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1. Introduction

In this paper we consider the motion of particles dispersed in incompressible viscous flows in RY,
with d = 2, 3. Such a model was first introduced by Williams in the context of combustion theory [22],
and also found in Caflisch and Papanicolaou [4]. The particles are described by a probability density
function f(t,x, v) > 0 governed by a kinetic transport equation with a friction force F,

of+v-Vxf+Vy - (Ff =0V, f)=0,
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where o is a diffusive coefficient, which is a nonnegative constant. Here a diffusion effect is taken into
account while a collision effect of particles is ignored. The particles are dispersed in a fluid described
by its velocity field u(t, x) satisfying the incompressible Navier-Stokes equations,

atu—i-(u-V)u—i-Vp—vAu:—/Ffdv, divu =0.
Rd
The coupling arises from the friction force F(t,x) acting on particles exerted by the fluid. The force
F(t, x) under our consideration is based on a thin spray model [20]; the volume fraction of particle
is not considered as a fluid-kinetic coupling, and the force is reduced to be friction force proportional

to the relative velocity with some friction constant Fy > 0, i.e. F = Fo(u — v). Therefore, the external
force term in the fluid equation is given by

—/Ffdv:Fo/f(v—u)dv.
Rd

Rd

If constants o, v, and Fyp are, for simplicity, assumed to be 1, we then have the following Navier-
Stokes-Vlasov-Fokker-Planck equations:

atu+(u-V)u—Au-l—Vp—/(v—u)fdv:O, divu =0,

Rd
*f+ @ -Vof+Vy-(u—v)f—V,f)=0.

(11)

Here p is the scalar pressure and initial data satisfy the compatibility condition, i.e. divug =0.

We review some known results related to our concerns. In [14], Hamdache studied the Vlasov-
Stokes system in a bounded domain and constructed a weak solution with specular reflection bound-
ary conditions. Boudin et al. [2] considered the three dimensional incompressible Navier-Stokes—
Vlasov equations in a torus to construct a global weak solution. In [17], Mellet and Vasseur proved
the existence of global weak solution to compressible Navier-Stokes-Vlasov-Fokker-Planck equations
in a bounded domain with Dirichlet or reflection boundary conditions. When the fluid is inviscid,
the local existence of the compressible Vlasov-Euler equations was studied by Baranger and Desvil-
lettes [1]. The local existence in the case of colliding particles was proved by Mathiaud [16]. Stability

2

of solution near Maxwellian, which is equilibrium solution of the form (u =0, f = Me*%), was es-
tablished by Goudon et al. [13] in case that domain is a three dimensional torus (see also [6] for the
Vlasov-Euler-Fokker-Planck system). In two dimensions, He [15] showed that a perturbation of the
steady state of the system is globally stable for arbitrary initial data converging toward steady state
with the exponential rate under specific assumptions. We also mention that there are known results
for hydrodynamic limit of the global weak solution of the system (1.1) (see e.g. [11,12] and references
therein for other previous results in this direction).

In this paper our main objective is to establish the global existence in time of weak solutions
and to study regularity of such solutions for the Navier-Stokes-Vlasov-Fokker-Planck equations in
R? and R3. The appropriate notion of weak solution is specified in Section 2 (see Definition 6 for
details). In two dimensional case, it turns out that weak solutions become strong and unique, pro-
vided that initial data are sufficiently regular and decay adequately fast at infinity for phase variables.
We also show the global in time existence of the strong solution for the three dimensional Vlasov-
Stokes system and Vlasov-Fokker-Planck-Stokes system. Before stating main results, we introduce
some function spaces defined as follows:

VR ={u=@i,....up) |ui e HY(RY)}, Vo (RY) ={ueV(RY) |divu =0},

H(Rd) = the closure of V, (Rd) in (LZ(Rd))d, V/(Rd) ={u=@,....uq) | uj € H’l(Rd)},
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where H-1(RY) is the dual space of Hé(Rd), and Hg)(Rd) is the closure of compactly supported
smooth functions in H'(R?). Now we are ready to state our main results.

Theorem 1. Let d = 2 or 3. Suppose (fo, ug) satisfies
fo=0,  foel™®(R?xRY), /(|x|2 + V|2 + llog fol) fodv € L' (RY),  uo € H(RY).
R4 (1.2)
Then there exists a global weak solution (f, u) of (1.1) with initials (fo, ug) such that
uel®(0,T; H(RY)) NL%(0, T; Vo (RY)) NCO(0, T; V/(RY),  f(t.x,v) >0,
ferl®(, ;1N (R x RY))nc(0, T; L' (R x RY)),  flv)2 e L(0, T; L' (R x RY)).

Next, we are concerned on the global in time existence of “strong” solutions for the incompressible
Navier-Stokes-Vlasov-Fokker-Planck equations in two dimensions.

Theorem 2. Let d = 2. Suppose ( fo, ug) satisfies (1.2) in Theorem 1. Assume further that
(¥ fo, (V¥Vy fo € LP(R?* x R?),  Vug e LP(R?), (1.3)

withp € (2,00), k>3 — % and (v) = (1 + |v|®)1/2. Then, there exists a strong solution (f,u) to (1.1) with
initials ( fo, ug) such that
00 1D (W2 2 2 gl (m2
Vuel™(0,T; LP(R?)),  |Vul2 €L*(0,T; H'(R?)),
-2
(MY f € L®(0, T; LP (R? x R?)), W21, f157 Vv, Ve f € 12(0, T; I2(R? x R?)).  (14)
We can also establish the higher regularity with respect to v and x, provided that initial data are

sufficiently smooth. For notational convenience, let the multi-indices o = [o¢q, @2] and 8 = [B1, B2] for
nonnegative integers «;, 8;. For notational convenience, we denote

B
=S, Wflwrrpmexes = D [10Flp@E2 )
loe|<m
_ ko
1l gocesy = D 600 flp@easey:
la|+IBISN

Theorem 3. Let d = 2. Suppose ( fo, Uug) satisfies (1.2) in Theorem 1 and (1.3) in Theorem 2. Assume further
that

upe WNP(R?),  foe WP (R? x R?) (15)

for any nonnegative integer N with p € (2, 00), k >3 — %. Then, there exists a classical solution (f, u) to (1.1)
on R? x R? x (0, T) satisfying the following integrability conditions:
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fel®0,T; Wy P(R? xR?)),  uel™(0,T; WNP(R?)),
(v)ka |agf|p772vvagf € L?(0,T; L*(R? x R?)) for ||+ |B] <N,
|a‘>‘u|p%2 Vid®u € L*(0, T; L*(R?))  for |ar| < N. (1.6)

Furthermore, we prove a uniqueness result for two dimensional Navier-Stokes-Vlasov-Fokker—
Planck equations.

Theorem 4. Let d = 2. Suppose that (u;, fi) (i = 1,2) are weak solutions with the same initial data,
(U1, f1)le=0 = (U2, f2)lt=o satisfying (1.2) in Theorem 1. If f, satisfies the following integrability condition

(¥ £, e LP(0, T; L9(R? x R?)),

where
2 2
E-|-a=1, 2<q<oo, k>2, op > 2,

then uy =uy and f1 = fo.

Remark 1. The immediate consequence of Theorem 4 is that any weak solution with a little bit high
moments estimate for f should be unique in two dimensions. Furthermore, combining the result
of Theorem 2, if initial data are sufficiently regular and decay sufficiently fast at infinity for phase
variables, weak solutions become strong and therefore, unique. Another application of the uniqueness
result is that weak solutions for the system (1.1) become strong and unique on a half-space with slip
boundary condition for u and specular reflection boundary conditions for f. More details are found
at the end of Section 4.

We also consider the Vlasov-Stokes system (o = 0) and Vlasov-Fokker-Planck-Stokes system
(o >0) in R3:

8tu—Au+Vp=/(v—u)fdv, divu =0,
R3
*f+-Vof+Vy-(u—v)f—0oV,f)=0, o>0.

(1.7)

As mentioned earlier, the case o =0 (Vlasov-Stokes system) on bounded domain £2 was considered
by Hamdache [14] in two or three dimensions. Among other things, in three dimensions, Ham-
dache [14] proved the global existence of the solution (f, u) satisfying

uel?(0,T; W22 (2)) N H' (0, T; L2 (),
fel>(0,1;1°nL'),  |vPfeL®(0,T;LY). (1.8)

It seems, however, not clear whether a higher regularity of constructed solutions in [14] is available.
We consider the system (1.7) in the absence of boundary, i.e. £2 =R> and in this case we obtain
the global in time existence of the strong solution, whose regularity is higher than (1.8). To be more
precise, our result reads as follows:
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Theorem 5. Let d = 3. Suppose ( fo, ug) satisfies (1.2) in Theorem 1. Assume further that
(¥ fo, (Vi fo, ()Y, fo e LP(R? x R®), and uge W'P(R?), (19)

where p € (3,00) and k > 4 — %. Then, there exists a strong solution (f,u) to (1.7) on (0, T) x R® x R3
satisfying the following integrability conditions for allq < p and r € (1, 00):

uel (0, T; W2I(R))nH' (0, T; LY(R?)),  ()*Vif € L%(0, T; LP(R? x R?)),
and
kv, feL1(0, T; LP(R? x R?)).
Furthermore, if & > 0, f also satisfies
(P21, £177° v, U, f € 12(0, T: L2(R? x R3)),
and
(WPK2v, £177 V2 f e 12(0, T; 12(R3 x R?)).

Remark 2. The initial condition for ug in Theorem 5 could be relaxed. To be more precise, as in [10],
we set

1
o0 1
1-1 1 _ | dt !
D, ! ::{weLg(Q); lw]] 1}y,=||w||1_p+</”t1Ape prW”LpT> <oof,
D
0

p

where Aj is the Stokes operator and L2 (£2) is the closure of {u € C5°: divu=0in £2} in LP(£2) (see
[10] for the details). Due to the result of [10], |luglly1,» can be replaced by |lugll T
DP

This paper is organized as follows: In Section 2, we show the global existence of the weak solutions
for the Navier-Stokes-Vlasov-Fokker-Planck system in two or three dimensions using the method of
approximation by regularized solutions. Section 3 is devoted to the proof of the global existence of
the strong solutions for two dimensional Navier-Stokes-Vlasov-Fokker-Planck equations using the
Brezis-Wainger inequality and various energy estimates in LP. In Section 4, we prove the higher
regularity and uniqueness for the two dimensional Navier-Stokes-Vlasov-Fokker-Planck system and
one application of the uniqueness result is provided. In Section 5, we consider three dimensional
Vlasov-Stokes and Vlasov-Fokker-Planck-Stokes system and we prove the global in time existence of
the strong solution.

2. Weak solutions

In this section we will show the global existence of the weak solutions for the Navier-Stokes—
Vlasov-Fokker-Planck system in dimension two or three. We start with notations. Hg,(Rd) is used to
indicate the closure of compactly supported smooth functions in H!(RY) and H~!(R?) means the
dual space of H(l)(]Rd). As introduced earlier, we also use the function spaces V(RY), Vy (RY), H(RY)
and V'(RY). The duality (w,v) for w € V'(R?), v e V(RY) is, as usual, given as (w,v) =39 (w;,
Vi), and we denote Ve (RY) = {w e V' (RY) | (w, v) =0 for all v e Vy(RY)).

Next we define the notion of a weak solution for the system (1.1).
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Definition 6. Let | = [0, T]. We say a pair (f,u) is a weak solution of the Navier-Stokes-Vlasov-
Fokker-Planck equations (1.1) if the following conditions are satisfied:

(a) The functions u and f satisfy
ue l®(IH(RY)) N L2 (1 Ve (RY)) N (I V'(RY)),  f(t,x,v) =0,
fel®( 1 nL (R x RY)) nc(l; L' (RY x RY)),
(Ix1% +|v[?) f e 1°(I; L' (RY x RY)).

(b) The functions u and f solve the Navier-Stokes-Vlasov-Fokker-Planck equations (1.1) in the sense
of distributions;

T

/(u . lI/)(T,x)dx—i—//(Vu VY —uQ@u:V¥ —u-0:W)(s, x)dxds
Rd 0 Rrd
T
:/uo(x)lI/(O,x)dx-l-///(v—u)fdle/(s,x)dxds
Rd 0 RdRA

with Vu: Ve =37, djuka;wk and u@u: VY = >kt uluky;wk,

T
fep+v-Vxp+@—v)-Vyp+ Ayg)dxdvdt = / fop(0,x, v)dxdv,

0 RdxRd R4 x R4

for any ¥ e C1(I; (C*(RY))) with V- ¥ =0 and ¢ € C!(I; C* (R x RY)) with (T, -,-) =0.
(c) The functions u and f satisfy the energy inequality,

T

vP? up? [
//Tf—l-flogfdvdx—f- de+/D(f,u)(t)dt+//Iqu|2dxds

RARd Rd 0 0 Rd

N

2 2
/ %fo+fologfodvdx+ %dx,
RARd Rd

where D(f,u)(t) = [pa Jpa U —V)f — va|2%dvdx.

We remark that formal computations yield the following equalities for smooth solutions with suf-
ficient integrability:

2 B B 2
%(/ %f—i—flogfdvdx)—i—//'(u V)ff v/l dvdx:—//u(v—u)fdvdx,

RIRd RARd Rd Rd

1
%(/E|u|2dx>+/|qu|2dx=//u-(v—u)fdvdx.
Rd RYR

R4
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Thus we deduce an entropy equality for the system as

d lu—v)f—V,f?
e [ [0

RIRA

2 2
5(f,u)— |—|d f/(uf—i—flogf)dvdx

R4 R4

dvdx+/|qu|2dx:O

where

The term fRd fle flog f dvdx has an indefinite sign, however, it can be shown in the following lemma
that [pq fpa f(log f)~ dvdx is controlled in terms of initial data.

Lemma 7. Assume that (f, u) is a smooth solution of the system such that £( fo, uo) + fRd fle |x|% fodvdx is
finite. Then it holds that

//|x|2fdvdx<C(t,é‘(fo,uo),//|x|2f0dvdx),

Rde Rde
// f(1ogf)—dvdx<c<t,5(f0,uo),//|x|2f0dvdx).
RIRd Rd Rd

Since the proof of Lemma 7 is, in principle, due to the arguments in [18], the details are omitted
(see also [12, Proposition 1]).
Lemma 7 implies the entropy inequality

t
IXI2 |v|? |u|? 2
—+——|—|logf| dvdx + —dx+ |Vxu|“dxds

RA RA Rd 0 Rd
///I(u—\/)f vy f? dv dxds
0 Rd Rd
C(t,E(fo,uo),//|x|2f0dvdx). (2.1)
RIR4

The following a priori LP estimate for smooth solution is obtained by multiplying fP~1 with 1 <
p < oo to the second equation of (1.1) and taking integration by parts,

%//fpdvdx+4(p—1)//’vvf%‘zdvdx:d(p_1)//fpdvdxl (22)
RY R4 P RIRA RARd

The above identity implies %Hflle(Rded) < d(pl;l) |\f||Lp(Rded), from which we have

| FO ) o qgascray < C(E 1 foll oo e e )
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To prove Theorem 1, we take the usual steps of constructing global weak solutions for the Navier-
Stokes equations:

- regularizing the system for which we prove the existence of smooth solutions,
- finding uniform estimates for the solutions of the regularized system,
- passing to the limit on the regularized parameters.

The method of our paper is quite motivated by the work of Mellet and Vasseur [17], which is
concerned about the compressible Navier-Stokes-Vlasov-Fokker-Planck equations.

2.1. Regularization

In this subsection, we intend to construct approximate solutions of the system.

For the incompressible Navier-Stokes equations defined on a general unbounded domain £2,
Chemin et al. [8, Chapter 2] constructed global weak solutions, using the spectral projection oper-

ators (Py)kez, associated to the inhomogeneous Stokes operator. A number of useful properties of the
family (Pj)kez are listed as follows: For any u € H(£2),

PPy = Pink kU, lim ||Ppu — ullx2) =0, (2.3)
k— 00
IVPrull 2o < ‘/’;”u”LZ(Q)’ IAPrull 20y < Kllull2(g).- (2.4)

In particular (2.4) implies Pyu € L°(£2) for u € L?(£2) in two and three dimensions. In what follows,
we adapt notations and several theorems in [8].

Definition 8. The bilinear map Q is defined by
Q:VxV—->YV,
u,v) —» —diviu @ v).
Apart from the frequency cutoff, we need to modify the Vlasov-Fokker-Planck equation by adding

%Axfk. From now on we denote by Hy(R%) the space P,H(RY), unless any confusion is to be ex-
pected. Next we introduce the approximating system of (1.1):

1
fe+v - Vafk+ Vo [ —v) fi] = Ay fi + EAxfk»

Oeu (t) = PrAug + P Q (ug, ug) + Pr (i — niuy), (2.5)
fro=fo, ko= Pyuo.
We assume the initial data (fop, up) satisfy
fo=0,  foel'(R* xRN NL®[R! xRY),  ugeH(RY),
[ [ 24102 o+ oltog folave < . (26)
RIRd
and
//(|x|m + [v|™) fodvdx < oo forallm € [0, mg], mg > 2d. (2.7)

RIRA
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In the following, we denote

Jr(t, x) ::/fkvdv, ng(t, xX) ::/fkdv.
d d

The next lemma shows that LP norms of ng(t, x), jk(t,x) can be bounded, provided that f and mo-
ment of f are controlled. Since the proof of the next lemma is similar to that of Lemma 3.2 in [17],
we just state it without giving the details.
Lemma9. Let f: [0, T] x RY x RY — R be a measurable function and mg > 0. Assume further that f satisfies
I hiso rpesese + [ [ v, 0 dxay < m
RIRI
for any integer m € [0, mg]. Then there exists a constant C, depending on M, such that
In@© || p e, <C forp e[l (mo+d)/d),
1i®] jogey <€ forge[1, mo+d)/d+1)),
where n(t, X) := [pa fdv and j(t,x) := [pa fvdv.

Now we are ready to prove the existence of weak solutions for the system (2.5).

Proposition 1. Let k > 0 be a fixed constant. Suppose that fo and ug satisfy the conditions (2.6) and (2.7).
Then there exists a weak solution (fi, uy) of the system (2.5)in [0, T] forany T > 0.

Proof. We shall prove Proposition 1 by a fixed point argument. Motivated by [9], we decouple the
system (2.5) replacing ji, ng by j, n, from a given fk € L2(0, T; ), where

{feL2 de ’IIfIIu —// ™) f2(x, v)dvdx < oo, m>d+2}

RIRd
For notational convenience, we denote (1 + |x|2)% by (x). Let us consider the equations
1
3tfl<+V'fok+Vv'(Uk_V)fk:Avfk‘f‘EAxfk’ (2.8)
deup(t) = Py Auy + Fie(ug () + PeG — gy, (2.9)

for the same initial data as (2.5). We denote PyQ (ug, ur) by Fr(ug). We note that j; and 7, are
bounded in L%([0, T]; L%(R%)) because in case that m > d + 2,

(/(/M}"d‘/)zd")% gC/<V)_%+1</<v)mj~“k2dx>%clv

Rd Rd Rd Rd

el form) ([ o)

Rd RIRY
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Due to smoothing properties (2.4), it holds that
1+4 2
” Fk(uk) H LZ(Rd) g Ck +2 ”uk ”LZ(Rd)’
|| Py(jk — ﬁkuk)”Lz(Rd) < C(”jk”l_z(Rd) + k||ﬁk||L2(]Rd)||ul<||L2(]Rd))~
We obtained the second inequality as follows,
||Pl<ﬁkuk||L2(Rd) < ||uk||Loo(]Rd)||ﬁk||L2(Rd)
< C(”Auk”LZ(]Rd) + ||uk||L2(Rd))||ﬁk||L2(Rd)

<Ck+ 1)||UI<||L2(Rd) ||ﬁk||LZ(]Rd)

< Ck||uk||,_2(]Rd) ||ﬁl<||L2(]Rd)'

Hence we have a priori
t
||uk||L2(Rd) < ||Pku0||L2(Rd) +/”atuk(5) HLZ(Rd) ds
0

t
< IIPkuoll2ray + C/(kz J1(5) 2y K 109 | gy + R k) 2 gy s - C.
0

By the usual Picard iteration we can show that there exists the local solution uy of (2.9) in
C(0, Tx: Hi(RY)) for a short time Ty. It turns out that such local solutions in fact become global.
Indeed, uy satisfies the following energy inequality:

2
Rd Rd Rd

d u 2 ~ -
- / el” gy / V| dx = / Py G — igug g dx (2.10)

< ||jk||L2(Rd)||”k||L2(Rd) + ”ﬁk”LZ(Rd)”uk”%zl(Rd) (2.11)

~ 1
; = 2 2 2
<kl 2 ey Nk Nl 2 ety + C”nk”Lz(Rd) ||Ul<||L2(Rd) + §||vuk||Lz(Rd)~
(212)

Thus, using the Gagliardo-Nirenberg inequality, the Young inequality and the Gronwall inequality, we
obtain

2 2
22 gy + VN2 g 712 ey < C

which implies a uniform bound on luk(@® | 2(gey in time, and therefore Ty =T.

Next we turn to the Vlasov-Fokker-Planck equation (2.8). Since uy € L®(0, T; L°(R%)), a nonneg-
ative weak solution to (2.8) can be found similarly as in Carrillo [5, Theorem 3.2] if fy satisfies (2.6).
The solution fy solves (2.8) in the distribution sense, satisfying
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fee (0, T; L' N L (R x RY)),
Vy fies Vafie € 10, T; L (R x RY)),
(X2 + v ) fe e L0, T; L' (RY x RY)),

2441

(2.13)

for all T > 0. The norms are independent with respect to |[uk|l oo (o 7:100(re))- The weak solution satis-

fies the LP bound as (2.2) so that

5[1(1]13T]”fk(t) ||Lp(Rd><Rd) < C(T)”fO”LP(Rdx]Rd) for1 < p < 0.
tel0,

Moreover we have the following moment bounds (for its proof, we refer to [5, Lemma 5.4]):

/[|v|mfk(t,x, v)dvdng(m)//|v|mfo(x, v)dvdx.

RIRA RIRA

For spatial moment we have

(2.14)

(2.15)

d d—2
a//-|x|’"fkdvdx=m//|x|’”_2x~vfkdvdx—i—f/%lem_szdvdle—i-ll.

RARA Rd R4 RYRd
I can be estimated as follows:

1<C//(|x|m + [vI™) fedv dx.

RIRA

m=2 2
If we divide |x|™~2 fi = |x|™2 fi™ " and use Holder’s inequality, we have
II<C(//|x|mfkdvdx)+//fkdvdx.
RARA RARA

Thus we obtain

//(lxlm + V™) fi(t, x, v)dvdx < C(m, T) //(lxlm + V™ + 1) fo(x, v) dv dx.

RIRA RIRA

From the estimates (2.13) and (2.16), it follows that f € L*°(0, T; Uf).
Now we can define the operator

T : L2(0, T; Uy) € L2(0, T; L2 (R*)) — L2(0, T; Uy)

by Tk(]‘k) = fi for any T. Here Uy is the closed subspace of L2(R%!) defined as follows:

Uy = {feu‘ ||f||£,N = //((x)’"+(v)’")f2(x, v)dvdx <N, m>d+2},

RIRY

(2.16)

(2.17)
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where N is a large positive constant depending on initial data such that the estimates (2.18)-(2.19)
below hold. Then Proposition 1 follows if a fixed point for 7 exists. Note that L%(0, T; Uy) is closed
in L2(0, T; L2(R2%)) (see e.g. [21, Theorem XIIL.64]). Next we set

w={feu|Ifllw:=1fllu+IVfllzgea <oo}
and let YW’ be the dual space of W. Due to (2.13) it holds that
17k fiell 20,723y < N- (2.18)
Moreover, the dual argument shows that
19e(Tefiol 20,7y < N- (2.19)

Indeed, for w € LZ(O, T; V), we have

T T
// o fiw = // |:kava + (g — V) fi Vyw — <vavaW + Ilzvxfkvxw>i|

0 R2d 0 R2d
2
< CIVWI20, 722y |1V fill 10,7211 ey

+ ||uk||L00(0,T;LDO(Rd))||fk||L2(0,T;L2(]R2d))||VW||L2(0,T;L2(RZH))

1
+ (1 + E) ||ka ”LZ(O,T;LZ(RZCI)) ”VW”LZ(O,T;LZ(RZd))'

Since W is compactly embedded in L2(R2?) (see e.g. [21, Theorem XIIL65]), the estimates (2.18) and
(2.19) imply that 7y is a compact operator on L%(0, T; /) by Aubin-Lions’ compactness lemma. Then
by the Shauder fixed point theorem 7; has in L%(0, T; 1) a fixed point, which also satisfies (2.13).
This deduces the proposition. 0O

The weak solution (fi,uy) of the approximated system (2.5) satisfies an entropy equality with
dissipation.

Proposition 2. The weak solution (f, uy) of (2.5) given by Proposition 1 satisfies the following equality:

T

2 2
/ %fk—i—fklogfkdvdx—i—/%dx-i-/Dk(fk,uk)(t)dt
RIR? Rd 0
T T
+//|vxuk|2dxds+1/// Vel 4, 4
k fr

0 Rd 0 R4 Rd

v|2 ug|?
=/[%fo+fologfodvdx+/%dx,

RIRY Rd
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where

1
Dk(fk,uk)(t)=//|(uk—V)fk—vak|2ﬁdvdx.

RIRA

Proof. As in [5], the weak solution f; of (2.8) satisfies

d v|? o
E//%fk-i-fklogf1<dvdx+//|(x,\(uk)—v)f "k T 1 v dx +I/ | xfk| v dx
RIR iR 1)
://Uk(uk—\/)fkdvdx.
RIR

We add the energy inequality (2.10) to the above equality replacing ji, fiy with ji, ng. Using

/Pk(jk_nkuk)ukdX:/(jk_”kuk)”kdX:/(/kadv>ukdx_/</fkdv>ukukdx
Rd

Rd RI Rd Rd
( //-uk(uk — V) frdv dx)
Rd RE
we get the desired result. O
2.2. Proof of Theorem 1
In this subsection we construct a weak solution (f, u) of (1.1) with the initial data (fg, ug) satis-

fying the condition (1.2). Before giving the proof, we recall a useful lemma regarding the matter on
weak convergence for product of two weakly convergent functions (see [19, Lemma 5.1]).

Lemma 10. Let 2 be R? or a bounded open domain with smooth boundary. Suppose g", h" converge weakly
to g, h respectively in LP1(0, T; LP2(£2)), L9(0, T; L92(£2)) where (p1, p2), (q1, q2) are conjugate pairs, and
1 < pi, qi < 0o. We assume that for some m > 0 which is independent of n,

38" bounded in L' (0, T; W™™1(£2)),

||hn R, -+ g)”qu OT:L%2(2y) 0 as|é|— 0.

Then g"h™ — gh in the sense of distribution uniformly in n.
Now we present the proof of Theorem 1.
Proof of Theorem 1. Consider an approximating sequence f[ to fp satisfying (2.7), and
//(|v|2 + 1x12)| £ = fo| dxdv + //|fg|1ogfg| — follog fol|dxdv — 0.
RIRI R4 Rd

We denote by (f™, u™) the weak solution constructed in Proposition 1 for the system (2.5) with initial
data f"(0,-,-) = fg(-,) and u"(0, -) = Ppug(").
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There are several uniform estimates on (f",u™). The LP estimate (2.14) yields the existence of a
constant C independent of A, n such that

| " i 0,510 @ xpay < € 1< p <00, (2.20)

Proceeding similarly with Lemma 7, the approximated entropy inequality (Proposition 2) gives

//(ﬁ+&>f"+f"llogf”|dvdx+f_dx

RIRd
T T
+/Dn (t)dt+ff|qu ] dxdt
0 0 Rd
|PnUO|2
( f/ x> + |v]? fodvdx f/fologfodvd / )
RIRd RIRd

Hence we deduce the existence of a uniform constant C such that

//(1 + [x1 + [v?) f(t, x, v)dvdx < C, (2.21)
RA R
””n ”LOC(O.T;H(Rd)) + ””n ”LZ(O,T;V(,(R")) <C (2.22)

In light of Lemma 9 (mg = 2), (2.20) and (2.21) yield a constant C such that

d+2

|n" ||L°°(O,T;LP(Rd)) <G 1sp< d

) d+2
H]n HLoo(o,T;Lq(Rd)) <C, 1<€¢g< ar1 1 (2.23)

Note that the above constant C is uniform since [pq fpa [v|2 fdxdv is uniformly bounded in (2.21).
We now take n to infinity. First of all, by (2.20)-(2.22), there exist

fel>(0,T; LP(RC’ X Rd)) for1 < p < oo, ue L2(0, T: Vs (Rd))

such that

fr—f L*(0,T; L"(]Rd X Rd))—weak* for p e (1, 00),
u —u L*(0,T; Vs ) weakly.

By the same arguments in [17], we have
d+2
n"—~n L*(0,T; LP(Rd))—weak* forp e (1, L)

j"—j 10, T;LY(R%))-weak* forqe (1, ZL2> (2.24)
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with j = fRd vfdv and n = -[]Rd fdv. Note that (2.22), (2.23) imply the source term of Navier-Stokes
part, (j® —n™u"), is in L2([0, T]; V,'(RY)) uniformly with respect to n; for any w e L2([0, T]: Vs (RY)),
it holds that

ffp,, J — nu)]wdxd < /||J [ g 1wlys + 7] 3 "] o lwls e

0 Rd
C/||VWI|L2(1+HVu"”Lz)dt
We then have the following compactness result for (u"),cn (compare to [8, Proposition 2.7]):
(n,A)—>00

T
lim //|u”(t,x) —u(t, x)|2dxdt=0, (2.25)
K

for any T > 0 and compact subset K of RY. In addition, for ¥ € L2([0, T]; V(RY)) and @ e L2([0, T] x
RY)

T T
nlim // Vu"(t,x)VlI/(t,x)dxdt:// Vu(t, X))V (t, x)dxdt,
—00

0 Rd 0 Rd
T T
nll)rrolo// u”(t,x)qb(t,x)dxdt=//u(t,x)q§(t,x)dxdt. (2.26)
0 Rd 0 Rd

Furthermore, for any ¥ € C1(R*; Vy (RY))

lim sup /(u”(t,x) —u(t,x)y(t,x)dx| = (2.27)
=00 te[0,T]
Rd
Applying a test function ¥ in C1([0, T1; V5 (RY)), we obtain
d
dt(u (), ¥ () =(PrAu™(t), ¥ (t)) + (P Q (u" (), u" (1)), ¥ (1))
+ (Pa(j" —n"u"), ¥ (1)) + <u”(t), %W(r)>. (2.28)
Following the argument in [8], that is, using (2.25)-(2.27) and the fact
lim  sup ” Po (£) =¥ (O |y ey =0, (2.29)

n—00 tc(0,T

we can pass to the limit with respect to n so that
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T
/u . lI/(T,x)dx—i—//(Vu VY —uQ@u:V¥ —u-0:¥)(s, x)dxds
Rd 0 Rd
T
=/uo(x)llf(0,x)dx+ lim (Pp(j" —n"u"), w)dt.
2 ()L,n,k)—woo

For the last term, it suffices to show that n"u" term converges in the sense of distribution for it holds
that
T T
lim [ (n"u", Ppw)dt= lim [ (n"u", ¥)dt
n—oo n—oo

0 0
by (2.29). Indeed, with the aid of Lemma 10, the parallel arguments in Section 3.3 of [17] lead to
n"u" — nu, u f" ~uf
in the distribution sense, which implies that (f", u™) converge to a weak solution (f, u) of (1.1).

Finally taking the limit in the approximated entropy equality (Proposition 2) and using the con-
vexity of the entropy we deuce

T T
2 2
[ [55s+ sogravaxs [Eavs [ orwode+ [ [ 19k ans
RIRA R4 0 OR?

2 2
</ %fo—i-fologfodvdx—i— %dx,
R4 Rd Rd

where
21
D(f,wy)= | [ |wu—v)f—Vyf]| Tdvdx.
R4 Rd
Thus the entropy inequality holds for the weak solution (f, u). The proof is completed. O

Next we remark on the weak solution of three dimensional Vlasov-Fokker-Planck-Stokes equa-
tions, which will be discussed in Section 5.

Remark 3. Let o > 0. We consider the Vlasov-Fokker-Planck-Stokes equations,
atu—Au+Vp=/(v—u)fdv, divu =0,

Rd
*f+-Vof +Vy-(u-v)f—oVyf)=0.

(2.30)

A weak solution of the Vlasov-Stokes equations on R3 can be constructed in the same way as above
in the sense of Definition 6. The case o =0 on a bounded domain in RY,d > 2, with the appropriate
boundary condition was considered in [14].
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Remark 4. In case of 3-dimensional Vlasov-Fokker-Planck-Stokes equations, if the initial data are
assumed to satisfy (1.2) and if [p3 |v|? fodv € L'(R?), then the weak solution u of (2.30) satisfies the
following estimate as mentioned in [14, Remark 3.1]:

||u||L2(O,Tgw2,3/2(R3)) + ||atu||L2(0,T;L3/2(R3)) + ||Vp||L2(O,T;L3/2(R3))

< C(||j —nu L lu . 2.31
<C(Nj=mul 3o Mol g o) (231)
Indeed, a priori estimate shows that
. 3
Il 0.2 @2 + 15 g 1.13 sy, < CD (ol +1)A4%, (232)

1
where A = |||v|3fo||f1 (B3 xR?) + Cl follee + Dl 20, 7;v, r3y) @and C(T) is a uniform constant. Then

the inequality (2.31) is the direct consequence of the mixed norm estimates for the Stokes system (see
e.g. [10]). We note that the a priori estimate (2.32) can be shown in a rigorous manner by following
the construction in Section 2. Since its verification is rather straightforward, the details are omitted
(compare to [14, Lemma 2.1]).

3. 2D strong solutions

In this section, we provide a priori estimates for the proof of Theorem 2. The main ingredients
are the high moments estimates in Proposition 3 and the following version of the Brezis-Wainger [3]
inequality,

1
l[ull oo g2y < C(1+ IVull2pzy) (14 108" [Vl pgz)) 2 + Cllull2ge). (3.1)

for u € L>(R?) N WL.P(R?) with p > 2. We refer to [7] for the use of (3.1) to the proof of global
existence of strong solutions for two dimensional partially viscous Boussinesq equations.

Before stating Proposition 3, we recall the following type of Gronwall’s inequality. Since its verifi-
cation is straightforward, we state it without presenting its proof.

Lemma 11. Let T > 0 and nonnegative functions f,g:[0,T] — R*. Assume g is integrable; C(t) :=
fgg(s) ds <ocoand f' < C1f + Cagf? for 0 <a < 1, where C1 and C, are positive constants. We have
the following:

(i) Ifa=1, then f(t) < f(0)eC1t+C2C®),
(i) If0 <a <1, then f(t) <eC(f(0) + Co(1 —a)Ta C T (¢)).

Proposition 3. Suppose a pair (f,u) is a weak solution of Eqs. (1.1). Furthermore if the initial datum fy
satisfies

I (V)kaHLp(RZXRZ) <oo, foranyk>0, p>2,
where (v) = (1+ |v|?)Z, then f satisfies

(V)kfeL®(0.T; LP(R: x R2)) and (v)2 v, |f|} € 12(0, T; [2(R? x R?)).
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Proof. Multiplying (v)** fP=1 on both sides of the equation of f in (1.1) and integrating over R? x R2,
we have

k
p dt ” kafP(]sz]Rz) + CP ”(V)%v‘/lﬂg HiZ(szRZ)

:—%//(u-vv)fp(v)kpdvdx—i-// Vy - (vHY(V)® FP 1 dxdv

R2R2 R2R2
1
+5//f"vﬁ<v>"”dvdx:=]n+J1z+J13. (3.2)
R2R2

Here easily we have

=g [ [ npavasc [ [t

R2R2 R2R?

]12:2//(v)kpfpdvdx+%//V-vap(v)kpdvdx

R2R2 R2R2

=<2—%)//(v)kpfpdvdx—k//|v|2(v)"p_2fpdvdx,

R2R2 R2R?

]13<C//(v)kp_2fpdvdx.

R2R?

and

The estimates of J12 and Jq3 are direct. Using Holder’s inequality and Sobolev’s inequality, J11 can be
estimated as follows (we decompose (v)¥P—1 = (v)kP—€(y)t€=1 with 0 < € < kkp and use Holder's

exponen k’;q:e £ =1):
kp—e 1 £
L ko kp kp
Ju <C/|u|</<\/>""fp e dv) (fT@ dx
R2 R2 R2 (v) ‘
k % %
<Clull g o vy fHLp(szRz)||f||Lw(szRz)

C||u||L2(R2 ||Vu||L2 ) || Pl o mey 1 1 e e

From the estimates 11, J12, and J13, we have

bk L2
? dt ” “LP(RZXRZ) +Cp[(v) 2 VuIfI2 ||L2(R2><R2)

kp—e
< C“ <V>kf||fp(R2XR2) + C”VUHLZ(RZ) H f”ka(RZXRZ)’
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where we used that |[ulljeq 1.2R2)) + I fllio@ 1:10®R2xR2)) < C. The Gronwall inequality in
Lemma 11 deduces Proposition 3. 0O

Next we prove Theorem 2 by presenting a priori estimates for @ :=V x u and (v)¥V,f.

Proof of Theorem 2. We consider the vorticity equation in two dimensions:

Bta)—Aa)—l—(u-V)a):—/(v x Vy) fdv — Vy x (nu), (3.3)

R2

where w = d1uy — duq and n(x, t) = fRZ f(t,x,v)dv. Let p > 2. Multiplying |w|P~2w on both sides of
Eq. (3.3) and integrating over R2, we obtain

1d D2
pdt”w“WRZ +C,,||V|a)|z||L2(R2)+//f|wl"dvdx
R2R2
C/f|v||vxf||w|p—1 ctvclx+6//|u||vxf||w|p—1 dvdx:= Jo + Jo3.
R2R2 R2R2

What it follows, € will be chosen as a sufficiently small positive constant and k is a positive number
satisfying k > 3 — %. Using the Holder inequality, the Young inequality, and the Gagliardo-Nirenberg-
Sobolev inequality, we have

J22 <c/|w|"*1</<v>’<|vxf|<v>%dv) dx
R2 R2
1
<cf|w|1’*1</<v>kp|vxf|"dv)" dx
R2 R2

< Ny oy [T o ey

and
2(p—1)
12 <€ [ 19l 01 | afy Il 2, v
C”u”LZ(RZ)”VUH L2(R?) H|(1)|7 ”LZ(RZ) ||V|w|’ ”LZ(]R2) ” V"f”LP(]RZx]RZ)
et 1} k Pyt b2
<CIVUl s g, ||w||Lp‘ng)|| VYV f || oy T €NVION [ 1252,

cnwan(Rz 101, 2, + ClOV Vi [ Dy 2 sy + €[ V101 [ Fo g

From the estimates J,; and J,3, we have
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1 d
i ||a)||Lp(]R2x]Rz +Cp||V|w|2”L2(R2X1R2 //f|a)|Pdvdx
R2R2
2
<C(IVul L, + DIOI?, o) + CH Y f |y gorge + €IVION [fagay (34)

Next, we consider the equation of V,f:

pdt“ Ve f |2, + ol EVulvisIE |

- / f Yy - (V) (V)P Ve f1P 29, f dv dx

R2R2

+ / / Vy - (V9 f) (V)P Vi f P2V f dv dx

R2R2
1

. f [ Vy (Ve f1P) Vo ()P dv dx := J31 + J32 + J33. (35)
p]RZ]RZ

We first estimate J31, which is a rather troublesome term to control compared to other two terms.
To estimate J31, we divide J3; into three parts using integration by parts

1
|31l = ‘_E/./(U'Vv)(Ifolp)(v)"Pdvdx

R2R2

- / / (V- V) f IV fIP2Vx f (V)P dv dx

R2R2

<C//|u|<v>k"—‘|vxf|pavdx+c/f|Vu||f||vv|vxf|%||vxf|%—‘<v>k"dvdx

R2R2 R2R2

+ C// IVull FIIV fIP )T dvdx = J31 + J32 + J3s.

R2R?

Here J31, ]32, and ]33 can be estimated as follows. The estimate of J3; is direct as follows,

J31 < ”u”LOC(]RZ)H fo”Lv(RZXJRZ

Applying Hélder’s inequality to 1/p 4+ (p — 2)/(2p) +1/2 =1, we have

1
~ E Lk p E
132<c( / / <v>P"|Vu|”|f|dedv> ) Z VIV F12 ] 2 ey [V V|7 2 ey
R2 R2

< C”VUHLZI’(RZ)(f pk”f”Lp(Rz) |fo||LP(R2) dV)

R2
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B 2 k b
X V) 2 VoI Vi f 12 | 2 gz ey [V Vi f | 7o o)
1

< ClIVull 2p (r2y ” (V)kaL;(]IE%Zsz) ” (V)%kvv|vxf|g ”LZ(RZXRZ) ”( VXfHLp(RZXRZ)

2-2 o4 2
< VI g, |V F [ [V [ 2y + €100 E VIV 1B [

2 4(p—1) 42
< ol o [ V1018 | [ VYT s Py + €100 % VoIV f 18 2 s,

<C||w||[§(§5;2|| YV f Py + €| V101 E [P oy + €] 0) % FuIVe 12 | )

2p :
where Tyt <2 if p > 2. We also have

]33 < C”vu”LZP(RZ) || (V)kf “ LZp(]RZ) || ( kvxf ” LP(RZXRZ)

< C||a)||2p(R2)HV|a)| ”LZ(RZ)H va”LP(R2><R2)
2p T k zpﬁ(P* D2
< Clloll f g, [V V| 3 gore) + €[ VI012 |12 g2,

The terms J33 and J33 are controlled as follows:

Js2+ J33 <C| <V)kvaHLpP(lR2><]R2)'

Since its verification is rather straightforward, we skip its details. Collecting all the estimates,

1 d K
e (VAT R (R N
2p
(Il fgd® + ull gy + ) [WVAF T, + Cllol?, g,
€| VIot |2 ga, + € () E Vo V18 |2 - (3.6)

Adding (3.4) and (3.6), we obtain

d
o (105 o) + 1Y f | o)

G V10l oo, + [ [ floP avx+ o Evuimasif |7
R2R2
2p

< (Il gz, + [V f | g pzy) (1 + Il ey + ol faa?)

2p

(Il gz, + [V f | gopzy) (1 + 1Vl 2@y (1+log™ [@lle) + ol ™)

where we used the Brezis-Wainger inequality (3.1). Using Gronwall’s inequality, we have
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C1T
oilrl<p (”a)”LP(RZ) T H(”kv"f”fp(szRZ)) < Coe®!'

This completes the proof of Theorem 2. O

4. 2D higher regularity and uniqueness

In this section we obtain the higher regularity (Theorem 3) for the strong solution (f,u) con-
structed in Section 3. The uniqueness assertion (Theorem 4) can be proved with assumptions on the
integrability condition for Theorem 2. Theorem 3 is the consequence of the following a priori estimate
for the strong solution (f,u) to (1.1).

Suppose ( fo, Ug) satisfies the conditions in Theorem 3, and

ug € WN-P(R?), Z I (v)"agfo ”LP(RZXRZ) <C (4.1)
lal+IBISN, |BI<m’

for any nonnegative integer 0 <m’ < N with p € (2,00), k>3 — %. Then a strong solution (f, u) to (1.1) on
R? x R? x (0, T) satisfies the following a priori inequality:

T
5 (0 e+ 1007 5017 50 0
8L r2xR2) B g Vvlil2m2xr2)
0

loe|+|B|=N, |BI<m’

T
p—2
p a |5 o 2
el p g+ D Na ul 7 Ve ]| Lo e, (O dE < C. (42)
l’|<N @
The above constant C depends only on m’, |[uollwn.p w2y 22 jg|+g1=N, |81<m’ 1{V ykae 5 follLp m2 xR2)-

The case that m’ = 0 will be treated in the lemma below.

Lemma 12. Suppose (fo, ug) satisfies the conditions in Theorem 3, and

up € WP (R?), | v fol| wmP P R2xR?) < €
for any given 0 < m < N with p € (2,00), k >3 — %. Then there exists a constant Cp, depending on m,
lluo |l yym. P(R2)r and || f0||Wm PP (R2XR2) such that
p o o
H f” WitPLP (R2 xR2) ©+ Z /’ ‘3 f‘ 8 VVf”LZ(RZXRZ)(t)dt
|oz\<m
p2 2
Ul ymp g2y + D /|| |0%u] 7 VU 2 e () dE < Cin. (4.3)

loe]<m
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Let us postpone the proof of Lemma 12 for a moment. Assuming the lemma, we will obtain the
inequality (1.6) as follows. This proves Theorem 3.
Proof of Theorem 3. We use induction on m’. Assume (1.6) is valid for m’. For |8| =m’ + 1, taking Bg‘
derivatives to the f equation of (1.1) and inner product with <v>P’<|agf|P*2 agf, we have

1d
pdt ”<V>kagf”fp(R2) + v |aﬂ f| aﬁ va”LZ(RZsz)

<C Z aﬂfHLP(]RZ R2)
BI<m'+1
+C Z “<v>kagf||Ll’(R2xR2) Z “ kaﬂf”Lp(]sz]Rz
lal+IBI=N, |BI<m’ lal+IBI=N |BI<m'+1
+3 ¢ / v)PRoYu . v, 05 f|ag £ 7ag £ dvds.
y<o R2R2

By integration by parts we bound the last line by

>yt orul|ag " £l[ag £|7 " dxdv
Y SOpap2

+CZ Pk a}/uH 9%~ Vf}|aﬁf|p 2|V\,aﬁf|dxdv =11 +1g3.
y<a]R2]R2

We estimate 741 by

1-4] < C(”“”L"C(Rz) || <V>ka§lf||fp(R2xR2)

+ Z (v)Pkt ”ayu”LP(Rz)” aﬁ Vf”Lw(RZ) ”3/3 f| LP(RZ V)
0<V<aR2

< Cllull o) [(V)OF £ | To g r2)

+C Z Hayu||LP(R2)/ Pk 1H8a nyLP(RZ)”aa yvxf“LP(RZ ||al3f”Lx(]R2

O<y<a R2
k p
< C||U||L0<>(R2) ”( aﬂ H LP(R2 xR2) + CN_m'+1) Z H(V) angLp(RZXRZ)v
loe|+|BI=N, |Bl<m'+1
(4.4)
using the Sobolev interpolation inequality such that for p € (2, o0)
p—2
IIVUII (4.5)

lull oo (r2y < C”””LP(]RZ) LP(R2)’

and Lemma 12.
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We estimate 74, by

-1
Is < C<IIUI|Lm<R2)//<V>”"|8,‘§‘f|p Vv 0f f|dxdv

R2R2
Py (v>P’<‘ayu||ag_yf||8§‘f|p_2|agv.,f|dxdv)
O0<y<Opop2
p=2 P
< Cllullpo w2y ||< |3ﬁ fl Vagf”LZ(RZxRZ) ”<V>kagf||LZP<R2xR2)

1
p—2 _ _ 2
+C Z ||<V>p7k|agf| 2 Vvagf”LZ(RZXRZ)(//(V)pl<|8yu|2|ag yf|2|8gf|p 2dXdV>

O<y<a R2 R2
p_k‘ o DT—Z o 2 kao p
Ce(llullp ) +1)([(v) 2 |3ﬁ fl Vvdg fHLZ(]sz]RZ) +C[(v) dg f”Lp(RZxRZ))

2 2
+C X0 07 ulp e V)05 f IILp(szRz)II Yo7 VS HLp(szRz)
O<y<«a

x [[{v) aﬁ f ||LP(]R2 xR2)’ (4.6)

where we applied (4.5) to 957 f| and Hélder's inequality to 2/p + (p — 2)/p = 1. By Young's in-
equality to 2(p —2)/p% +4/p%>+ (p — 2)/p =1 and an induction hypothesis, we have

I42<C6(”””L°°(R2)+1)”< |8ﬁf| Vvaﬁ f||L2(R2><R2)+CN (m’ +1)” 3§f||fp<szRz)-

Collecting the above estimates, we can see that there exist C1, C» depending on Cy such that

K p=2
» dt ” kaﬂfHLp(]RZ +C HWﬁp |8§‘f| : 3§‘va”fz<mzxmz) <G H<v)kagf”fﬂ(R2><]R2)

for || <m’+1 and ||+ |B| = N. From Gronwall’s inequality, we conclude Theorem 3. O

Proof of Lemma 12. In Section 2, we have already (4.3) for m = 1. Assume (4.3) holds for m > 1. For
|| <m+1 we take 3# to the vorticity equation with || =m to have

Btaﬂa)—Aaﬂw+(u-V)aﬁw+/8ﬁwfdv

R2
= Y @u-vFTe- Y 3P~V wa? fdv
y<B.lyi=1 Y<B, 17 I21p2
-> /aﬂ Yu x anyfdv—i—/(v x V0P fdv. (4.7)

y<’BR2

Taking inner product with |8#w|P~28fw on (4.7), we have
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0l o, + ol 0] T Vol s, + [ [l 0f ravax
R2RR2

<C )

/Byu V)aP- Vw!éiﬁw\p 2598w dx

O<y<;3
+C //(aﬂ(wf) — foPw)|of o’ 9P wdv dx
R2R2
+C //8ﬁ(u Xfo)|8ﬂw|p_zaﬂa)dvdx
R2R?
+C //(v x V)P flaf |’ 0P wdvdx
R2R2
= Ja1+ Jao + Jaz + Jaa. (4.8)
We estimate J41 by
Ja<C Z a7 u|L°°(]R2 Hvaﬁ ya)”LP(RZ)”a w”LP(RZ)
0<y<p
<C Z ||VU||L°0(1R2>Ha wHLp(R2)+C Z |87 uHL“’(R2)“aﬂ_ Vw”LP(RZ)“a “’“LP(R?
|Bl=m Y<B.lyI>1
-2
<Ol 5 100 ) + G X 107l iy 1987l o [0 0l ks
|Bl=m yéﬂ,lybl

<R+ Cmlol?,, o)

We used an induction hypothesis, Young’s inequality, and the Sobolev inequality (4.5). We estimate
Ja2 by

Ja <C | 3010700 f e, dv| 90|y,
RZ V<ﬁ

<¢( Ll ol e / I59 1 97 95y 00 ) [0

y<B

<C”w”Wm*1»P(R2)< Z [(v) kaﬂfoHLP(JRZxRZ >H8 w”LP(]RZ)
|Bl<m

1
nl; ” fHﬁV;nJrl’pLe(szRz) + ”w”a/m,p(]RZ))'

We estimate J43 by
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Jaz < C( /’ |97 (u x fo)”L” Rz)d">H‘rj w”LP(RZ)

R2

< C( / ||u||Loo(R2)||fo||w;"vP(R2) + lullwmp g2 ||vxf||L 2 (R2) CIV)”a 0)||Lp(Rz
R2

C(||U||L°°(JR2) ”(v>kf”Wm+1’pr(R2><R2 +C"%1 H(v>kf”wf’pL€(R2><R2 (el w”LP(RZ)
Cim (|| (v kf” ML P (R2 o R2) +”w”W"’P(R2))
Summing up the estimates for J41, J42. J43 and
Jaa S CLW*V0P £ |y oy N0y oy
we find (4.8) to be

00, + ColloPo] T V0l + [ 107517 favan
RZRR2

pdt

ke|P
<cha+ C) (12l )+ 100 F [ ymoro o g o)) (4.9)
Next we consider the equation for f and take 3% derivatives with |a¢|=m +1,

00y f+ (v Vadg f) = Vo - (vOg )+ D 07u- vy 7 f — Ay (35 f) =0.
y<a

Multiplying (v)P¥|a% f|P~23% f on the both sides of the above equation, integrating over R? x R2, we
have

|| 0% | o raxra) + Coll (V) |3af‘ Vvaaf“LZ(szRz)

pdt
=y vIPKY U v, 08 Fla% FIP 202 f dxdy
V<0‘]R2R2
// -(va® £)|a% FIP™ 29% f dv dx.
R2R?

The second term is bounded by C||(v)¥9% f||?
first term by

1P (R2 xR2)" By the integration by parts, we estimate the

¢S | [ wyPRtfarul[a% 7 £l|a% P dxdv

Y<Upop2

ey //(v)pk|87’u\|3°“Vf||8°‘f|p_2|vva"‘f\dxdv =L+ .

Y<Apop2
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In the same way for estimating 741, Z4p in (4.4), (4.6) replacing Bg_yf, Bg‘f with 997 f, 3% f in-
stead, we obtain

lar < C||u”L°°(R2)” aafoP(szRz) + Cm H(V)kf|’€Vm+1,pr(R2XR2),

pk

Lz < C6(||“||L°°(R2) + 1) H< |8af‘ ]V‘,Bo‘f] HLZ(RZXRZ) +Cm H f||€v;”+1-PL5(R2xR2)'

By (4.9) and the above estimates, we have

HE D L AR Dl [Ty

|| <m || <m+1

p-2 p-2
+Cp< Z ||<v)'3—p}aaf|”z VVaainz(szR%“L Z |||aaw|"2 vaaw}ﬁz(Rz))

lo|=m+1 loe|=m
ke|P
< Cn(I0lyymp gy + 1O F et o g, pa,)
Using Gronwall’s inequality and the induction hypothesis, we conclude the lemma. O

Next we present the proof of Theorem 4, which is the uniqueness theorem for two dimensional
Navier-Stokes-Vlasov-Fokker-Planck system.

Proof of Theorem 4. We set il = u; — uy, p=p; — pa, and f = f; — fo. Then i, p, and f solve the
following equations:

ol + (uq 'V)ﬂ—Aﬁ+Vf)=/vfdv—fﬂfldv—/uzfdv—(ﬁ~V)u2, divii =0,

R2 R2 R2
(4.10)

*f+-Vof —Af+Vy- @) +Vy-waf)+Vy-(@if2) = Vy-(vf)=0.  (411)

Let k > 2. Multiplying (4.10) by u and then integrating in spatial variables, we have
=2 =112
2 a ”u”LZ(RZ) + ”VUHLZ(RZ)
< | IIf i dv u f il dv
< [ 0PI by dv + [ 1ol 2s, WP ks
R2

+ Clltllp g2y IVl 22y 2]l 20
LP(R2) [2(R?) L w2

. Il g2y |\ 2
k L°(R%)
< CH(V) f||L2(R2xR2)</ (V)Z(kfl) d\/)
R2

Ol 2, llulle(Rz ||Vu||L2R2)|| “Fllio@oee,

+ ClllF oy lu2ll” 5 + €Vl g
LP=2(R2)
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2p
~ k7 2 p+2 2
< C”u”Lz(]RZ)||<V)<f||L2(]R2XR2) +C||u2||p+27p ” fZJrRZ) ” f”{ZJr(RZXRZ
LP-2 (R2)
p ~2
+C||u||L2(R2)”u2” (RZ) +2€”Vu”L2(R2)

~ 12 ~
(”uz”,_q(RZ) + ‘l)Hu”%Z(RZ) + C” (V>kf||L2(R2XR2) + 26”VU”%2(R2),

where Holder's inequality, Sobolev’s inequality, and Young's inequality are used. Here we also used
that fRZ []RZ il fidvdx is nonnegative and ltllpooo.1:12(R2)) < C. On the other hand, multiply-

ing (4.11) by (v)?f and integrating in v and x variables, we have
k72 ko 712
5 dt ” <f”L2(]R2><]R2) + v V"f”Lz(szRz)

<C||<v>"f||iz(szRz)+’ / / Y, - @H ()T dedv

]RZ]RZ
+U/vv-(ﬁf2)<v>2’<fdxdv.
R2RR2

+ ’ / / Yy - ) (V)2 F dxdv
R2RR2

The second and third terms in the right side can be estimated as in J1; in Proposition 3. Indeed, for

the second one, we get
< I/f (V)21 F2 dxdv

’// Y, - @) (v)* f dxdv

R2R2 R2R2
C”u”LZ(RZ)”VUHLZ(RZ)”f“LOC(]RZxRZ)H f”LZ(]sz]RZ
< IVl ko | T
LZ(]RZ) L2 (R2xR2)’

where we used that [|i]|;2g2) and IIfIILM(szRz) are uniformly bounded. Similarly, the third term is
estimated as follows:

‘//V”'(sz)(‘/)”‘fdxdv <

R2R2

1-1 K 2k=1
ClIVU2l 2 oy | (V) F [ g2 )

It remains to estimate the last term. Due to integration by parts, we have

‘//Vv'(ﬁfz)(V)Zkf <Ufﬂfzvv<v>2"f +'//ﬂf2(v)2kvvf‘ =141

R2R2 R2R? R2R?

Consider the first term I and, due to the Holder inequality, the Young inequality, we estimate I as
follows:

r<c [ [lanm* 7 <c / ooy | 90" ol ey |90 F 3y 89

R2R?
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< Il o 1V o / T P L

2 ~
g C”Vﬂ ||;_12(R2) || (V)k+af2 ||Lq(R2><R2) ” (v)kf ||L2(R2><R2)
S 6”VI]H%Z(]RZ) + CH< k+af2 ”Lq(RZ xR2) H f”LZ(]R2 xR2)’

where ¢’ is Hélder conjugate of q, i.e. ¢ = % and uniform bound of ||ii||;2 is used. Using again the

Holder inequality, the Young inequality, and the interpolation inequality, we estimate II as follows:

’//ﬂfz(v)m‘vv]‘dxdv
R2R2
< Clile) / [l za, , 10990 F ey v
b5 k ko 7
C||Vu||Lz(R2)||u||L2(R2)/“(V) f2 HL%(RZ)““/) vvf”Lz(Rz) dV

R2

_p_
+2
< €NVl g, +C||u||fz+&z(/H(V)kfzui%(w) ) (/H vvf||Lz(Rz)dv)
RZ

~ 2
<e||Vﬂ||§2(R2>+e</||<v>"vvf||fz<Rz>dV> +Cllﬂlliz<Rz)(/H “f2 H” . )
R2 R2

p—2

2p 2
~ ~ 12 ~ -2
<6IIWII§2<R2>+6(/II(v)"va||Lz<Rz)dv)+C||u||i2(R2)(/||< "*“le fp dv) :
2([R?)
R2 R2

Here « is any number with op > 2. Combining estimates for i and f we obtain

d, . -
_(””“iZ(RZ) + ”(V)kf“iZ(RZxRZ))
< C(1+ lualfy g, + [0 F2 ] Lo g2 g 2,
kT2 _ 1=k 1—¢ k7 2
+ ClV Fll 2@z xmey T CUVEN o ) + IVU2 1 2 ) [ ) F] g2 2y
+ CH< k+af2 ”Lq(RZ R2) H f”LZ(R2 R2)"
The Gronwall type inequality implies that i =0 and f = 0. This completes the proof. O

Remark 5. As mentioned in Remark 1, if the initial data (fo,ug) satisfy (1.2) and furthermore,
() fo e LY(R? x R?) with ap > 2, k> 2, and 2 2+ Z =1, then there exists a weak solution (f, u)

satlsfymg the condition of Theorem 1 and ( k‘“" fe L°°(O T: L9(R% x R?)) from Proposition 3. We
then observe that the condition of Theorem 4 is also satisfied, and therefore weak solution (f,u)
becomes unique.
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As an application of the uniqueness result of Theorem 4, we shall provide a strong solution for
Navier-Stokes-Vlasov-Fokker-Planck system defined on a half-space R? x R2, where R2 = {(x1,x2) |
x1 > 0} in case of the slip boundary condition for u and the specular reflection for f on the boundary
{x1 = 0}. Namely, we consider the following system: For (t,x, v) € (0, T) x Ri x R?

8tu+(u~V)u—Au+Vp—/(v—u)fdv:O, divu =0,
R2
Wf+-Vof+Vy - (u=v)f-V,f)=0,

(4.12)

where boundary conditions are

f(t,0,%2,v1,v2) = f(t,0,x2, —V1, V), ul(t, 0, x2) = 9y, u(t, 0, x2) = 0. (4.13)
1

The compatibility conditions for the initial data fy, ug are

fo(0.x2,v1,v2) = fo(0, %2, —v1,v2),  ug(0, X2) = 3, uG(0, X2) =0. (4.14)
The following theorem is the uniqueness result of weak solutions for the system (4.12)-(4.14).

Proposition 4. Let (f,u) be a weak solution of the Navier-Stokes-Vlasov-Fokker-Planck equations (4.12)
with boundary conditions (4.13). Assume that initial data ( fo, ug) satisfy the hypothesis of Theorem 2 and the
compatibility condition (4.14) in the half-space. Then (f, u) becomes unique and strong to the system (4.12)-
(4.14) and furthermore satisfies (1.4) in the half-space.

Proof. For a given initial data (fo, ug) for (4.12), let us define (fo, iig) the extension of ( fo, Ug) across
{x1 =0} as

fox, v) = fo(=x1, %2, —v1,v2) ifx1 <0,
ﬂé(x) = —ug)(—xl ,X2), ﬂ%(x) = u(z)(—x1, Xx2) ifxy <O.
We note that (fo, ilp) satisfies the initial hypothesis of Theorem 2, hence there exists a strong solution
(f.u, p) satisfying (1.4) in the whole space.
On the other hand, we extend a weak solution (f,u) to a whole space in the following manner:
We define (f, ) in (0, T) x R x R? by
(f. ) =(f,u) ifx >0,
F&.%,v) = f(t,=x1, %, —v1,v2) if x1 <0,
al(t,x) = —ul(t, —x1,x2),  w%(t,x) =u’(t, —x1,x2) if x; <O. (4.15)
To extend the pressure function, we set g(t, x) = — div(ii ® i) (t, x). Let j = fRZ vfdvand i= fRZ fdv.

We then consider the scalar function q(t, x) in (0, T) x R? satisfying the equation Aq = div(j — fili) +
div g. Especially we fix g as an integral representation

q(t, x) = E/IOgIX— yI(div(j —ni)(t, y) +divg(t, y)) dy.
RZ
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Then one can see that (f,i,q) satisfies the Navier-Stokes-Vlasov-Fokker-Planck equations in dis-
tribution sense in R? x R% x (0, T), namely (f,i,q) is a weak solution of the following system in
R? x R? x (0, T):

8tﬂ+(ﬁ~V)ﬂ—Aﬁ—i—Vq—/(v—ﬁ)f’dv:O, divu =0,
R (4.16)
*f+-Vof+Vy-(@—vf—v,f)=0.

Then, with the aid of the uniqueness result of Theorem 4, it is straightforward that (f, i) = (f’, i).
Therefore, (f, u) is a strong solution and satisfying the boundary condition (4.13) on {x; = 0}. Unique-
ness of solutions in the half-space can be obtained in a similar manner as above and thus its details
are omitted. This completes the proof. O

5. Strong solution for 3D Vlasov-Stokes system
In this section, we consider the three dimensional Vlasov-Stokes system and Vlasov-Fokker-

Planck-Stokes system (1.7). As in the previous sections, we provide the a priori estimates using the
known estimates of weak solutions. As mentioned in Remark 4, weak solutions (f, u) satisfy

uel?(0, T; W>¥3(R?),  fel™®(0,T;L®(R’ xR’)nL'(R? xR?)), and
VP fel®(0,T; L' (R® x R?))

under (1.2) and f]R3 ng [v|? fodxdv < C. At first, we provide high moments estimate for three dimen-
sional Vlasov-Stokes system and Vlasov-Fokker-Planck-Stokes system (1.7).

Proposition 5. Suppose a pair (f,u) is a weak solution of Eq. (1.7). Furthermore, if the initial datum fy
satisfies

I (v)kfo||L,,(Rng3) <o0, foranyk>0, p>2,

where (v) = (1 + |v|2)%, then f satisfies
(Kf el™(0,T; LP(R? x RY)).
Proof. We follow the proof of Proposition 3 line by line. In fact, we have
1d
p dt
1
=—— //(u V) fP )P dv dx + // Vy - (vH)(v)® fFP1dxdy
pJR3]R3 R3R3

+l//fpva(v)kpd\/dx:= Ji1 + Ji2 + Jis. (5.1)
pR3]R3

H(V>kf”fP(JR3x]R3) + CPUH(V)%I(VVmg ”iZ(R3><]R3)

kp

s m), we have

Similarly with the proof of Proposition 3 by choosing € € (0

_7127 ]13 < C” (v)kafp(R3><R3)’
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and

kp—e€

i o N5 o
T <c/|u|<f<v>k"f"'kufe dv) ’ (/%m) ’ ax
(v) e
R3 R3 R3

kp—e

<Clull 1w _, [(v)

L_(R3) f||LP(R3><]R3)||f||L°°(R3><R3)

26

Cl|u|lL2(R3 ”A””Lg( J¢v) kf||LP(R3xR3

In the last inequality, we used ng dv < oo due to the assumption kp“ 9 - 3. We also

W

used the estimates f € L%°(0, T; L°(R? x R3)) and u € L2(0, T; W23/2(R3)). By using the Gronwall
inequality, we have the conclusion. O

Next, using Proposition 5 and Giga-Sohr’s estimate for Stokes system [10], we provide the proof of
Theorem 5.

Proof of Theorem 5. Since we have

-1
) 5 1 = ; 5
vfdv < (V) fPdv —a v <C (vYPfPdv) , (5.2)
R3 R3 R3 <V> Pl R3
and
dv u p_ f dv u vk , 53
ff s, < luf] L f b, < || 2 w3 v f“LP(]RB <R3) (53)
for p >q and k > 4 — =, we conclude from Proposition 5 (¢ < 3/4) that
/vfdveLOO(o T 1P (R?)). /fdveLoo(O T 19(R%))
R3 R3
for any p > q. From Giga and Sohr’s classical results [10] on the Stokes system, we find
lulliro,r; w23y + 10l o,7;19®3y) + VPl 1:19(R3))
C(lInull oo o, 7;a®3y)s 1illioo0,7:00 ®3))» 10l wrars))s (54)
where 1 € (1,00), j= [ps vfdv and n= [p5 f dv. Hence we have
||u||Lr(O.T;Loo(]R3)) < C||u||Lr(O,T;W2=q(R3)) <C forp >(q > 2, re (1, OO),
||Vu||l_r(0 T:L®(R3)) & C”u”Lr(O T;W24(R3)) & <C forp>q>3,re(l,o0). (5.5)

Next, we provide a priori estimates for Vy f. Similarly with (3.5), we have
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LT 12y s,cm, + 0 Co | ) E Vo 1915 s

p dt
~ / / Vo - (Ve @) (V)P |V fIP2Vy f dv dx
R3R3
+//vv-(vvxf><v>""|vxf|”*2vxfdvdx—1//vv(wxﬂp)vv(w"”dvdx
R3R3 pR3R3
=131 + I3 + I33. (5.6)

We decompose I37 into two terms as follows

== [ [ w905y dva= [ [ a9 1191725 0 dv

R3R2 R3R3

= 131 + 132.
Here I3; and 32 can be estimated as follows:
T31 < Cllullpoo e [0 Vi f [ o 3 3y
and
I3y < ClIVUll oo g3y || (V) VXf||LP(R3x]R3)H<v>kvvf”LP(]R3><]R3)'
We also have
[52,133 < C” VXf||fP(R3><R3)'

From (5.6), we have the inequality

» dt H Xf”fP(R3><R3) +0Cpl(v) % VIV fl2 ”LZ(R3><R3)

C(Ill o sy + 1) [V f | P s )

+ C||Vu||L9°(]R3)”( VXfHLp(R3 R3)”<V)kvvf”Lp(R3xR3)~ (57)

We also consider the estimates for V, f. In the same way to obtain (4.4), (4.6) for « =0, we have

ki —1
L 5 g + ool FT 11552
< Cllull o) | <V)kVVf||fP(R3xR3) + C”<V)kv"f||fP(R3xR3)' (5.8)

Adding (5.7) and (5.8), we obtain
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1d
E&(||<V>kVXf||fp(R3xR3) + “<V>kv"f||fp(R3xR3))

+ 0| VoIVl 1 [ sy + [0 F 190117 VES o )
< C(llullgoe sy + 1Vl oz + D) ([ Ve f | s sy + 1DV F D @ m)-

From (5.5) for ¢ > 3 and Gronwall’s inequality, we have

”<V>kv"f||f°°(O,T;LP(R3><R3)) + ”<v>kv‘/fwa(O,T;LP(R3XR3))
+ UC” <V>k7pvv|vxf|% ||i2(0,T;L2(]R3><]R3)) + “ (V>k7p |va|pz;lvaf”iz(ojiz(wxw))
<c(] <V>kVXf0||fp(1R3 «r3) T I <V>kVVf0||fp(R3 ><]R3))
x exp(T + lullj10,7:100®3)) + VUl 110, 7:10R3))) < O©- (5.9)
Notice that the estimate (5.9) is uniform with respect to o > 0. This completes the proof. O

Remark 6. From the regularity theory of the Stokes system and linear property of the Vlasov system,
we find that if the initial data (ug, fo) to (1.7) satisfy

(KB fo, (M¥V,0% fo e LP(R® x R?),  9%uo € LP(R?),

for any « satisfying |a| <m, p € (3,00) and k > 4 — %, then there exist a solution pair (u, f) to (1.7)
satisfying

uel™(0,T; W"24(R3))nH' (0, T; WM(R?)),  (nkaf eL™(0,T; LP(R? x R?)),
and (v)kV, 82 f € L(0, T; LP(R? x R?)) for any |a| <m and q < p.
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