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Abstract

We identified the ubiquitin-conjugating enzyme E2-

EPF mRNA as differentially expressed in breast tumors

relative to normal tissues and performed studies to

elucidate its putative role in cancer. We demonstrated

that overexpression of E2-EPF protein correlated

with estrogen receptor (ER) negativity in breast can-

cer specimens and that its expression is cell cycle–

regulated, suggesting a potential function for E2-EPF

in cell cycle progression. However, reduction of E2-

EPF protein levels by > 80% using RNAi had no sig-

nificant effects on the proliferation of HeLa cervical

cancer cells or ER� MDA-MB-231 or MDA-MB-453

breast cancer cells. Because E2-EPF protein levels

were elevated during the G2/M phase of the cell cycle

and because E2-EPF mRNA in tumor specimens was

frequently coexpressed with genes involved in cell

cycle control, spindle assembly, and mitotic surveil-

lance, the possibility that E2-EPF might have a func-

tion in the cellular response to agents that induce a

G2 checkpoint or an M checkpoint was investigated.

E2-EPF knockdown sensitized HeLa cells to the topo-

isomerase (topo) II inhibitors etoposide and doxoru-

bicin and also increased topo IIA protein levels. These

data suggest that combined administration of topo II–

directed drugs and E2-EPF inhibitors may enhance

their clinical effectiveness.
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Introduction

In the past decade, DNA microarrays have been employed

to study the gene expression profiles of normal and tumor-

derived specimens from many different tissues, thereby

resulting in an exponential increase in the amount of infor-

mation available to aid our understanding of tumorigenesis

and to provide hypotheses for therapeutic intervention.

Using a combination of expressed sequence tag (EST)

libraries from normal and tumor tissues (i.e., Incyte LifeSeq

Foundation database) and DNA microarray gene expression

profiles from normal breast and infiltrating ductal carcinomas,

we identified the ubiquitin-conjugating enzyme E2-EPF as

differentially expressed in breast cancer. Additionally, we noted

that the E2-EPF gene was listed as a component of meta-

signatures for both neoplastic transformation and undifferenti-

ated cancers in a recent meta-analysis of array hybridization

data extracted from 21 published data sets encompassing 12

different cancers [1]. Those data indicated that E2-EPF was

significantly differentially expressed in multiple cancers, and

they enhanced our interest in E2-EPF as a candidate thera-

peutic target for cancer drug discovery.

E2-EPF is a 24-kDa protein that is a member of the E2 family

of ubiquitin-conjugating enzymes [2], which, together with an E1

ubiquitin-activating enzyme and an E3 ubiquitin ligase, catalyze

the addition of ubiquitin to substrate proteins (for review, see

Pickart [3]). Multiple rounds of ubiquitinylation result in substrate

polyubiquitinylation that can target that protein for proteasome-

dependent destruction. Although discovered in 1992 [2], can-

didate substrates and cognate E3 ligases for E2-EPF were

unknown until a recent report from Jung et al. [4], who demon-

strated that the stability of a von Hippel-Lindau (VHL) tumor-

suppressor gene product is dependent on E2-EPF levels. Their

study suggested a role for E2-EPF in the stabilization of hypoxia-

inducible factor 1a (HIF-1a) under normoxic conditions and in

the proliferation and invasion of renal cancer and melanoma

cells, but did not address its role in other cancer types.

Because E2-EPF is a component of the meta-signature for

undifferentiated cancer that includes genes in the tumor ‘‘pro-

liferation signature’’ (reviewed in Whitfield et al. [5]) comprising
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many cell cycle–regulated genes, we searched for and

found the E2-EPF gene annotated as an M/G1 phase–

expressed gene in a comprehensive HeLa cell cycle gene

expression analysis [6]. The observed increase in E2-EPF

expression in multiple cancers might, therefore, be due to its

importance in cell cycle progression, as has been shown for

other genes in the proliferation signature. Here, we report the

expression profile for E2-EPF in breast tumors and normal

tissue specimens and address the possibility that it has an

essential role in cancer cell proliferation using RNAi to

reduce E2-EPF expression levels. Despite a substantial

reduction of E2-EPF protein levels in HeLa cells, as well as

in MDA-MB-231 and MDA-MB-453 breast cancer cells, no

effects on cell proliferation were observed. Because E2-EPF

protein levels were elevated during the G2/M phase of the

cell cycle and because E2-EPF mRNA was frequently coex-

pressed in tumors with genes involved in mitotic surveillance,

the possibility that E2-EPF might have a function in cellular

response to agents that induce a G2 checkpoint or an M

checkpoint was investigated. E2-EPF knockdown had no

effect on the sensitivity of HeLa cells to chemotherapeutic

agents such as the microtubule stabilizer Taxol or the topo-

isomerase (topo) I inhibitor camptothecin, but antiprolifera-

tive response to the topo II inhibitors etoposide and doxorubicin

was significantly enhanced.

Materials and Methods

Chemicals and Reagents

Camptothecin, paclitaxel (Taxol), doxorubicin, etoposide,

and nocodazole were all purchased from Sigma (St. Louis,

MO) and solubilized in dimethylsulfoxide. The following anti-

bodies were used: polo kinase–like 1 (PLK1; cat. no. 06-813)

antibody (Upstate Cell Signaling Solutions, Lake Placid, NY);

topo 2A/B (cat. no. 4734; Cell Signaling, Danvers, MA); and

cyclin A (cat. no. H-432; Santa Cruz Biotech, Santa Cruz, CA).

SiRNA purchased from Ambion, Inc. (Austin, TX), included

those for E2-EPF targeting the following sequences: 5V-
GGTCTTTCCCAACGAGGAG-3V (no. 1), 5V-GGTCTGTTC-

CGCATGAAAC-3V (no. 2), and 5V-GGGCTACTTCCTGAC-

CAAG-3V (no. 3), as well as those for Eg5 (5V-CUGAAGAC-

CUGAAGACAAU-3V) and in irrelevant sequence used as a

negative control NC (5V-CCUACAACAUAGCUACUCA-3V).
Qiagen (Valencia, CA) was the supplier of Firefly luciferase

(FFL) siRNA (5V-AACTTACGCTGAGTACTTC-3V). Dharma-

con (Lafayette, CO) was the supplier of siRNA targeting

FFL2 E2-EPF sequences: 5V-ATAAGAAGCTGGCGGCCAA-

3V (D1), 5V-ACAAGGAGGTGACGACACT-3V (D2), 5V-
GCCAAGAAAAAGACGGACA-3V (D3), 5V-CATGCTGGCGA-

GCGCGATA-3V (D4), 5V-ATAAGAAGCTGGCGGCCAA-3V
(D5), 5V-ACAAGGAGGTGACGACACT-3V (D6), GCAAGAA-

AAAGACGGACA (D7), and CATGCTGGCGAGCGCGATA

(D8), with D5 to D8 corresponding to their Plus siRNA. NT

and MYOG (cat. no. J-010029-05), nontargeting and against

myogenin, respectively, are Plus negative control siRNA. E2-

EPFp (i.e., D5 + D6 + D7 + D8), NTp, and MYOGp are Smart

Pool Plus siRNA purchased from Dharmacon.

Cell Lines and Culture Conditions

The human cervical (HeLa) and breast (MDA-MB-453

and MDA-MB-231) cancer cell lines were obtained from the

American Type Culture Collection (Manassas, VA). HeLa cells

were cultured in Dulbecco’s modified Eagle’s medium con-

taining 1 mM glutamine and 10% fetal calf serum, and breast

cancer cells were cultured as previously described [7]. This

study employed the MDA-231-MT-1 derivative of MDA-MB-

231 cells (herein referred to as MDA-231) that was established

from a rapidly growing athymic nude mouse xenograft [7].

Clinical Specimens

Samples of human breast and breast cancer specimens

were supplied by US Biomax, Inc. (Rockville, MD), and the

Cooperative Human Tissue Network (CHTN), Western Divi-

sion (Cleveland, OH). From US Biomax, Inc., we received

glass slides of a formalin-fixed paraffin-embedded (FFPE)

tissue microarray containing 70 cores (each with a diameter

of 1.5 mm) of infiltrating ductal carcinoma (cat. no. BR701).

From the CHTN, we received FFPE blocks of 22 normal

breast tissues, 11 normal adjacent to tumor (NAT) tissues,

and 10 breast carcinoma tissues. Tumor histologic grades,

as well as the status of estrogen receptor (ER) and proges-

terone receptor (PR), were provided by vendors on 65 tissue

array cores and 2 breast carcinoma samples from the CHTN.

E2-EPF Polyclonal Antibody Generation

Polyclonal antibodies were generated by immunization of

rabbits with a KLH conjugate of peptide GERDKKLAAKKK

corresponding to amino acids 201 to 212 of the 222–amino

acid protein (Swiss Prot Q16763). Antibodies were purified

using protein A affinity chromatography.

E2-EPF mRNA Quantitation by Real-Time Reverse

Transcription–Polymerase Chain Reaction

(RT-PCR) Analysis

Total RNA from breast tumor specimens was purchased

from Biochain (Hayward, CA) or Asterand, Inc. (Detroit, MI),

and TaqMan PCR was performed with 50 ng of RNA per

sample in duplicate reactions using a TaqMan universal mas-

ter mix (Applied Biosystems, Foster City, CA) with PCR prim-

ers for E2-EPF (forward: 5V-CGACCTCCAGGTCACCAT-3V;
reverse: 5V-GGAACAGACCTCCAGCATATGG-3V) and with a

probe (5V-CCCCTCAGGGCCCTC-3V) synthesized by Applied

Biosystems. Thermal cycling was initiated at 48jC for 30 min-

utes for cDNA synthesis, followed by a denaturation step for

10 minutes at 95jC and 40 cycles performed in two steps:

15 seconds at 95jC and 1 minute at 60jC. CT values of sam-

ples were used to calculate mRNA amounts, and relative

mRNA expression data were normalized to 18S ribosomal

RNA (primers and probe from Applied Biosystems).

E2-EPF Protein Immunohistochemistry

Sections were cut into 5 mm thickness, deparaffinized,

and rehydrated. Following antigen retrieval, sections were

stained using an automated instrument (Autostainer; Dako-

Cytomation, Carpinteria, CA). Briefly, sections were treated

with a peroxidase block, followed by 10% normal goat serum,
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and incubated in E2-EPF primary antibody (5 mg/ml) for

45minutes at room temperature. For negative control siRNA,

rabbit IgG was used as the primary antibody. Secondary

rabbit antibody (EnVision+ System HRP; DakoCytomation)

was applied, followed by diaminobenzidine (Liquid DAB+;

DakoCytomation), and counterstained with hematoxylin

(DakoCytomation). E2-EPF antibody specificity was con-

firmed by competition with the corresponding E2-EPF pep-

tide, but not with an irrelevant peptide. Additional confirmation

of antibody specificity for E2-EPF was demonstrated by a

reduction in E2-EPF staining in siRNA-treated HeLa cells.

For histologic evaluation of the amount of E2-EPF stain-

ing, the pathologist was blinded to ER and PR status.

Staining intensity was relatively similar in all sections, so it

was not used in the evaluation of protein expression. The

percentage of tumor cells with positive staining was grouped

as follows: 0 (0%); 1 (1–5%); 2 (5–25%); 3 (25–50%); 4

(> 50%). Fisher’s exact test was applied to assess the sta-

tistical significance of the associations between expressions

of E2-EPF and ER using JMP version 5.1 (SAS, Cary, NC).

Identification of E2-EPF Coexpressed Genes (ECGs)

from the ONCOMINE Database

The search tools provided with the ONCOMINE database

(Compendia Bioscience, Ann Arbor, MI) were employed in the

acquisition of studies and lists of coexpressed genes. Each

microarray study in ONCOMINE is clustered by standard

average linkage hierarchical clustering. For query genes,

each study with a cluster intracorrelation of > 0.65 was used

in our analysis, with the exclusion of studies focused on

hematologic malignancies, normal tissues, or cell lines. The

numbers of studies retrieved were as follows: 20 (E2-EPF),

29 (CDC20), 32 (CKS2), 32 (TOP2A), 42 (UBE2C), and

are named as in ONCOMINE. For these studies, the top

100 genes from clusters coexpressed with the query gene

were analyzed, and the number of studies in which genes

appeared with a cluster intracorrelation of at least 0.70 were

counted. Genes annotated as ESTs were ignored. For genes

appearing multiple times in the top 100 list, the highest clus-

ter intracorrelation value for the gene was used. Because

ONCOMINE compiles studies across a variety of microarray

platforms, not all genes were measured in each study. Heat-

maps were generated with Java Treeview [8].

Preparation of Cytoplasmic and Nuclear Extracts

HeLa cells were collected by trypsinization; washed in

phosphate-buffered saline (PBS); lysed for 5 minutes on ice

in 0.5% NP40, 5 mMNa4P2O7, 5 mM sodium-b-glycerophos-
phate, 10 mM NaF, 1 mM Na3VO4, 0.5 mM EDTA, and 10%

glycerol containing protease inhibitors (pH 7.5); and centri-

fuged at 10,000g for 1 minute at 4jC. The supernatants used

were cytoplasmic extracts, and pellets were lysed in sodium

dodecyl sulfate (SDS) buffer (0.5% SDS, 50 mMNaF, 10 mM

Na4P2O7, 10 mM Na2b-glycerophosphate, 5 mM Na3VO4,

and 5 mM EDTA containing protease inhibitors, pH 7.5) and

sonicated to generate nuclear extracts. Protein quantification

was performed using the BCA Protein Assay kit (Pierce,

Holmdel, NJ).

Immunoblot Analyses

MDA-231 and MDA-MB-453 cell lysates were prepared,

electrophoresed, and transferred for immunoblot analysis as

previously described [9]. HeLa cell lysates were prepared

in SDS buffer and sonicated. SDS–polyacrylamide gel elec-

trophoresis (PAGE; 4–12% acrylamide/Bis–Tris for all, ex-

cept for topo II, which was 3–8% acrylamide/Tris–acetate)

and blotting onto PVDF membranes were performed using

the Invitrogen NuPAGE system (Invitrogen, Carlsbad, CA).

After blotting, filters were stained for 5 minutes (room tem-

perature) in 0.1% amido black (Sigma) in 25% isopropanol/

10% acetic acid/65% water, followed by two washes in 25%

isopropanol/10% acetic acid/65% water. Primary antibodies

(1 mg/ml) were incubated for 1 hour at room temperature or at

4jC, and secondary anti-rabbit IgG–conjugated horseradish

peroxidase (HRP; 1:5000; Pierce) was incubated for 1 hour

at room temperature. Blots were processed for the detection

of HRP by incubating with SuperSignal West Pico or Femto

(Pierce). Serial dilutions of untreated or negative control cell

lysates were used in each experiment to estimate the degree

of E2-EPF protein knockdown and to monitor detection limits

for the anti–E2-EPF antibody. Quantity One software (BioRad,

HerculesCA)wasused for densitometric quantification of immu-

noblot band intensity.

RNAi Transfection and Proliferation Assays

Delivery of siRNA was performed according to the forward

transfection protocols of the manufacturers, where siRNA

and lipid reagents are mixed with cells before plating. Con-

ditions for HeLa cells were 1 to 2 nM siRNA and 2.5 to 5 ml/ml

Hiperfect (Qiagen); conditions for MDA-231 and MDA-MB-

453 cells were 2 nM siRNA with 1.0 ml/ml Lipofectamine

RNAiMAX (Invitrogen). For proliferation assays with image

analysis readouts, transfected cells were plated into 96-well

plates (HeLa: 800 per well; MDA-231: 2500 per well; MDA-MB-

453: 5000 per well). For WST-1 viability assay in HeLa cells,

105 cells/60 cm dish were transfected with siRNA and har-

vested after 3 days by trypsinization. One percent of each

sample was replated in duplicate into a 96-well plate and al-

lowed to attach for 3 hours, WST-1 reagent was added, and

the assay was performed according to the instructions of the

supplier (Roche Molecular Biochemicals, Indianapolis, IN).

Chemotherapeutic Drug Treatments

Drugs were diluted from dimethyl sulfoxide stock solu-

tions into culture medium working solutions and added at the

following concentrations to the cells 24 hours after transfec-

tion (doxorubicin: 2.5–20 nM; etoposide: 62.5–500 nM;

camptothecin: 2–16 nM; Taxol: 0.5–8 nM). After 3 days

of drug treatment, cells were processed for nuclei count

by image analysis. Statistical analysis of significance was

performed using Student’s t test, assuming unequal vari-

ances. P < .05 was considered significant.

HeLa Cell Synchronization Conditions

HeLa cells were grown to confluency and cultured for an

additional 24 hours, then split 1:4 into 10-cm tissue culture
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plates for immunoblot analyses and into 24-well plates for

cell cycle analysis. Cells were cultured in medium without

serum for an additional 24 hours, harvested (ss time point)

or fed with fetal bovine serum (FBS; 10% final concentra-

tion), and harvested at 3-hour intervals. For thymidine arrest

and release experiments, f 30% confluent HeLa cells were

grown for 24 hours in 2 mM thymidine (Sigma) and either

harvested (thymidine-arrested time point) or washed twice,

cultured in thymidine-free medium, and harvested at 3-hour

intervals. For nocodazole arrest, HeLa cells were cultured

for 24 hours in 200 nM nocodazole (Sigma) before mitotic

shakeoff was performed. For cell cycle analysis, a fraction of

shakeoff cells was plated back into a poly-D-lysine–coated

well and allowed to attach for 5 minutes before fixation.

High-Content Image Analysis

For nuclei quantification and cell cycle analysis, cells were

fixed (MDA-231 and MDA-MB-453 cells in 3.7% formalde-

hyde in PBS at room temperature for 10 minutes; HeLa cells

in methanol for 5 minutes at room temperature), stained with

1 mg/ml Hoechst 33342 (Invitrogen) for 30 minutes at 37jC
or overnight at 4jC, and washed with PBS before image

analysis using Cellomics (ThermoFisher Scientific, Pitts-

burgh, PA) Arrayscan and Bioapplication software.

Results

E2-EPF mRNA and Protein Are Overexpressed

in Breast Tumor Specimens

In a search for genes differentially expressed in breast

cancers relative to normal tissues,f 30 specimens from nor-

mal breast tissues and infiltrating ductal carcinomaswere ana-

lyzed by oligonucleotide microarray (HG-U133A; Affymetrix,

Santa Clara, CA) hybridization. These studies identified E2-

EPF as significantly overexpressed in tumors relative to nor-

mal tissues and were confirmed bymeasuring E2-EPFmRNA

levels by real-time PCR analysis (Figure 1A). An E2-EPF

Figure 1. E2-EPF expression in normal breast tissues and primary breast cancers. (A) E2-EPF mRNA levels in normal breast tissue (NB), mammary gland pool

(MG), or NAT and breast cancer (BT) specimens were quantified by real-time RT-PCR analysis. (B) Left: Graphical representation of immunohistochemical data for

the percentage of E2-EPF+ samples from normal breast tissues, NAT, and all analyzed breast cancers (all BC), and grouping by ER status (ER+ and ER� breast

cancer; data from Table W1). *P values, Fisher’s exact test. Right: Graphical representation of the percentage of samples in each IHC scoring category for E2-EPF

protein expression (data from Table W2).
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overexpression of > 2-fold relative to normal breast samples

(n = 10) was observed inf 80% of the tumors tested (n = 34,

with data for 17 samples shown in Figure 1A). In most cases,

E2-EPF mRNA levels were 5-fold to 10-fold greater in tumors

than in normal specimens. E2-EPF EST representation in

tumor libraries from the breast, ovary, lung, and pancreas

was also elevated in comparison to the corresponding normal

tissues (Incyte LifeSeq database; data not shown).

E2-EPF protein expression was evaluated by immuno-

histochemical analysis in FFPE specimens from normal and

cancerous breast tissues. In agreement with observations

for mRNA levels, the E2-EPF protein was detectable in the

majority of breast cancers (i.e., 67%; 50 of 75) in contrast to

only 4.5% (1 of 22) of normal breast samples and 9% (1 of 11)

of NAT samples (Figure 1B and Table W1). E2-EPF staining

was typically found in scattered epithelial cell clusters within

tumors and was rarely found in normal ductal epithelial cells

(Figure 2). Both nuclear staining and cytoplasmic staining

were observed. When the expression of E2-EPF in this panel

of tumor samples was compared with ER and PR status, as

well as histologic grade (the majority were grade 2 or 3), a

significant positive correlation between ER negativity and E2-

EPF expression was observed (Figure 1B and Table W1). In-

terestingly, tumors with at least 25% of cells expressing de-

tectable levels of E2-EPF (immunohistochemistry score of

3 or 4) were more likely to be ER� than ER+ (Figure 1B and

Table W2). No statistically significant associations were noted

for E2-EPF positivity and histologic grade or PR expression

(Table W1).

E2-EPF Is Frequently Coexpressed in Breast Tumors with

Genes That Function in the G2/M phase of the Cell Cycle

With the aim of providing additional information on which

to base exploratory investigations of E2-EPF function, we

evaluated gene expression profiles from approximately 160

nonhematologic cancer microarray studies deposited in

ONCOMINE [10] for genes that are coordinately expressed

with E2-EPF. We extracted the list of coexpressed genes

from each of the studies obtained using the search tools

provided in ONCOMINE (see Materials and Methods sec-

tion) and determined the frequency with which each gene

was identified as coexpressed with E2-EPF over all the

studies. The genes that were most frequently coexpressed

with E2-EPF (called ECG) are listed in Table 1. Many have

known roles in cell cycle progression and are expressed in

G2 or M phase (e.g., CCNB2, TOP2A, CENPA, CDC20,

PRC1, STK6, UBE2C. Importantly, E2-EPF was coordinately

expressed with a large number of these genes with high

correlation in 7 of 20 microarray studies, 5 of which included

breast carcinomas (Figure 3A). Not surprisingly, these ECGs

were among the coexpressed genes identified for other query

genes in the meta-signature for undifferentiated cancers [1],

whose mRNA levels are elevated in G2 phase (i.e., UBE2C,

TOP2A) or G2/M phase (i.e., CDC20, CKS2) (Table W3). But

the ECG were not coexpressed with genes such as ERBB2

(data not shown). In the 20 microarray studies, the strength of

the correlation of E2-EPF with ECGs was generally weaker

than the correlation of UBE2C, TOP2A, CDC20, and CKS2

with ECGs (Figure 3B, brightness of color, particularly in

studies marked with black arrowhead), suggesting greater

sample heterogeneity for coexpression with E2-EPF than with

TOP2A, CDC20, and UBE2C. Moreover, E2-EPF expression

was more correlated with genes other than the ECGs in two

studies (i.e., Linn sarcoma and Talantov melanoma), even

though ECGs were coexpressed with TOP2A, CDC20,

UBE2C, or CKS2 in the same studies (Figure 3B) and E2-

EPF was significantly differentially expressed in the tumors in

those studies (data not shown). Overall, these data suggest

that E2-EPF expression is associated with the proliferating

cell population in breast cancers (identified by G2/M gene

expression) and also imply that E2-EPF association with

genes involved in cell cycle control may not be observed in

all cancers or in all tumors of a particular cancer type.

E2-EPF Expression Is Cell Cycle–Regulated in

HeLa Cervical Carcinoma Cells

Consistent with the observed association of E2-EPF ex-

pression with G2/M–expressed genes in multiple cancer

microarray studies, we noted that E2-EPF was 1 of 874 cell

cycle–regulated genes identified in gene expression analy-

ses of HeLa cells that were synchronized with treatments

that arrest cells at the beginning of S phase (i.e., thymidine

or hydroxyurea) or in prometaphase (i.e., nocodazole) and

subsequently released from those blocks [6]. In that study,

E2-EPF was classified as a gene whose expression peaked

during the M/G1 phase of the cell cycle, yet its mRNA expres-

sion profile was most similar to that of the G2/M phase–

expressed BUB1, BIRC5, CCNB2, CDC20, PLK1, and other

genes involved in mitotic surveillance (Figure 7 in Whitfield

et al. [6]).

We performed similar cell cycle analyses in HeLa cells

and found that the E2-EPF protein was detectable under all

tested conditions but was significantly elevated in S phase

(i.e., thymidine-arrested and released cells 12 hours after

Figure 2. E2-EPF immunohistochemistry. Representative staining with anti –

E2-EPF antibody for primary specimens from breast cancers with scores of 4

(A), 0 (B), and 1 (D) and from normal breast (C). Original magnification, �40.
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serum stimulation) as well as in G2/M phase compared to

serum-deprived cells (Figure 4, A and B). In agreement with

the data for mRNA levels, E2-EPF protein levels were high-

est in cells arrested in M phase by nocodazole treatment or in

the population with a high fraction of cells in G2/M phase (i.e.,

Thy + 9–12 hours of release). E2-EPF expression was not

as tightly regulated as the phosphorylation of histone H3,

which increased markedly in cell populations with a high

fraction of cells in M phase (i.e., nocodazole or Thy + 9–

12 hours of release). Because cell populations with the

highest levels of E2-EPF also have reduced cyclin A expres-

sion, which is degraded at the end of prophase, the peak

expression of E2-EPF is most likely in middle to late mitosis

rather than in early mitosis.

Table 1. Genes Coexpressed with E2-EPF in Cancer Microarray Studies.

Gene # Description Cell Cycle*

CCNB2 9 cyclin B2 G2/M

TOP2A 9 topoisomerase (DNA) II alpha 170kDa G2

CENPA 8 centromere protein A G2

CDC20 7 cell division cycle 20 homolog (S. cerevisiae) G2/M

MYBL2 7 v-myb myeloblastosis viral oncogene homolog (avian)-like 2 ND

PRC1 7 protein regulator of cytokinesis 1 M/G1

STK6 7 aurora kinase A G2

TPX2 7 TPX2, microtubule-associated, homolog (Xenopus laevis) ND

UBE2C 7 ubiquitin-conjugating enzyme E2C G2

BUB1 6 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) G2/M

CDC2 6 cell division cycle 2, G1 to S and G2 to M G2

CKS2 6 CDC28 protein kinase regulatory subunit 2 G2/M

DLG7 6 discs, large homolog 7 (Drosophila) ND

FOXM1 6 forkhead box M1 G2

MAD2L1 6 MAD2 mitotic arrest deficient-like 1 (yeast) ND

MELK 6 maternal embryonic leucine zipper kinase G2/M

RRM2 6 ribonucleotide reductase M2 polypeptide S

TACC3 6 transforming, acidic coiled-coil containing protein 3 G2/M

TTK 6 TTK protein kinase G2/M

BIRC5 5 baculoviral IAP repeat-containing 5 (survivin) G2/M

C10orf3 5 centrosomal protein 55kDa (CEP55) ND

CCNB1 5 cyclin B1 G2/M

CDCA3 5 cell division cycle associated 3 ND

CDCA8 5 cell division cycle associated 8 ND

H2AFX 5 H2A histone family, member X S

MKI67 5 antigen identified by monoclonal antibody Ki-67 G2

NUSAP1 5 nucleolar and spindle associated protein 1 ND

PTTG1 5 pituitary tumor-transforming 1 M/G1

ZWINT 5 ZW10 interactor ND

AURKB 4 aurora kinase B G2

BUB1B 4 BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) G2/M

CCNA2 4 cyclin A2 G2

DKFZp762E1312 4 hypothetical protein DKFZp762E1312 G2

EZH2 4 enhancer of zeste homolog 2 (Drosophila) S

HCAP-G 4 non-SMC condensin I complex, subunit G ND

KIAA0101 4 p15(PAF) ND

KIF11 4 kinesin family member 11 ND

KIF20A 4 kinesin family member 20A ND

KIF4A 4 kinesin family member 4A ND

KNTC2 4 kinetochore associated 2 ND

KPNA2 4 karyopherin alpha 2 (RAG cohort 1, importin alpha 1) G2

NEK2 4 NIMA (never in mitosis gene a)-related kinase 2 G2/M

RAMP 4 RA-regulated nuclear matrix-associated protein ND

TRIP13 4 thyroid hormone receptor interactor 13 ND

CDCA1 3 cell division cycle associated 1 G2/M

CDKN3 3 cyclin-dependent kinase inhibitor 3 (CDK2-associated dual specificity phosphatase) M/G1

CENPE 3 centromere protein E, 312kDa G2/M

CENPF 3 centromere protein F, 350/400ka (mitosin) G2/M

FLJ10719 3 hypothetical protein FLJ10719 ND

HMMR 3 hyaluronan-mediated motility receptor (RHAMM) G2/M

KIF23 3 kinesin family member 23 ND

KIF2C 3 kinesin family member 2C ND

KIFC1 3 kinesin family member C1 G2

LOC146909 3 hypothetical protein LOC146909 ND

MCM10 3 MCM10 minichromosome maintenance deficient 10 (S. cerevisiae) ND

PBK 3 PDZ binding kinase ND

RACGAP1 3 Rac GTPase activating protein 1 ND

TYMS 3 thymidylate synthetase S

The gene name and cellular processes associated with ECGs, as well as their frequency of occurrence in the 20 analyzed cancer microarray studies.

#, frequency with which the indicated gene was identified as correlated with E2-EPF in the 20 microarray studies.

*Cell cycle phase determined in Whitfield et al [6]; ND, not cell-cycle regulated or not designated.
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HeLa Cell Proliferation Is Not Affected By the Reduction

in E2-EPF Expression

Having demonstrated cell cycle dependency for E2-EPF

expression in HeLa cells, the potential role of E2-EPF in

HeLa cell growth was addressed using siRNA directed

against E2-EPF mRNA that were introduced into cells by

lipid-mediated transfection. Concentrations of lipid reagents

and siRNA were optimized for maximal E2-EPF knockdown

at the lowest concentration of siRNA (i.e., 0.1–2 fmol/cell

or 1–2 nM) and were optimized to have little or no effects on

cell proliferation on treatment with multiple ‘‘negative’’ control

oligonucleotides (i.e., FFL, FFL2, MYOG). Under these con-

ditions, treatment with five of seven E2-EPF siRNA reduced

E2-EPF protein levels to < 25% of control 72 hours after

transfection. Following treatment with three of these siRNA

(i.e., D1, D2, D4), levels were decreased to < 10% of control

(Figure 5A). For effective siRNA, E2-EPF protein levels were

reduced by > 75% as early as 24 hours after transfection

(Figure 6B; data not shown). In spite of this substantial knock-

down of E2-EPF expression with multiple siRNA sequences,

including those with oligonucleotide modifications to reduce

offtarget effects (i.e., Smart Plus; Dharmacon) (Figure 6B), no

specific inhibition of HeLa cell proliferation was observed. In

contrast, knockdown of mitotic kinesin 11 (i.e., Eg5; Figure 5A)

resulted in a > 90% decrease in cell viability. Furthermore,

no alteration in cell cycle distribution was observed in HeLa

cells with reduced E2-EPF expression (data not shown).

E2-EPF Knockdown Has No Effect on the Proliferation

of ER� Breast Cancer Cells

Given the positive association of E2-EPF protein expres-

sion with ER� breast cancers, the involvement of E2-EPF in

the proliferation of ER� MDA-231 and MDA-MB-453 breast

cancer cells was addressed by RNAi-based knockdown

approaches. In both of these cell lines, transfection with

E2-EPF siRNA elicited substantial decreases in E2-EPF pro-

tein (Figure 5, B and C) and mRNA levels (data not shown).

In MDA-231 cells, E2-EPF protein levels were reduced by

> 85% of those in control siRNA-treated cells (i.e., FFL,

FFL2) after 24 hours of treatment with multiple E2-EPF

siRNA, and similar levels of knockdown were maintained for

at least 96 hours (Figure 5B). In contrast to the dramatic

inhibition of proliferation observed with Eg5 siRNA, this

marked reduction in levels of the E2-EPF protein had no

Figure 4. Cell cycle regulation of E2-EPF gene expression. (A) Top: Immuno-

blot analysis of E2-EPF protein expression during the HeLa cell cycle. Cell

lysates were prepared from cells asynchronously growing (Asy), serum-starved

for 24 hours (ss), stimulated with 10% FBS for indicated times (serum-

stimulated), thymidine-arrested for 24 hours (Thy), released from the thymidine

block for indicated times (release), Nocodazole arrested for 24 hours (Noc),

(40 �g protein/lane) were resolved by PAGE samples, and immunoblots were

processed with indicated antibodies. Amido black stain verified equivalent sam-

ple loading. Bottom: Graphical representation of the densitometric quantitation

of the above immunoblot normalized for amido black stain. (B) Cell cycle

distribution analysis of HeLa cells from the experiment in (A). Histograms from

Cellomics Cell Cycle Bioapplication show the number of instances ( y axis) for

each DNA content (x axis), with data points binned per 1000 instances in all

but Thy and Thy + 12 hours (by 10,000 instances). Arrow: G1 peak.
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significant effects on MDA-231 cell proliferation (Figure 5B)

or cell cycle distribution (data not shown). Similarly, treat-

ment of MDA-MB-453 cells with multiple E2-EPF siRNA sub-

stantially decreased the levels of the E2-EPF protein for at

least 96 hours (Figure 5C; data not shown) with no effect

on their proliferation, whereas treatment with siRNA directed

against PLK1 markedly inhibited cell growth.

E2-EPF Knockdown Increased HeLa Cell Sensitivity

to Topo II Inhibitors

From the results of E2-EPF knockdown studies in HeLa,

MDA-231, and MDA-MB-453 cells, it can be concluded that

E2-EPF is not required for the proliferation of these cancer

cells under standard culture conditions. The observation that

E2-EPF expression in tumors frequently correlated with

Figure 5. Effect of E2-EPF siRNA treatment on cancer cell proliferation. HeLa (A), MDA-231 (B), and MDA-MB-453 (C) cells were transfected with indicated

siRNA. HeLa cells were assayed 3 days later for E2-EPF expression (immunoblot) and cell viability (WST-1 assay; duplicate data points shown). Proliferation was

assessed at indicated time points (MDA-231) or at 96 hours (MDA-MB-453) by counting nuclei (triplicate data points ± S.D.) and E2-EPF expression from parallel

plates by immunoblot analysis. UT = untreated; Lipo = lipid only. FFL, FFL2, MYOG, NC, and NT are negative control siRNA (striped bars). Eg5 and PLK1 are

positive control siRNA (open bars). E2-EPF siRNA are nos. 1–3, D1–D6 (black bars). Pooled oligos are NTp, MYOGp, E2-EPFp, and PLK1p. Data are

representative of at least two independent experiments from each cell line.

Figure 6. Effect of chemotherapeutic drugs on HeLa cells treated with E2-EPF siRNA. Cells were transfected with the indicated negative control siRNA (NTp,

MYOGp, NT) and E2-EPF siRNA (E2-EPFp, D5, D6) and treated in duplicate (A) or in triplicate (B and C) with the indicated drug concentrations (A and C) or with

no drug (B) for 3 days starting 24 hours after transfection. Cell proliferation (nuclei counts) was measured by microscopic imaging analysis. (B) Left: Nuclei counts

for ‘‘no drug’’ control transfectants corresponding to the experiment in (C). Right: Samples (40 �g protein/lane, except as noted) on the left were analyzed by

immunoblotting for the E2-EPF protein at 24 and 72 hours after transfection. Data are representative of at least three independent experiments. Error bars, S.D.

*P < .03 for the comparison of E2-EPF siRNA with negative control siRNA. Note: D6 + dox was not statistically significant (P > .05), but in the repeat experiment,

NT + dox versus D6 + dox yielded 63% vs 37% (5 nM) and 28% vs 14% (10 nM) (P = .014). (D) HeLa cells were transfected with the indicated siRNA, harvested

48 hours later, and fractionated into nuclear and cytoplasmic extracts before immunoblot analysis (50 �g protein/lane) for topo IIa (170 kDa) and topo II� (180 kDa)

expressions. Immunoreactive bands identified in topo IIa and II� siRNA-treated cell lysates indicate the specificity of the topo II antibody. Quantification of topo IIa
by protein dilution in an independent experiment demonstrated that the increase in topo IIa on E2-EPF knockdown was f 2-fold. Amido black staining verified

equivalent sample loading.
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genes such as TOP2A and CENPA, which have key roles

in chromosome condensation and organization, as well as

with BUB1, BUB1B,MAD2L1, and TTK, which are involved in

spindle assembly and mitotic checkpoint function, prompted

us to ask whether G2-phase or M-phase checkpoints might

be regulated by E2-EPF under conditions of cellular stress.

We used chemotherapeutic drugs to evaluate this hypothesis,

selecting agents that damage DNA (i.e., doxorubicin, etopo-

side, camptothecin) or interfere with spindle assembly (i.e.,

Taxol). HeLa cells that were transfected with E2-EPF or

control siRNA were treated for 72 hours with these drugs at

doses spanning their respective IC50 concentrations. E2-EPF

knockdown with multiple siRNA [i.e., E2-EPFp, D5, and D6

(Figure 6, A and C); D2 and D4 (data not shown)] resulted in a

significantly greater (f 2-fold) antiproliferative effect in com-

bination with etoposide [at 250 nM: NTp, 47.5 ± 5.5%; E2-

EPFp, 20.1 ± 8.1% (of untreated); n = 3, P < .0001], as well as

with doxorubicin (for 10 nM:NTp, 39.4 ± 5.6%;E2-EPFp, 19.2 ±

2.0%; n = 3, P < .0001), than that seen with the drugs alone.

In contrast, no significant sensitizing effects of E2-EPF deple-

tion were observed in combination with Taxol or camptothecin

(Figure 6C). As previously discussed, no effect of E2-EPF

knockdown on cell proliferation in the absence of cotreatment

with chemotherapeutic drugs was observed despite the re-

duction of E2-EPF protein levels by > 75% (Figure 6B).

Both etoposide and doxorubicin damage DNA by forming

covalent tertiary complexes with topo II and DNA that result

in double-strand breaks (for review, see Giles and Sharma

[11]). Topo II has two isoforms, IIa (MW = 170 kDa) and IIb
(MW = 180 kDa), with the former exhibiting cell cycle regu-

lation of its expression that is elevated during S phase and

that peaks at G2/M phase [12]. Furthermore, tumor cell

sensitivity to topo II inhibitors has been positively correlated

with increased nuclear topo IIa levels [13,14], and cytoplas-

mic relocalization of topo IIa results in drug resistance [15].

Therefore, the effect of E2-EPF knockdown on the levels of

nuclear and cytoplasmic topo IIa and IIb were measured. In

HeLa cells, both topo II isoforms were detected in the nuclear

compartment, whereas the E2-EPF protein was found in

both the cytoplasm and the nucleus (Figure 6D). Following

treatment with E2-EPF siRNA for 48 hours, topo IIa protein

levels increased by f 2-fold with no change in subcellular

localization. Similar increases in topo IIa levels were ob-

served using other E2-EPF siRNA (i.e., D5 and D6; data not

shown), but no change in topo IIa levels was detected

following treatment with negative control siRNA. As E2-

EPF knockdown did not affect HeLa cell cycle distribution,

this difference in topo IIa levels is not due to a change in the

number of cells in S or G2/M phase (data not shown). No

significant difference in topo IIb levels was observed on

treatment with any of the E2-EPF siRNA.

Discussion

We identified the ubiquitin-conjugating enzyme E2-EPF in

DNA microarray and EST database-mining studies as a

gene overexpressed in breast tumors relative to normal

tissues. Our study demonstrated that the E2-EPF protein is

more highly expressed in the majority of breast infiltrating

ductal carcinomas than in normal tissues and is regulated

during the HeLa cell cycle, achieving the highest levels

during mitosis. In tumors, E2-EPF mRNA expression corre-

lated with genes involved in mitotic surveillance, but RNAi-

mediated knockdown of the E2-EPF protein did not alter cell

cycle distribution or affect the proliferation of HeLa cervical

cancer cells or MDA-231 and MDA-MB-453 breast cancer

cells. Instead, E2-EPF protein knockdown sensitized HeLa

cells to the antiproliferative effects of the topo II inhibitors

etoposide and doxorubicin and resulted in elevated topo IIa

protein levels.

Our observation that ER� breast tumors are more likely to

express the E2-EPF protein and have detectable E2-EPF

expression in a greater percentage of cells than ER+ tumors

is consistent with the presence of E2-EPF in the meta-

signature for undifferentiated cancer [1] because ER� tumors

are typically poorly differentiated and are of higher mitotic

grade than ER+ tumors [16]. Yet, RNAi-mediated reduction

of E2-EPF protein levels to < 15% of control levels in HeLa

cells or in ER� MDA-231 and MDA-MB-453 breast cancer

cells did not affect their proliferation. Our results differ from

those of Jung et al. [4], who demonstrated that adenovirus-

encoded E2-EPF siRNA that downregulated E2-EPF pro-

tein levels inhibited the proliferation of C8161 melanoma and

VHL-expressing 786-O renal carcinoma cells by f 1.5-fold

to 2-fold 4 days after seeding (approximately two popula-

tion doublings) and more markedly suppressed their in vivo

tumor growth. It is possible that the 80% to 90% reduction

in E2-EPF levels achieved in our study is not of sufficient

magnitude or duration to impact the proliferation of the cancer

cells analyzed or that only certain cancers are dependent

on E2-EPF for their growth. In this regard, it is noteworthy

that VHL expression was critical for tumor growth inhibi-

tion following adenoviral E2-EPF siRNA delivery in Jung

et al. [4], as growth of parental 786-O tumors was not af-

fected by E2-EPF downmodulation. Because the cell lines

studied here express a wild-type functional VHL protein

[17], the lack of an E2-EPF requirement for cell prolifera-

tion suggests that the presence of a functional VHL–HIF-1a

pathway is not, by itself, responsible for determining E2-

EPF dependency.

In our survey of multiple cancer microarray studies using

the ONCOMINE database, we found that E2-EPF expres-

sion was most frequently correlated with genes such as

CCNB2, CENPA, TOP2A, CDC20, and TPX2, which are all

implicated in cell cycle progression through G2/M phase.

Their coexpression with E2-EPF in tumors may indicate that

E2-EPF is expressed in a proliferating tumor cell population

identified by the expression of these G2/M genes. The

relatively weak correlation of E2-EPF with these G2/M

genes, compared with genes such as TOP2A, CDC20,

UBE2C, or CKS2, is consistent with the fact that reduction

of E2-EPF levels following siRNA treatment had no effect on

cell proliferation, but may also suggest that E2-EPF is

important for proliferation in only a subset of cancers or

may function in a particular tumor microenvironment. Our

analysis explored E2-EPF activity in two ER� breast cancer
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cell lines that may represent different types of breast cancer.

MDA-MB-453 is classified as an ERBB2-amplified luminal

epithelial cell cancer, whereas MDA-231 is a highly invasive

cell line with mesenchymal cell characteristics [18]. Evalua-

tion of additional cell lines representative of other breast

cancers, as well as different conditions of in vitro culture

(e.g., extracellular matrix, cellular stress), for effects of E2-

EPF depletion may therefore be warranted.

The cell cycle–regulated expression of E2-EPF and its co-

expression in tumors with genes implicated in chromosome

decatenation (i.e., TOP2A), spindle assembly (TPX2), and mi-

totic checkpoint function (BUB1B, BUB1, and TTK) prompted

us to ask whether E2-EPF might have a function in cancer

cells that might be revealed only under conditions of cellular

stress, modeled by treating cells with agents that induce a G2

checkpoint or a mitotic checkpoint. We discovered that HeLa

cells treated with E2-EPF siRNA were approximately two-fold

more sensitive to the topo II inhibitors etoposide and doxoru-

bicin than were cells transfected with negative control siRNA.

This degree of sensitization is similar to that seen with agents,

such as the poly(ADP-Ribose) polymerase inhibitor AG14361,

that enhance the potency of topo I inhibitors [19]. Importantly,

no sensitization was found for the topo I inhibitor camptothe-

cin, which also induces DNA damage, or for the microtubule-

stabilizing drug Taxol. Lack of sensitization to camptothecin

suggests that sensitization to topo II inhibitors by E2-EPF

depletion was not due to a reduced ability of the cells to sense

double-stranded DNA breaks, to trigger the S phase and/or G2

DNA damage checkpoints, or to repair damaged DNA. A

possible explanation for the increased antiproliferative effect

of topo II inhibitors following E2-EPF knockdown is that topo

IIa protein levels were increased. Because topo II inhibitors

form tertiary complexes with the enzyme and DNA to enhance

strand breakage [11], higher levels of topo II can lead to

greater drug sensitivity. Indeed, enhanced sensitivity to topo

II inhibitors has been shown in tumors with elevated levels of

topo II [13,14,20]. Alternatively, E2-EPF may decrease drug

sensitivity by playing a role in the turnover of topo II inhibitor–

induced topo II–DNA complexes, thereby enabling repair of

DNA damage. Topo IIb–DNA covalent complexes have been

shown to be degraded by the 26S proteasome following

ubiquitinylation [21]. In our study, E2-EPF knockdown resulted

in an increase in topo IIa, but not topo IIb, levels in exponen-

tially growing cells that were not treated with drugs. Further

studies will be needed to address the effect of topo II inhib-

itor treatment on topo II protein levels under conditions of

E2-EPF depletion, as well as to determine whether ubiqui-

tinylation of topo IIa is affected by knockdown or overexpres-

sion of E2-EPF.

Proteasomal activity has also been shown to be impor-

tant for the regulation of topo IIa protein degradation at

the M/G1 transition of the cell cycle [22]. The specific E2

ubiquitin-conjugating enzymes and E3 ubiquitin ligases re-

sponsible for topo II turnover have not yet been identified;

our E2-EPF depletion, as well as cell cycle studies demon-

strating peak levels of E2-EPF during mitosis, suggests but

does not prove that E2-EPF is one of the regulators of this

process. It is possible that the frequent coexpression of

E2-EPF and TOP2A reflects a tumor-specific mechanism

that generates adequate levels of E2-EPF to ensure appro-

priate regulation of topo IIa concentrations and activity.

In summary, we have shown that the E2-EPF ubiquitin-

conjugating enzyme is overexpressed in the majority of

breast cancers, but elevated levels of E2-EPF are not re-

quired for cell proliferation under standard culture conditions,

as suggested by RNAi-mediated depletion studies with the

tested cancer cell lines. However, sensitivity to topo II inhib-

itors was enhanced in HeLa cells on treatment with E2-EPF–

directed siRNA concomitant with an elevation in topo IIa

protein levels. Studies that extend these observations to other

cancer cells and explore the mechanism(s) by which E2-EPF

modulates sensitivity to topo II inhibition are warranted to pro-

vide additional rationale for combination therapy with topo II

and E2-EPF inhibitors.

Acknowledgements

We gratefully acknowledge the assistance of Richard Lin

in designing initial siRNA reagents and TaqMan primers

and probes; David Vogel and Sara Biancalana for polyclonal

antibody generation; and Richard Feldman and Gordon

Parry for helpful discussions.

References
[1] Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D,

Barrette T, Pandey A, and Chinnaiyan AM (2004). Large-scale meta-

analysis of cancer microarray data identifies common transcriptional

profiles of neoplastic transformation and progression. Proc Natl Acad

Sci USA 101, 9309–9314.

[2] Liu Z, Diaz LA, Haas AL, and Giudice GJ (1992). cDNA cloning of a

novel human ubiquitin carrier protein. An antigenic domain specifically

recognized by endemic pemphigus foliaceus autoantibodies is encoded

in a secondary reading frame of this human epidermal transcript. J Biol

Chem 267, 15829–15835.

[3] Pickart CM (2004). Back to the future with ubiquitin. Cell 116, 181–190.

[4] Jung CR, Hwang KS, Yoo J, Cho WK, Kim JM, Kim WH, and Im DS

(2006). E2-EPF UCP targets pVHL for degradation and associates with

tumor growth and metastasis. Nat Med 12, 809–816.

[5] Whitfield ML, George LK, Grant GD, and Perou CM (2006). Common

markers of proliferation. Nat Rev Cancer 6, 99–106.

[6] Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander

KE, Matese JC, Perou CM, Hurt MM, Brown PO, et al. (2002). Identi-

fication of genes periodically expressed in the human cell cycle and

their expression in tumors. Mol Biol Cell 13, 1977–2000.

[7] Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A,

Beauheim C, Harvey S, Ethier SP, and Johnson PH (2001). Identifica-

tion of gene expression profiles that predict the aggressive behavior of

breast cancer cells. Cancer Res 61, 5168–5178.

[8] Saldanha AJ (2004). Java Treeview—extensible visualization of micro-

array data. Bioinformatics 20, 3246–3248.

[9] Kiewlich D, Zhang J, Gross C, Xia W, Larsen B, Cobb RR, Biroc S,

Gu JM, Sato T, Light DR, et al. (2006). Anti-EphA2 antibodies de-

crease EphA2 protein levels in murine CT26 colorectal and human

MDA-231 breast tumors but do not inhibit tumor growth. Neoplasia

8, 18–30.

[10] Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D,

Barrette T, Pandey A, and Chinnaiyan AM (2004). ONCOMINE: a

cancer microarray database and integrated data-mining platform. Neo-

plasia 6, 1–6.

[11] Giles GI and Sharma RP (2005). Topoisomerase enzymes as therapeu-

tic targets for cancer chemotherapy. Med Chem 1, 383–394.

[12] Woessner RD, Mattern MR, Mirabelli CK, Johnson RK, and Drake

FH (1991). Proliferation- and cell cycle – dependent differences in

612 E2-EPF Over-Expression in Cancer Modulates Sensitivity to Topo II Inhibitors Tedesco et al.

Neoplasia . Vol. 9, No. 7, 2007



expression of the 170 kilodalton and 180 kilodalton forms of topo-

isomerase II in NIH-3T3 cells. Cell Growth Differ 2, 209–214.

[13] Asano T, Kleinerman ES, Zwelling LA, Zhou Z, and Fukunaga Y (2005).

Adenovirus-mediated human topoisomerase IIalpha gene transfer in-

creases the sensitivity of etoposide-resistant human and mouse breast

cancer cells. Acta Oncol 44, 240–247.

[14] Dingemans AM, Witlox MA, Stallaert RA, van der Valk P, Postmus PE,

and Giaccone G (1999). Expression of DNA topoisomerase IIalpha and

topoisomerase IIbeta genes predicts survival and response to chemo-

therapy in patients with small cell lung cancer. Clin Cancer Res 5,

2048–2058.

[15] Engel R, Valkov NI, Gump JL, Hazlehurst L, Dalton WS, and Sullivan

DM (2004). The cytoplasmic trafficking of DNA topoisomerase IIalpha

correlates with etoposide resistance in human myeloma cells. Exp Cell

Res 295, 421–431.

[16] Desmedt C and Sotiriou C (2006). Proliferation: the most prominent

predictor of clinical outcome in breast cancer. Cell Cycle 5, 2198–2202.

[17] Blancher C, Moore JW, Talks KL, Houlbrook S, and Harris AL (2000).

Relationship of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha

expression to vascular endothelial growth factor induction and hypoxia

survival in human breast cancer cell lines. Cancer Res 60, 7106–7113.

[18] Lacroix M and Leclercq G (2004). Relevance of breast cancer cell lines

as models for breast tumours: an update. Breast Cancer Res Treat 83,

249–289.

[19] Smith LM, Willmore E, Austin CA, and Curtin NJ (2005). The novel

poly(ADP-ribose) polymerase inhibitor, AG14361, sensitizes cells to

topoisomerase I poisons by increasing the persistence of DNA strand

breaks. Clin Cancer Res 11, 8449–8457.

[20] Harris LN, Yang L, Liotcheva V, Pauli S, Iglehart JD, Colvin OM, and

Hsieh TS (2001). Induction of topoisomerase II activity after ErbB2

activation is associated with a differential response to breast cancer

chemotherapy. Clin Cancer Res 7, 1497–1504.

[21] Mao Y, Desai SD, Ting CY, Hwang J, and Liu LF (2001). 26S protea-

some–mediated degradation of topoisomerase II cleavable complexes.

J Biol Chem 276, 40652–40658.

[22] Salmena L, Lam V, McPherson JP, and Goldenberg GJ (2001). Role of

proteasomal degradation in the cell cycle–dependent regulation of DNA

topoisomerase IIalpha expression. Biochem Pharmacol 61, 795–802.

E2-EPF Over-Expression in Cancer Modulates Sensitivity to Topo II Inhibitors Tedesco et al. 613

Neoplasia . Vol. 9, No. 7, 2007




