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Abstract

Katoh, N., J. Koyanagi, M. Ohnishi and T. Ibaraki, Optimal strategies for some team games,
Discrete Applied Mathematics 35 (1992) 275-291.

Consider a game between teams A and B, consisting of a sequence of matches, where each match
takes place between one player i from A and one player j from B. Given the probability that
player i wins over player j, we investigate optimal strategies on how to choose a player for the
next match, for ine following two types of team games. The first type assumes that after each
match, the loser is eliminated from the list of remaining players, while the winner remains in the
list. The team from which all players are eliminated loses the game. Assuming the Bradley-Terry
model as the probability model, we first show that the winning probability does not depend on
the strategy chosen. It is also shown that the Bradley-Terry model is essentially the only model
for which this strategy independence holds. The second type of game assumes that both players
are eliminated after each match. In this case, it is shown that choosing a player with equal prob-
ability is an optimal strategy in the sense of maximizing the expected rumber of wins of matches,
provided that information about the order of players in the other teams is not available. The case
in which a team knows the ordering of the other team is also studied.

1. Introduction

This paper considers the following team game played by teams # and B, each con-
sisting of a specified number of players. Each team selects one member at each stage
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to play a match. The win or loss of the game is then determined as a resuli of such
a sequence of matches. A strategy that each team can take is how to choose a player
for the next match. Assuming that the winning probability of player i of team A4
against player j of team B is pj;, this paper investigates properties of optimal
strategies.

Among many team games in the above category, this paper is concerned with the
following two types. In the first type, the loser of a match is eliminated from the
list of players, while the winner remains in the list. The team from which all players
are eliminated loses the game. This type of team game is often adopted in the games
of “‘judo’, ‘‘kendo’ (Japanese fencing), and ‘‘go’’. Assume that a positive value
representing his or her strength is associated with each player, and that when player
i with strength a plays a match against player j with strength b, the probability p;
of i/ to win the match is generally given by p;=p(ab). In particular, if
pla,by=a/(a+b), it is called the Bradley-Terry model (BT model for short) after
Bradley and Terry [5] and Bradley [2,3,4], who introduced this to model paired
comparisons of sensory test to rank sampies (e.g., foods) on the basis of the
preference of panelists. Other applications of the BT model have been discussed by
Luce [11] for the probabilistic choice theory, Fararo [7] for mathematical sociology
and Takeuchi and Fujino [15,16] for a maich without a tie in sports. This paper first
shows that, under the BT model, any strategy is optimal, i.e., the probability for
a team to win the game does not depend on the strategy chosen. This is a generaliza-
tion of the result of Katoh and Adachi [10] who considered the case in which the
player ordering of each team is determined in advance and the rule of choosing the
next player from the list is also specified (e.g., in ‘‘judo’’ or “‘kendo’’, a player who
won a match must play the next match). It is also shown that the BT model is essen-
tially the only model for which this strategy independence holds.

In the second type of team game, both players have to leave after each match,
irrespective of the outcome. If no team has any information on the strategy of the
other team, it is shown that choosing with equal probability a player for the next
match maximizes the expected number of wins of matches. This result is a restate-
ment of Gale’s theorem [8] proved in a different setting. We shall also study the case
in which a team knows the player ordering of the other team, and derive some prop-
erties of an optimal strategy under the BT model.

2. Team game in which only loser leaves the team

Let A={1.2,....M} and B={1,2,...,N} be the index sets of the players at the
initial stage. At every stage, each team dynamically selects a player from the list of
remaining players, and only the loser of the match leaves the team. This is a two-
person constant-sum sequential game formulated in the following manner (see
9,17]).

State space:
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W= {(SA!SB): SA CA’ SBCB} - {(ﬂ’ ﬂ)}v

where S, and Sg denote the index sets of remaining players of teams A and B
respectively. States w=(S4, Sp) with S, =0 or Sz=40 are absorbing states, implying
the end of game.

Action sets: The action set of team A (team B) at state (S4, Sg) is S4 (Sp), i.e.,
an action (i.c., an index) is selected for the next match from the action set of each
team.

Transition law: Assume that the strength of ie A (je B) is denoted by g; (b)),
and the probability of i to defeat j is given by p(a;, b;). If actions i€ S, and je Sp
are selected at state w=(S,, Sg), then state w moves to state w’ with probability
P(w,i, j,w'), where

pla;, bj)9 if w=(S4,S-{/})
P(W, isj, W')= l-p(aii bj): if w’=(SA - {'}9 SB);
0, otherwise.

Payoff function: If a state (S,,Sg) {|S4|=1, |Sz|=1) moves to (S,,0), then
team A receives 1, while B receives 0. Conversely, if a state (S4,Sg) (|S4]=1,
|Sg|=1) moves to (&, Sg), A receives 0, while B receives 1. Thus it is easy to see
that the expected total payoff that team A receives is equal to the winning probabili-
ty of team A, while the expected total payoff of team B is 1 — (the winning probabili-
ty of A).

History: A history A at the tth stage is a sequence consisting of all states and ac-
tions by then:

h'=(w',x',y‘,..., wl-l’xl-l’yt—l, W'),

where w*=(S},S3), x* and ¥’ are the state, the action of A and the action of B,
respectively, at the sth stage. Let H' denote the set of all possible A's.

Dynamic strategy: A dynamic strategy n, for team A is a sequence
(n}, 1% ..., 7,...), where 7', is a conditional probability distribution on S} for a
given history /’. In other words, n/,(i | #') is the probability that, given #’, team A
selects player i (€ S}) at the tth match. nj, is defined in a similar manner. Let 17,
(ITg) denote the set of all possible dynamic strategies for team A (B).

Let V;, .,(k") be the expected total payoff that, for a given history 4’ (up to the
tth stage), team A receives under strategies 7 4 and nz. Team A (B) tries to find a
strategy m4 (mp) that maximizes (minimizes) V,, (k). It is known in the theory
of finite stage two-person constant-sum sequeniial game (see [9,17]), that the secure
levels

max [ min V,, . (h")] ()
nqelly ngellg

of team A and

min [ max V;, ,(h")] ()

npelly maclly
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of team B coincide, and depend only or the curreni state w'=(S,, Sp) of history n.
Furthermore, any maximizer 7} of (1) and any minimizer n of (2) are optimal for
both teams A and B in the sense that

V2B < Vs oa(B') < Vs 1, (H)

holds for any 7, €1, and nge IT5. For a history A" with w'=(S4, Sp), denote the
value of (1) and (2) by
. = in V A= mi v n
V(SA SB) nTEal);A ”l:lel'l}b‘ o nn( ) ”:21’1_}8 HTEal’;A n,l,nu( )

and call it the value of game with initial state (S,, Sg). It is also known that these
V(S4, Sp) satisfy the following optimality equations:

V(Sa9)=1,
V(9 Sp)=0,

V(SySp)= max  min {2 T a)BG)P@b)V (S0 Sa~ i)
aeP(S,) BeP(Sp) (ieS, jeSa

+ (1= plap b))V (S 4~ (i} an] 3)

for S,#0 and Sg+#0,

where °(X) is the set of all probability distributions over set X. Based on a solution
to (3), an optimal strategy 73 can be constructed by a maximizer « in the right-
hand side of (3) at eack state w' =(S,, Sg). This means that z} depends only cn the
current state (not the whole history). An optimal strategy 7 can be similarly con-
structed by selecting a minimiz-- f.

2.1. Strategy independence under the BT model

Here we assume the BT model, i.e.,

(a;, b;)= u
P )= b,

i

a;+b;
and show that the winning probability is independent of the strategy chosen, i.e.,
any dynamic strategy is optimal. Of course, this result depends on the probability
model of the game, and we shall show in the next subsection that the strategy in-
dependence holds only for the BT model.

Lemma 2.1. For the team game of this section, the optimality equatiions (3) reduce

to
a;

b,
V(S4,Sp) = b V(St,Se—{ih+ _‘_jb V(Ss—1{i},Se) )

it 9 ai+0;

Jorall ieS, and je Sg,
where S, and Sg satisfy S, +9 and Sg+9 (i.e., (3) is independent of a and p).
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Prcof. This is proved by induction on (m,n)=(|S4|, |Sg|). For notaticnal conve-
nience, let

a; . b; .
V(S,, Sg— 4 —-4i%, Sp).
Uy (S4,Sp {J})+a,-+bj V(Sa—1{i},Sp) &)}

(i) m=1. We consider the case of S, = {1} without loss of generality. We prove

a
V(S4,Sg)=
(S4,58) kgs,, 4+ b,

©

by induction on n=|S;|, because this implies

a, a b;
V(S4S )=———-—( >+ )
A>°8 a|+bj kESl;I—{” a|+bk. a|+bj

a . bj
= VS ,S - + Vﬂas
Py SaSe—1{Jj}) a+b, ©,Sp)
=Ulj

for any je S, i.c., the lemma statement. For n=1, (6) is obvious. For general n,
(3) becomes

R . a T b;
V(SmSp)= min _guﬁ(J)(al+bj ViSnSe= D+l V(ﬂ,sg)>}

R 4 a
_ﬂer?’}?B) {jezssﬂ(nal +b; (kesg-{j} a +bk)}
- . ay
/rg;’l(l;a) {jeZSBﬁ(J)<k£].:SR a +bk>}
_ a, . .
—(kle—ISa al+bk>ﬂ;npl(‘;y) {IEZSBB(‘,)}
a;

= —— Q)

- ’
keSz 4 +bk

where the second equality follows from the induction hypothesis.
(ii) n=1. After proving

b,
V(S4,Sp)=1-
(S4,58) kg& 4+ b,

®
for Sp={1} by an argument similar to (i), we easily obtain
V(S4,S8) =i

for any ieS,.
(iii) For m=2 and n=2. Assume S,={1,2} and Sg={1,2} without loss of
generality. From (i) and (ii), U, becomes
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_ a " bl
Un="5 V({1,2},{2;,+ai+ > V{2}{1,2})

__@ /l_bz‘b2>+b,<»':.a2)
a+b\ a+b, ay+by) ay+b \ay+b, ay+b,
(by (6) and (8))
a,(a2+b,)(a1a2+a.b2+a;_b2)+a§b1(a,+b2)
B (@, + b1 )@, + by)a + By )@ + b))
aja,{a,a, + (a; + a,)(b, + by)} + b,bz(af+a,az +a§)
B @ +b)Ya + b))+ b)) @+ b))

Since this is invariant under interchauging a, and a, and/or b, and b,, U;; does not
depend on the choice of either ie S4 or jeSg. Therefore

V(S:»Sp)= max  min {E ) a(i)ﬁ(j)U,-,}

aeP(Ss) BeP(Sp) LieS, jeSp
=U; max min { Yy ¥ a(i)b’(j)}
aeP(S4) BeP(Sp) (ieS, jeSg
=U; ®
holds for any ieS, and je€ Sg.

(iv) Assume m=3, n=2or m=2, n=3. First forany ke S, with k#i, and /e Sy
with 1+,

Uij:a,-:i’bj(ak+b: V(S4Se—{il})+ a b, V(Sa—{k},Sp— {J})>
+%( Y V(Sa—{i},Sg—{I}+ be V(SA.—{i,k},SB)>
=a::‘b, (a,—+b— V(Sq,Sg—{il})+ a+b, V(Sa—{i}, Sp— {i}))
+aklilb,<a,+b V(Sy—{k},Sp— {j})+al +b,- V(SA_{i’k}’SB)>
=ak‘irb1 V(SaSs—{I})+ bb, V(S4—1{k},Sp)
_u, (10)

follows from the inductic ~ hypothesis. Next we shall show below that U;;= U,; and
U;=U,;. Consider without loss of generality that m=3, and choose geS,, with
g#z, k, and h € Sg with h#j. Applying (10) with & and / replaced by g and 4 respec-
tively, we have U= Uy, whilc U, = Uy, follows from (10) with i, j and / replaced
by g, h and j respectively. This proves U;;= Uy;. Similarly, (10) and U= Uy, (arply
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the above discussion with j replaced by ) yield Uj;;= U;. Consequently, Uj; is con-
stant for all / and j. Similarly to the case of (iii), this proves that (9) holds for any
ieS, and jeSz. O

Theorem 2.2 (Strategy independence). For the team game described in this section,
any ny€ll, (any nge Ily) is an optimal dyramic strategy for team A (B).

Proof. Since Uj; of (5) does not depend on the choice of either / or j as shown in
the proof of Lemma 2.1, it is clear that any pair of distributions « e P(S,) and
B € P(Sp) respectively attain the max and min of the right-hand side of optimality
equations (3). The theorem follows from this observation and the known properties
of optimal strategies stated in conjunction with (1) and (2). i

Some team games have additional rules in carrying out matches. In “‘judo’’,
““kendo’ or ‘“‘ga’’, the following rule is often used. Each team determines the order-
ing of all players in advance. Let (1,2,...,M) and (1,2, ..., N) be such initial order-
ings of teams A and B respectively, without loss of generality. Then player 1 of team
A and player 1 of team B play the first match. The winner must play the next match
in succession. In general, if (/,i +1, ..., M) is the ordering of team A4 just before the
tth stage, the first player i participates the fth match, and the ordering for the
(t+1)-st stage is updated as follows.

(i+1,...,.M), if i wins,

(G+1,i+2,...,M), ifiloses.

The ordering of team B is similarly updated. This type of teami game is called
““elimination series”’. In ‘‘soft tennis’’ (a variation of ‘‘hard”’ tennis, which was
originated in Japan), the winner of a match does not play the next match, but is
placed in the last position of the list. This type of team game is called ‘‘exter-
minatory series’’.

Formally, these additional rules are defined as a sequence r=(r,r%...,7,...),
where r'=(R/, Ry) is a pair of mappings which restricts the index sets of players
for the next match to R (k") (CS’’ and Ry(h') (CSp) respectively. Although a
team game with an additional rule r is not a sequential game as originaliy stated in
this section, we can observe that any dynamic strategies taken by teams A and B
are still optimal for such a game because the sets of all dynamic strategies /7,
(respectively ITg) also include those strategies which obey the additional rule r.

Corollary 2.3. Even if an additional rule r as stated above is imposed, the winning
probability of a team is independent of the chosen <.rategies. '

Corollary 2.3 specialized to elimination and exterminatory series was first shown
by [10].
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2.2. Condition for strategy independence

In this subsection we consider the converse of Theorem 2.2. That is, the condition
on the probability model, under which the strategy independence of Theorem 2.2
hoids, is derived, assuming that player i€ A (j € B) has strength a; (b;), and the
probability that ie A wins a match against je B is p(a;, b;). Although, this p(-, )
is originally defined over domain {(a;, b;) | ieA, je B}, we extend its domain to
the following symmetric set,

X={(a,b;): icA, jeB}U{(b;,a;): jeB, ie A}, an
and assume the following for any (a,6)e X :

0<p(a b)<1, (12)

pla,b)+p(b,a)=1. (13)

Property (13) states that matches are unbiased and that strengths of players in two
teams are measured on a common platform.
With this notation, optimality equations (3) become

V(SAs Nn=1,
V(9,S5p)=0,

V(S4 Sg)= max min a(i pa;, b))V (S4,Sg—{J
(S055)= max min {L; L a@B()p@, b)V (5 S5= {7D

+p(bna)V(Sa— i}, 83)1} (14)
for S, #0 and Sz+0.

Lemma 2.4. Under the above assumption, the strategy independence of Theorem
2.2 implies that

pla;, b)) pla;, b;)p(b;, a;)p(b;, ;) = p(bj, a;) p(b;, a;)) pla;, b)) p(a;» b;) (15)
holds for any i,i’e A and j,j'€ B.

Proof. First note that
U;j=p(a;,b;)V(S4,Sg—{j}) +p(bj,a)V (S, —{i}, Sp)

in (14) gives the expected total payoff (the winning probability) of team 4 when the
game starts from initial state (S4,Sg), and teams 4 and B use the strategies that
respectively choose the first players ie S, and je Sy with probability 1 and obey
their optimal strategies thereafter. Further note that, as properties (6) and (8) in the
proof of Lemma 2.1 (replace a;/(a;+ b)) in the proof by p(a;, b;)),

V(S4Sp)= ] plai,b;) (16)

Jj€Sp
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holds if S, ={i} and

V(S4.Sp)=1~ Il pla;,b)) 17)

ieS,;

holds if Sg={/}.
Now consider the case of S, ={1,2} and Sz={1,2}. We have

Un=pa,0))V(Sa.Sp— {1} +p(b1,a)V(S,—{1},Sp)
=p(ay, 0)){1-p(by, a1)p(by, a;)} + p(by, a1){ p(ay, b)) plas, by)}
(by (16} and (17))
=play, b)){(p(ay, by) + p(by, a1))(p(a3, by) + p(b, a3)) — p(bs, @) p(b2, a2)}
+p(by, a))p(ay, b)) p(az, by) (by (13))
=play, b)) play, b)) ple,, by) + play, by) pla,, by) p(b,, ay)
+p(ay, b)) plba, a1) plaz, by) + p(by, 1) plaz, by) plas, by)
=play, b)) play, by) play, br){ play, by) + p(by, ay)}
+play, b)) play, by) p(by, a2){ plaz, b)) + p(by, @)}
+p(ay, b)) p(by, a;) play, b2){ plas, b)) + plby, a3)}
+p(by, a\) plaz, by) plas, by){ pla,, by) + p(by, @)} (by (13)). (18)

Similarly, we can obtain U),. From the expressions of U,; and U,
Ui — Uiy =play, b)) p(bs, ay) play, by) p(by, a,)
—play, b)) p(by, ax) play, by) p(by, ay)
= p(ay, b)) p(03, by) p(by, ) (b, a3)
—p(by, @) p(by, a2) play, by) play, by). 19)

To prove the assertion, assume without loss of generality that (15) does not hold
fori=1, i'=2, j=1, j’=2. Then it follows U,;# U,, from (19). This means that
the winning probability of team A4 from state ({1,2}, {1,2}) becomes different
depending upon whether team B chooses 1 or 2 with probability 1 for the first
player. Also, by (12), there are strategies of teams A and B, under which state
({1,2}, {1,2}) is reachable from initial state (4, B) with positive probability (e.g., the
game of ‘“‘elimination series’’ with respective initial orderings (M,M—1,...,2,1) of
team A4 and (V,N-1,...,2, 1) of team B). Therefore the winning probability of team
A (from initial state (A, B)) becomes different depending upon whether team B
chooses 1 or 2 with probability 1 for the next player when state ({i,2}, {1,2}) is
reached. Accordingly, (15) is necessary for the strategy independence. [
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We shall now identify the functional form of p(a, b). The following lemma is a
slight generalization of the well-known result (Subsection 5.1.2 in the English
translation of Aczél [1]), which derives the stated fu:ictional form under the assump-
tion that the domain X of p(-, -) is a Cartesian product of some set X', i.e.,
X=X'xX".

Lemma 2.5. Under (12) and (13), p(-, -) defined over X of (11) satisfies (15) if and

only if
Sf(a)

f(@)+f(b)
Jfor some function f(-) with f(x)>0, defined over Y={a;: ic A}U{b;: jeB}.

pla,b)= (20)

Proof. Define the function r(a, ) over X of (11) by

r(a,b)=log % . (21)
Condition (13) implies

r(a,by+r(b.a)=0 (22)
for any (a,b) € X, and (15) becomes

r(a, b;) + ra;, b;) + r(bj, a;) + r(bj, a;) =0 (23)

for any i,i’e A and j,j'€ B. We shall show below that the general solution of the
system of functional equations (22) and (23) is

r(a,b)=q(a) - q(b), (24)

for some function g(-) on Y.
(i) If {a;: ieA}N{b;: je B} #0, then

a,-*=bj*=c

holds for some i*€ A and j*e B, and r(c,c) =0 holds by (22). Therefore, (22) and
(23) imply

r(a; b;)=r(a;, c) - r(b;,c) (25)
for any ie A and je B. Thus, define
q(x)=r(x,c) (26)

for xe Y, and we have (24).

(i) {a;:ieA}N{b;: je B} =0. Fixi’=1 and j’= 1. Then, from (22) and (23), we
have

r(a;, bjy=r(a;, b))+ r(by,a,) - r(b;, a,) @7
for any ie A and je B. Thus, define a function g(- ) by
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)= r(a;, b)) +r(by,a,), if x=a; for some ie A,
a r(b;, ay), if x=b; for some jeB,

and we have (24).

Now, using
f)=e", xeY, (28)
p(a,b) is written by (21) and (24) as follows.
Sfla)
Lb)=—"—"——, (a, X. 2
pla,b) T@+10) @be (29

In addition, f(x) is positive valued by (28). This proves ihe “‘only if*’ part.
Conversely, it is clear that any p(a, b) of (20) satisfies (15) as well as (12) and
(13). O

In view of this lemma, we conclude that, given p(a, b) for which the strategy in-
dependence holds, we again obtain the BT model by redefining strength a of a player
by f(a). This observation together with Theorem 2.2 yields the following theorem.

Theorem 2.6. Under (12) and (13), the strategy independence of Theorem 2.2 holds
if and only if the winning probability p(a;,b;) obeys the BT model.

3. Team game in which both winner and loser leave

In this model, teams A and B both have N players whose index sets are denoted by
A={12,...,N}, B={1,2,...,N}.

Each player participates a match exactly once. After each match, two players who
participated the match leave the teams irrespective of the outcome. The objective
of each team is to maximize the expected number of wins.

3.1. The case in which the strategy of the opponent is unkrown

First consider the case in which the strategy of the other team is unknown. Assum-
ing that each team dynamically selects a player for the next match, we derive an op-
timal strategy that maximizes the expected number of wins. Instead of the BT
model, we assume here a more general model that the winning probability of plarer
i € A over player j € B is given by p;;. Thus 1- p;; is the probability that player j€ B
wins over player i € A. This problem can be formulated as the following two-person
constant-sum sequential game.

State space:

W={(S4,8p): S4CA, SsCB, |SA| = |SB|}s
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where S, and Sp stand for the index sets of remaining players of teams A and B,

respectively. State w=(@,0) is an absorbing state, implying the end of the game.
Action seis: The action set of team A (team B) at state (S, Sg) is S4 (Sp)-
Transition law: If actions ieS, and je Sy are respectively selected at state

w=(S,4, Sp), then state w moves to state w’ with probability P(w, i, j, w’), where

Wb W)= 0, otherwise.

Payoff function: If ie S4 wins a match, then team A receives 1, while B receives
0. Otherwise, team B receives 1, while A receives 0. Thus the expected payoff for
team A (respectively team B) is p;; (respectively 1—p;).

History and strategy are defined in the same way as in Section 2.

Let ¥, .,(h") be the expected total payoff for team A under strategies 4 and
mg, for a given histor, e H'. Similarly to the case of Section 2, it is known (e.g.,
[9,17]) that there exists a real number V(S,4,Sp) (the value of game with initial
state (S4, Sg)) for w'=(S,, Sg) of history A’ such that

V(S4,Sg)= max min V, . (h)= min max V,, ..(4").
n'AeII,; ﬂBE”y 7!56”3 na€lly

These V(S4,Sp) can be obtained by solving the following optimality equations:
V@,0)=0,
VispSo= max min { T T a@Blp

aeP(S1) BeP(Sp) (ieS, jeSy
+V(SA—{i},SB--{j})1} (30)
for (S,4, Sp) % (@ 0).

An optimal strategy n; can be constructed by always selecting a maximizer « at
each state w'=(S,, Sz), while an optimal policy 75 can be similarly constructed by
selecting a minimizer .

Gale [8] discussed a closely related game called ‘‘game with finite resource”,
where “‘resource’’ corresponds to players in our case. He considered an asymmetric
situation that, in our context, only one team (say team A) is allowed to dynamically
choose a player for the next match, while the other team (team B) must determine
the ordering of players in advance (i.e., a static strategy). He shows that, if team
B chooses a static strategy to select one ordering out of N! possibilities with equal
probability, the expected total payoff is independent of the dynamic strategy of
team A. Similar properties are also observed in Ross [13,14], and Dror [6} for a card
game named ‘‘Goofspiel’’.

The following theorem 02 our dynainic game is also similar to Gale’s result. In

fact, its proof can be easily done by slightly modifying Gale’s proof; hence it is
omitted.
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Theorem 3.1. For |S,, =|Sg|=n=1,
1
V(S. S.)=— V Y n 121\
T \MArCR) bd s Fij 21y
N eSS, jeSg
holds. In addition, the following term in the right-hand side of (30)
v C NP . LfO () © ¢ 3\
L L GUIPUNPTV O~ UgpHop— sl
IESA jeSB

becomes constant with respect to Be P(Sp), if a(i)=1/n for all i€ S, and becomes
constant with respect to a€P(S,), if B(j)=1/n for all jeSg. (Therefore the
max min of the right-hand side of (30) is attained if we let a(i)=1/n for i€ S 4, and

B(j)=1/n for je Sg.)

3.2. The case in which the ordering of the other team is known

A______*__ LL_ MyYTm ____.1_1 PR I T R R 1 L] a1 1. 1

Assuming the BT model, consider ilic case in which both teams determine the
Ardarinag Af nlavare hafara tha cama ctaste Duasthasmnaes jn Aatasmeiniens sha andaa
ViUViiED Vi playvid UVIVILV LIV gadlilb dlald. 1 1L VI G, 121 UCLSTIINILLLE LIDe UL JUCL -
ing of team A4, we assume that the ordering of team B is known to team A in ad-

vance. In this setting, Theorem 3.1 is no longer true. We shall derive in tkis
subsection some properties of an optimal ordering for team 4. Let a; for ie A and
b; for je B be the strength of players as defined in Section 2, and assume

B
jon

2, <a; << b.<bh,<---<hy (32)

a;< <N D1<DO< < Dy

for simplicity. For an ordering (i}, , ..., iy) of team A and (j;, /3, ...,Jjn) of team
B, the expected number of wins of team A is

N a;
y —m (33)
m=1 a,m + b.lm
Thuiia 1A Anm fivo tha Avdavias AF taam D ag
L1IUd, WU Lall 1IA L1C VIULILllE VUl vadlll o ad
12,...,N) (34)

without loss of generality. It should be noted that maximizing (33) is a special case
of the assignment problem in combinatorial optimization, and an optimal ordering
can be efficiently obtained by an appropriate algorithm (e.g., [12]). In this subsec-
tion, we are interested in properties of an optimal ordering.

Lemma 3.2. For an optimal ordering (i}, i, ...,iy) of team A,

a;, —a;)(byb—a;a;)=0 (3%

Proof. If we exchange i, and i, in an optimal ordering (i, i, ..., in), the expected
number of wins must not increase, i.e.,
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From this we have

(by— b Na;, — a;)(byb,— a;,a;)<O0.

Lemma 3.3. For any subsequence o =(iy,iy,....ix,) of an optimal ordering
(i15 055 .. Iy) Of team A, such that

a a,
)X —
1 A +Ds
M=1 g, “Km
over ail permutations ¢=(0,,0)....,6,) Of {ixsik,-.-,ik,) can be done in-
Anemmerdaitley Al Atlhine nvsrrsnnsrnsmdas tov dhan svrlhaln cAamssaman wrlaawea £ b Y\ io ¢lan
UTpuItuLiinly Ul VUG CUHLPUILICIIW LI LIIC WIHIUIC DCUULLIVG, WIIVIC (A ], ’\'2! --,I\ J 1d UIv
csutheceanence of (1.2 N of team R correcnondine to (5. i Y Therefare
subsequence of (1,2,...,N) of team B corresponding to (i, ik, ---»ix,). Therefore
it suffices to shgw the olemg: if iy =N in an optimal ordering (i, i, ..., iy) of

(a,'p - a,-q)(bpbq - a,-pa,-q) =>0.
By a; <a; <ay (recaii (32)), this implies

’\, ’\ e Y, B >l\
v1Yp uNu,p__v,

bpbq b a,'pa,‘q =0.
On the other hand, b,b,<b,b, and a;,a; <aya;, must hold by b, <b, and 4; <ay.
This is a contradiction. [

Lemma 3.4. For any subsequence o= (iy,iy,,...,ix,) of an optimal ordering
(iy, iy, ..., Iy) Of team A, at least one of the followirg four cases occurs.

ik|= min i , 36)
ism=sn

ik,,= min ik,,," (37)
l<m<n

iy, = max i, (38)
Ism=n
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iy, = max i . (39)
l=ms=n

In addition, (38) implies (37).

Proof. Similarly to the proof of Lemma 3.3, w2 only consider the case of n=N,
i.€., (gysikys ooes i) = i1y B2y oeey iy).

If N=1,2, the lemma is obvious. For N=3, the optimal ordering not satisfying
the condition of the lemma is (3, 1, 2) only (ihis satisfies (38) but not (37)). However,
this does not satisfy the condition of Lemma 3.3, and hence it is not optimal. For
N =4, an ordering which does not satisfy this lemma but satisfies the condition of
Lemma 3.3 is (2,1,4,3) only. From Lemma 3.2, we have

bby—a,4,20 = b,/ay=a,/b,, (40)
b\by—aya3;<0 = b/ay<ay/b,, 41)
byby—aja3<0 = by/ay<ay/b,, 42)
byby—aja;<0 = by/a,<a,/b;, 43)
biby—asa;=0 = by/ay=a,/by. 44)

Using (44), (43), (40), (41) in this order,
by/ay=a,/by=by/a = ay/by=b,/ay
follows. Thus, consider the case of
by/ay=a,/by=b,/a,=a,/b;=c.
Then from (42),
c=by/ay<ay/b,=1/c

holds. This implies c<1, and hence a, = b,/c>ch; =a,, which contradicts (32).
For N>4, if we consider an ordering which does not satisfy this lemma but
satisfies the condition of Lemma 3.3, there exist /, m with 1</<m<N, i;=1 and
i, =N. Hence, applying a similar argument as in N=4 to i, i, i,, iy, We can
derive a contradiction.
The last assertion of the lemma directly follows from Lemma 3.3. O

This lemma states that for any subsequence &= (iy,, ig,, ---» i,) Of an optimal se-
quence of team A, at least one of the following four matches must take place:
team A team B
the weakest playeir in ¢ vs the weakest player in §
the weakest player in ¢ vs the strongest player in §
the strongest player in @ vs the weakest player in 8
the strongest player in @ vs the strongest player in §,
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where B is the corresponding subsequence (ky, k>, ..., k,) of team B.

When N=3, ordering (3, 1,2) can only be eliminated by Lemma 3.3. However,
when N =4, the following 11 out of 4! =24 possible orderings are excluded by Lem-
mas 3.3 and 3.4:

(1,423), 2,1,43), (2413, 3124, (,142), (G412,
4.1,23), 4,132, (4213), 4231, 4312).

The fraction of orderings to be excluded by L.emmas 3.3 and 3.4 becomes significant
as N becomes large.
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