMPA

receptor subunits. Recent advances in high-throughput electro-

poration of neurons have made it feasible to overexpress any

given set of genes in 96-well formats, making it possible to carry

out gain-of-function genetic screens using this platform.

The lack of reliable high-throughput image analysis tools to

process images of mature neurons that have complex patterns

of synaptic markers still remains a challenge and requires devel-

opment. Typically, statistical parameters such as Z score and

MAD scores provide indispensable tools to identify a hit and to

calculate false discovery rate (Chung et al., 2008; König et al.,

2007; Zhang et al., 1999). The limitation of currently available

software to quantify synapse number with high stringency has

forced us to manually inspect the wells, and select regions of

interest (ROIs) for analysis. Computational tools available at

present allow quantitative analysis of manually selected ROI
ecember 12, 2013 ª2013 The Authors 1337



Figure 7. LRP6 Is Required for Formation of

Functional AMPAR-Containing Synapses

In Vivo

(A) Representative traces from neurons trans-

fected with scrambled, shRNA-LRP6, or shRNA-

LRP6+hLRP6 and neighboring untransfected

neurons in corresponding group, in layer II/III

neurons in somatosensory cortex, are shown.

Scale is 200 ms at 10 pA.

(B) Neurons electroporated in uterowith scrambled

shRNA did not show any difference in mEPSC

frequency (Freq.) in comparison to neighboring

untransfected neurons (n = 8 each). Amp., ampli-

tude.

(C) LRP6 knockdown led to a significant reduction

in mEPSC frequency (n = 9 each; p < 0.05, t test). A

small and nonsignificant increase was observed in

mEPSC amplitude.

(D) Effect of shRNA against rat LRP6 can be

rescued by hLRP6 (n = 15 control; n = 19 rescue).

All error bars are SEM.
along the dendritic regions but fail to generate a quantitatively

consistent readout when applied globally to images across

the 96-well plates. The advancement of a computational tool

to quantify synaptic labeling will significantly enhance the

throughput of similar screens in the future. In summary, our

system can be readily used for a wide variety of neuronal assays,

and refinement of computational tools to analyze complex

synaptic patterns will further enhance its capabilities.

One of the hits discovered in our loss-of-function shRNA

screen is LRP6, a Wnt coreceptor. We present compelling data

for a role for LRP6 in the development of functional excitatory

synapses, and its direct association with the PSD in vivo.

Furthermore, we show that a ligand for LRP6,Wnt8A, has synap-

togenic activity. Given the complexity of Wnt signaling in mam-
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mals, it is important to understand the

localization and role of each component

of this signaling cascade. In contrast to

invertebrates such as Drosophila or C.

elegans that have 5 Wnt ligands and four

Fzd receptors, Wnt signaling in mammals

is comprised of 19 Wnt ligands and ten

Fzd receptors (Ciani and Salinas, 2005).

In recent years, elegant studies on the

neuromuscular junction have paved the

way to an understanding of Wnt signaling

in synapse development (Korkut and Bud-

nik, 2009). In mammals, different Wnt

ligands have been shown to be important

in axonal remodeling, dendritic growth

(Wayman et al., 2006), synaptic develop-

ment (Ciani et al., 2011; Gogolla et al.,

2009; Varela-Nallar et al., 2010), and LTP

(Chen et al., 2006). However, to date, no

receptor member has been described to

play a functional role in synapse develop-

ment in the mammalian CNS in vivo.

Despite a well-established canonical
model in which LRP6 acts as an obligatory coreceptor for Fzd

receptors, the role of LRP6 in synapse development and its

localization has remained elusive. Here, we show that the key

Wnt coreceptor LRP6 is predominantly present at excitatory

synapses where it selectively regulates the development of func-

tional excitatory synapses. These findings indicate either that

canonical Wnt signaling is exclusively dedicated to excitatory

synapses or that canonical Wnt signaling at excitatory and inhib-

itory synapses can employ a different suite of signaling recep-

tors. Because noncanonical Wnt5A has been reported to play

regulatory roles at excitatory and inhibitory synapses (Varela-

Nallar et al., 2010), it is possible that a combination of canonical

and noncanonical pathways regulates distinct synapse subtypes

in forebrain. However, more experiments are required to draw a



distinction between the roles of different Wnts in the develop-

ment of different synapse subtypes.

We also discovered Wnt8A as a synaptogenic factor that acts

via its interaction with LRP6. A close analysis of different Wnt

ligands for their localization in forebrain, and established inter-

actions with LRP6, led us to investigate Wnt8A for its potential

role in excitatory synaptogenesis. We found a role for Wnt8A

that is specific to excitatory synapses. Wnt8A has been

described as a canonical Wnt ligand that binds multiple Fzd

receptors, and the Wnt8-Fzd complex further associates with

LRP6 to transduce the signal. Interestingly, many of the Fzd

receptors have PDZ binding motifs, and can bind to PSD95

(Hering and Sheng, 2002). This suggests a mechanism where

Wnt8A triggers Wnt-Fzd-LRP6 complex formation and recruits

intracellular signaling complex at the phosphorylated carboxyl

terminus of LRP6 that can act further as a postsynaptic orga-

nizer. We have, in fact, discovered that Wnt8a triggers phos-

phorylation of LRP6 at Serine-1490. Our results further show

that indeed phosphorylation of LRP6 is critical for synapse

formation.

Our characterization of LRP6 suggests a specific role for

canonical Wnt signaling in excitatory synapse development. It

also raises many questions for future investigation. Most impor-

tantly, it will be necessary to identify which Fzd receptors

associate with LRP6 to promote excitatory synapse develop-

ment. Fzd receptors are the primary interaction partners for

Wnt ligands and are shared between canonical and noncanon-

ical Wnt ligands. It is possible that Fzd receptors have a wide-

spread localization across excitatory and inhibitory synapses

and that LRP6 confers specificity to canonical Wnt signaling

pathways promoting excitatory synapse development and func-

tion. Based on this hypothesis, LRP6 may play a key role in

balancing excitatory and inhibitory synaptic weights in neuronal

networks. Besides regulating the development of different

synapse subtypes, it is important to note that cyclin Y-depen-

dent L63/PFTK kinase phosphorylates LRP6 in a ligand-inde-

pendent manner during the cell cycle (Davidson et al., 2009).

Interestingly, cyclin Y has been shown to dynamically regulate

synapse elimination during network remodeling (Park et al.,

2011). This suggests that LRP6 may not be only required for

synaptogenesis but also may play a broader role in the context

of activity-dependent remodeling at the network level indepen-

dent of Wnt ligands. Our data provide a step forward in under-

standing the localization and function of a key Wnt receptor that

acts as a hub for canonical Wnt signaling, as well as uncovering

a role for another Wnt ligand. However, extensive and system-

atic studies are required to further decipher the combinatorial

codes defined by Wnt-Fzd-LRP6 complexes that act in a

context-dependent manner. Our optimized platform for high-

throughput assay to study synapse development can play an

important role in delineating signaling cascades under a given

set of parameters in the future.
EXPERIMENTAL PROCEDURES

Animal Care

All animals were treated in accordance with the Johns Hopkins University An-

imal Care and Use Committee guidelines.
Cell Re
cDNA and Antibodies

LRP6 cDNA was obtained from Addgene (Addgene plasmid 27242) (Tamai

et al., 2000). ORF was amplified and subcloned into pCAG plasmid. Phospho-

mutant LRP6S1490A was generated by using QuikChange Site-Directed

Mutagenesis Kit from Stratagene. Wnt8a cDNA was obtained from Addgene

(Addgene plasmid 35916) (Najdi et al., 2012) and amplified to subclone into

pCDNA3.1-Myc plasmid.

The following antibodies (and resources) were used in this study: PSD95

K28/43 (NeuroMabs; 1:2,500); Gephyrin IgG1 (Synaptic Systems; 0.5 mg/ml);

vGluT1 guinea pig (Millipore; 1:5,000); vGAT rabbit polyclonal (Synaptic Sys-

tems; 1:1,000); MAP-2 chicken (Novus Biologicals; 1:20,000); LRP6 C5C7

(Cell Signaling Technology; 1:2,500 for western blot only); LRP6 rabbit mono-

clonal (Epitomics; 1:2,000 for western blot and 1:500 for immunocytochem-

istry); and LRP6-pS1490 (Cell Signaling Technology; 1:1,000 for western

blot). All the primary antibodies were incubated at 4�C overnight. Secondary

antibodies were conjugated with Alexa Fluor dyes and used at 1:500 dilutions.

Neuronal Cultures and Immunocytochemistry

Primary hippocampal neurons were prepared from mouse or rat as described

elsewhere by Brewer and Cotman (1989). In brief, for high-throughput assays,

neurons were dissociated from E16.5mouse or E18 rat hippocampi and plated

into 96-well optical plates using the multidrop apparatus (Thermo Scientific).

For high-content assays, mouse neurons were plated at the density of

10,000 neurons per well, and rat neurons were plated at 6,000 neurons per

well. Neurons were maintained at 37�C in a 5% CO2 incubator. Half of the

media were changed every fourth day. A similar protocol was followed for

small-scale culturing in 12-well plates on poly-L-lysine-coated coverslips.

For automated immunolabeling, a multidrop plate washer and a robotic arm

were employed using optimized programs. After the last step of washing, neu-

rons were preserved in fixation solution.

CREB Phosphorylation Assay

Rat neurons from E18 embryos were used for a pilot chemical screen to

identify small molecules that can modulate CREB pathway. On 14 DIV, neu-

rons were treated with Sigma-Aldrich LOPAC chemical library compounds

for 1 hr at a final concentration of 10 mM. Neurons were depolarized with

50 mM KCl in artificial cerebrospinal fluid (ACSF) for 20 min. Neurons were

fixed and immunostained with antibodies against CREB and Phospho-

CREB. Images were acquired as described above.

Image Acquisition and Analysis

High-content image acquisition was carried out at BD Pathway Imaging

Station. Images were acquired using a 403 objective in 43 4 montage format

that covered a network of 25–35 neurons per well. Wells that showed obvious

reduction in puncta count were analyzed by using ImageJ where ROIs were

selected on the basis on MAP2 staining and overlapped with PSD95 and

Gephyrin-labeled images. After background subtraction and thresholding,

puncta were counted using Analyze Particle tool.

For the validation step, ROIs were selected on the basis of GFP expression

and analyzed as described above. The length of the dendrite was measured

using NeuronJ plugin. The data were normalized to the average of the control

group and plotted as the percentage of the average of the control.

ShRNA Loss-of-Function Genetic Screen

Mouse neurons prepared from E16.5 embryoswere used for a loss-of-function

genetic screen. Lentiviral particle suspension from theMISSIONshRNALibrary

was used at 10,000 TU/ml to infect neurons at 4 DIV. Neurons were fixed and

immunostained at 13 DIV for somatodendritic marker MAP2, and synaptic

markersPSD95andGephyrin. Imageswere acquiredbyaBDPathway Imaging

Station microscope in laser-autofocus mode in 4 3 4 montages per well. For

follow-up studies, LRP6wasknockeddown indissociatedneuronswith shRNA

(50-CGCACTACATTAGTTCCAAA-30) that has common target in rat andmouse

but not in human LRP6. Effect of shRNA was rescued by human LRP6.

In Utero Electroporation and Immunohistochemistry

In utero electroporation was carried out as described by Tabata and Nakajima

(2001). In brief, uterine horns of E15.5 mice were surgically exposed under
ports 5, 1330–1341, December 12, 2013 ª2013 The Authors 1339



anesthesia, and �3 mg DNA mixed with fast green was injected into lateral

ventricles. DNA was electroporated with five pulses at 950 ms intervals at

40 V for 50 ms with a tweezers electrode. Embryos were then placed back,

and the abdominal wall was sutured. At P28, mice were perfused with PBS

followed by 4% paraformaldehyde in PBS. Brains were fixed for 24 hr followed

by cryoprotection by 30%sucrose in PBS. One hundred fifty-micrometer-thick

slices were cut in coronal plane with a vibratome and immunostained with

dsRed antibodies. Optical sections in Z planes were acquired using the Zeis

510 laser-scanning confocal microscope.

Electrophysiology

Three- to 5-week-old in utero-electroporated mice were anesthetized by

isoflurane inhalation and decapitated. Brains were quickly dissected in ice-

cold buffer (212.7 mM sucrose, 10 mM glucose, 2.6 mM KCl, 1.23 mM NaH2-

PO4, 26 mM NaHCO3, 0.5 mM CaCl2, and 5 mM MgCl2). Brains were sliced

into 300 mm thin slices with a vibratome in the same solution and transferred

to normal ACSF (124 mM NaCl, 5 mM KCl, 1.23 mM NaH2PO4, 26 mM

NaHCO3, 10 mM glucose, 2 mM CaCl2, and 1 mM MgCl2). Slices were

allowed to recover for 1 hr at 30�C and maintained at room temperature

(22�C–25�C). Neurons were targeted for whole-cell patch-clamp recording

with borosilicate glass electrodes of 3–6 MU resistance. The electrode inter-

nal solution consisted of 130 mM cesium methanesulphonate, 10 mM

HEPES, 0.5 mM EGTA, 8 mM CsCl, 5 mM TEA-Cl, 1 mM QX-314, 10 mM

Na phosphocreatine, 0.5 mM Na-GTP, and 4 mM Na-ATP. Cortical pyramidal

neurons with or without fluorescence were selected from layers II–V of

primary somatosensory cortex through entorhinal cortex. For AMPA recep-

tor-mediated mEPSCs, external solution was supplemented with 1 mM

tetrodotoxin, 50 mM d,l-APV (2-amino-5-phosphonovalerate), and 100 mM

picrotoxin. Data were acquired with a MultiClamp 700A, and Clampex 8

program (Molecular Devices), at 10 kHz. Current traces were low-pass

filtered at 1 kHz prior to mEPSC detection and analysis. mEPSCs were de-

tected and analyzed using Mini Analysis (Synaptosoft) or Clampfit 10 pro-

gram (Molecular Devices).
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