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a b s t r a c t

This paper studies the identification of ARMA systemswith coloredmeasurement noises using finite-level
quantized observations. Comparedwith the case under colorless noises, this problem ismore challenging.
Our approach is to jointly design an adaptive quantizer and a recursive estimator to identify system
parameters. Specifically, the quantizer uses the latest estimate to adjust its thresholds, and the estimator
is updated by using quantized observations. To accommodate the temporal correlations of quantization
errors andmeasurement noises, we construct a second-order statistics equivalent system, fromwhich the
original ARMA system is identified. The associated identifiability problem and convergence are analyzed
as well. Finally, numerical simulations are performed to demonstrate the effectiveness of the proposed
algorithm.
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This is an open access article under the CC BY-NC-ND license
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1. Introduction

Quantized system identification is an important research
topic, which aims to identify system parameters from quantized
measurements rather than the exact measurements. Due to
its practical applications, we have witnessed its tremendous
development in the last decade. For instance, transmitting the
coarsely quantized data in a networked system can improve the
communication efficiency (Wang, Yin, Zhang, & Zhao, 2010) and
storing quantized data reduces thememory size (Eldar & Kutyniok,
2012). While quantization is a severely nonlinear operator, it
imposes great challenges in system identification.

To date, many quantized identification algorithms have been
developed. They can be roughly categorized by the studied system
models, e.g. gain system models (Li & Fang, 2007; Wang & Yin,
2007), FIR models (Godoy, Goodwin, Agueero, Marelli, & Wigren,
2011; Guo, Wang, Yin, Zhao, & Zhang, 2015; Guo & Zhao, 2013;
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You, 2015; Yu, Zhang, & Xie, 2013), IIR models (Marelli, You,
& Fu, 2013; Wang, Yin, & Zhang, 2006), time-varying systems
(Bermudez & Bershad, 1996), and Hammerstein and Wiener
models (Zhao, Wang, Yin, & Zhang, 2007; Zhao, Zhang, Wang,
& Yin, 2010). On the other hand, they can also be classified
based on the quantization setups, such as uniform or dithered
quantizer (Geirhofer, Tong, & Sadler, 2006; Widrow & Kollar,
2008), fixed-level quantizer (Godoy et al., 2011; Marelli et al.,
2013; Wimalajeewa & Varshney, 2012), binary quantizer (Guo
& Zhao, 2013; Krishnamurthy & Poor, 1996; Vempaty, Ozdemir,
Agrawal, Chen, & Varshney, 2013; Wang et al., 2006; Zhao et al.,
2007), and adaptive quantizer (Bolcskei & Hlawatsch, 2001; Li &
Fang, 2007; You, 2015). Compared with the static quantization,
the adaptive version is more complicated but potentially more
powerful, and may greatly reduce quantization effects on the
identification accuracy. Hence, it has been intensively investigated
in the literature.

In Fang and Li (2008), an adaptive quantized algorithm for dis-
tributed gain systems is proposed where the quantizer thresh-
olds are dynamically adjusted from one sensor to another. This
adjustment is conducted in the spatial domain and the estima-
tion algorithm asymptotically approaches the Cramer–Rao lower
bound (CRLB) as the number of sensors tends to infinity. Note
that the measurement noises of each sensor is assumed to be
spatially independent. In the time domain and under the max-
imum likelihood (ML) criterion, recursive quantized identifica-
tion methods have been developed for FIR (Godoy et al., 2011)

le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.

https://core.ac.uk/display/82149694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.automatica.2015.12.013
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.12.013&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:c.yu-4@tudelft.nl
mailto:youky@tsinghua.edu.cn
mailto:elhxie@ntu.edu.sg
http://dx.doi.org/10.1016/j.automatica.2015.12.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


102 C. Yu et al. / Automatica 66 (2016) 101–108
and ARMA systems (Marelli et al., 2013). Those recursive algo-
rithms require to know the noise pdf in advance. To relax it, a re-
cursive algorithm of the stochastic approximation type has been
developed in You (2015) by jointly designing the quantizer and es-
timator. The adaptive quantizer uses the latest estimated param-
eters to tune its thresholds such that the quantizer operates like
quantizing innovations.

However, all the aforementioned works deal with colorless
noise models. There are only a few works to study the col-
ored measurement noises, e.g., Mei, Wang, and Yin (2014),
Wang and Yin (2010) where the noises are modeled as φ- and
ρ-mixing processes, respectively. Since colored noises are com-
mon in practice, this is a meaningful problem. Along the same line,
this paper focuses on developing a quantized recursive algorithm
to identify the ARMA system and the AR/ARMAnoisemodel, where
the noise correlations will be exponentially decaying with respect
to the time difference. While mixing types of correlated noises are
broader than the colored case in this paper, the identification al-
gorithms in Mei et al. (2014) and Wang and Yin (2010) are only
applicable to periodic input signals. This is a fundamental assump-
tion as they use an empirical-measure-based approach. Clearly,
periodic input signal will limit the applicability of their quantized
algorithms.

Inspired by You (2015), we jointly design the estimator and
the quantizer in a unified framework. Particularly, the estimator
provides the quantizer with the latest parameter estimate to
adaptively adjusts its thresholds. Such a strategy is motivated
by the intuition that quantizing ‘‘innovations’’ is expected to be
efficient. In this joint design scheme, the salient feature is that the
estimator can recursively compute estimate of system parameters
with the quantized observations and system inputs. Obviously,
the system model on the estimator side has two correlated noise
terms: one is the colored noises from the original system model
and the other is the quantization errors, either of which makes it
difficult to correctly identify the system parameters. To solve it,
our idea is to construct an equivalent system with a hybrid noise
term which has the same second-order statistics as the original
system under quantized observations, and a recursive estimation
algorithm is developed to identify the alternative system. It
turns out that the alternative one is a standard Box–Jenkins
model, whose parameters are estimated via the prediction-error
method (Ljung, 1999). Based on this notion of equivalence, the
unknown parameters of the original system can be estimated
by using quantized observations. Moreover, this process can be
implemented in a recursive way. Finally, the identifiability of the
concerned problem is investigated and the convergence of the
recursive algorithm is analyzed.

The rest of this paper is organized as follows. Section 2 for-
mulates the quantized identification problem. Section 3 presents
an identification method based on the joint design of the quan-
tizer and estimator. Section 4 provides convergence analysis of the
proposed identification algorithm. Section 5 extends the proposed
method to the Box–Jenkins systemmodel. In Section 6, simulation
results are given to illustrate the performance of the developed
identification method, followed by the conclusion in Section 7.

2. Problem formulation

We consider a networked ARMA system in Fig. 1 withmeasure-
ment noises generated by an AR model:

y(t) =
B(q)
A(q)

u(t)+
1

D(q)
e(t),

z(t) = Qt [y(t)] ∈ R
(1)

where q denotes the forward shift operator. u(t) ∈ R and y(t) ∈ R
are the system input and output, respectively. e(t) ∈ R is a white
Fig. 1. System diagram.

Gaussian process, e.g., e(t) ∼ N (0, σ 2
e ), z(t) ∈ R is the quantized

observation. Moreover, A(q), B(q) and D(q) are defined by

A(q) = 1+ a1q−1 + · · · + anaq
−na ,

B(q) = b0 + b1q−1 + · · · + bnbq
−nb ,

D(q) = 1+ d1q−1 + · · · + dndq
−nd .

The time-varying K -level scalar quantizer Qt [·] is generically
defined by

Qt [y(t)] =


vt,1 bt,0 < y(t) ≤ bt,1
vt,2 bt,1 < y(t) ≤ bt,2
...
vt,K bt,K−1 < y(t) ≤ bt,K

(2)

where {vt,k}Kk=1 are quantization levels, {bt,k}Kk=0 are quantization
thresholdswith bt,0 = −∞ and bt,K = ∞. The inverse of quantizer
is defined by

Q−1t [vt,i] = (bt,i−1, bt,i], i = 1, 2, . . . , K .

In the sequel, the system in (1) is abbreviated to ARARXmodel, and
the following standard assumptions (Ljung, 1999) are made.

A1: The input signal u(t), which can be either deterministic or
stochastic, is bounded and persistently exciting;

A2: B(q) and A(q) are coprime, and the transfer function B(q)/A(q)
is stable;

A3: The transfer function of the noise term 1/D(q) is stable.

In order to focus on the essence of quantizer design, the orders
of system in (1) are assumed to be known. Otherwise, we can
use a high-order ARX model for approximation, and subsequently
reduce it to the structure of the system in (1) by using the model
reduction techniques (Ljung, 1999, Chapter 10).

Let Zt = {z(j)|j = 1, . . . , t} be a set consisting of t quantized
observations. Ut and Yt are sets of t precise input and output
samples, respectively. Collect the system parameter vector by

θ = [a1, . . . , ana , b0, . . . , bnb , d1, . . . , dnd ]
T

with the superscript T denoting the vector transpose. Let E be
a mathematical expectation operator. Denote ŷ(t|t − 1, θ) =
E(y(t)|Zt−1,Ut−1, θ) the predictor (prediction model) for the
system output at time t . Let θ̂t denote an estimate of θ based on
t available samples and θ∗ the true value of system parameters.

The problem of interest is to jointly design an adaptive
quantizer and a recursive estimator for the parameter estimation
of the ARARX model in (1).

3. Quantized identification of the ARARX model

In this section, the quantizer and estimator will be jointly
designed for identification task.
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3.1. Adaptive quantization scheme

The quantized output is a discrete function which has non-
zero values only at finite points. Denote ϵ(t) = z(t) − y(t) the
quantization error. Then, the system in (1) can be rewritten as

z(t) = y(t)+ ϵ(t) =
B(q)
A(q)

u(t)+
1

D(q)
e(t)+ ϵ(t). (3)

Clearly, the main difficulties in identifying the above system are
threefold: (a) the quantization noise ϵ(t)might be a colored noise
with unknown statistical properties; (b) the noise e(t) and ϵ(t)
are correlated; (c) A nontrivial D(q) renders the existing quantized
algorithms inapplicable. If D(q) = 1, it reduces to the model in
Marelli et al. (2013).

Obviously, the whiteness of ϵ(t) will substantially facilitate
the design of the identification algorithm. To the best of our
knowledge, two types of quantizers are workable: (a) Uniform
quantizer with an appropriate dither (Widrow & Kollar, 2008);
(b) Predictive quantizer (Gersho & Gray, 1991; You, 2015). The
first approach is time-invariant and easy to implement but at the
expense of infinite quantization levels. It does not make sense
for the moderate rate (say one or two-bit). In the simulation,
the identification performance of dither quantization will be
illustrated.

The second approach is time-varying which shifts along with
the prediction ŷ(t|t − 1, θ̂t−1) and yields the quantized output

z(t) = Qt [y(t)]

= ŷ(t|t − 1, θ̂t−1)+Q[y(t)− ŷ(t|t − 1, θ̂t−1)], (4)

where Q[·] is a finite-level Lloyd–Max quantizer (Max, 1960). It is
noteworthy that from the system diagram in Fig. 1 the quantizer
can directly access the exact system outputs while the estimator
cannot.

For the ARARX model in (1), the output prediction can be
explicitly written as:

ŷ(t|t − 1, θ̂t−1) =
B(q, θ̂t−1)D(q, θ̂t−1)

A(q, θ̂t−1)
u(t)

+ (1− D(q, θ̂t−1))y(t). (5)

Suppose that θ̂t → θ∗ as t → ∞. By (4), we can write the
quantization error as follows:

ϵ(t) = z(t)− y(t)

= ŷ(t|t − 1, θ̂t−1)− y(t)+Q[y(t)− ŷ(t|t − 1, θ̂t−1)]

→ Q[e(t)] − e(t). (6)

Under this case, the quantized error is indeed a white noise as long
as the estimated system parameters are sufficiently close to their
true values.

3.2. Recursive estimation method

In this subsection, we develop a quantized algorithm for the
estimator in Fig. 1. To achieve this goal, an equivalent system
having the same second-order statistics as (3) is provided, based
on which a recursive estimation algorithm can be designed. To the
best of our knowledge, this idea has never been exploited in the
literature on quantized identification.

3.2.1. Second-order statistics equivalent model
The second term on the right-hand side of (3) is a colored noise,

which is also correlatedwith the quantization error ϵ(t). Therefore,
using traditional methods by ignoring the quantization error may
not be able to obtain unbiased estimates. To this end, we construct
an alternative model with the same second-order statistics as that
in (1):

z(t) =
B(q)
A(q)

u(t)+
C(q)
D(q)

η(t), (7)

where η(t) is a white noise with mean zero and variance σ 2
η , and

C(q) = 1+ c1q−1 + · · · + cnc q
−nc satisfies the following equation:

σ 2
η C(q)C(q

−1) = σ 2
e + ρσeσϵD(q)+ ρσeσϵD(q

−1)

+ σ 2
ϵ D(q)D(q

−1), (8)

where the unknown correlation coefficient is conceptually given
by

ρ =
cov(e(t), ϵ(t))

σeσϵ
(9)

and σ 2
ϵ is the variance of the quantization error. Note that the

identification algorithm to be given later does not use the unknown
coefficient ρ. That is, it does not cause any problem evenwe do not
know ρ.

The above also implies that C(q)η(t) has the same spectrum
as that of e(t) + D(q)ϵ(t). As the alternative system in (7) is
a standard Box–Jenkins model, its parameters can be estimated
using the prediction-error method (Ljung, 1999). Moreover, both
models share the same system parameters {A(q), B(q),D(q)}, and
the second-order statistics. This motivates to use the estimated
parameters {A(q), B(q),D(q)} in (7) to the quantizer so that it
adaptively adjusts its thresholds. Specifically, we use the quantized
observation z(t) from (1) to identify unknown parameters in (7)
where we deliberately assume that z(t) is generated from the
model in (7). The estimated parameters of {A(q), B(q),D(q)} are
then used to construct a predictor ŷ(t + 1|t, θ̂t), based on which a
newquantized observation z(t+1) is producedbyusing (4). Repeat
the above process, the unknown parameters in (1) are identified.
The remaining problem is how to identify (7) recursively by using
z(t).

3.2.2. Recursive estimation algorithm
As shown in Fig. 1, the estimator has to be updated once a new

quantized sample is available. Hence, it is necessary to develop
a recursive identification algorithm. We use ϑ to represent the
parameter vector containing the coefficients of A(q), B(q), C(q)
and D(q). Note that the parameter vector θ is contained in ϑ . The
prediction-error criterion for estimation can be written as

ϑ̂t = argmin
ϑ

Vt(Zt , ϑ),

Vt(Zt , ϑ) =
1
t

t
j=1

1
2


z(j)− ẑ(j|j− 1, ϑ)

2
, (10)

where the predictor ẑ(t|t − 1, ϑ) is defined by

ẑ(t|t − 1, ϑ) =
D(q)B(q)
C(q)A(q)

u(t)+

1−

D(q)
C(q)


z(t). (11)

A recursive algorithm to resolve the above optimization problem
is obtained as follows (Ljung, 1999):

ϑ̂t = ϑ̂t−1 + µtR−1(t, ϑ̂t−1)ψ(t, ϑ̂t−1)

× (z(t)− ẑ(t|t − 1, ϑ̂t−1))

:= ϑ̂t−1 + µtdt−1,

R(t, ϑ̂t−1) =
1
t

t
j=1

ψ(j, ϑ̂j−1)ψ
T (j, ϑ̂j−1)

(12)
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where R(t, ϑ̂t−1) is an approximated Hessian matrix of (10), µt is
an appropriate stepsize, andψ(t, ϑ) is the first-order derivative of
ẑ(t|t−1, ϑ)with respect toϑ . The stepsizeµt can be chosen by the
backtracking line search method (Boyd & Vandenberghe, 2004). In
particular, let α = 0.01 and β = 0.1. Starting from an initial value
µt = 1, while

Vt(Zt , ϑ̂t−1 + µtdt−1) > Vt(Zt , ϑ̂t−1)

+αµtdTt−1 ·1Vt(Zt , ϑ̂t−1) (13)

the stepsize is updated by using µt ← βµt . The gradient of
1Vt(Zt , ϑ̂t−1) is given by

1Vt(Zt , ϑ̂t−1) = ψ(t, ϑ̂t−1)(z(t)− ẑ(t|t − 1, ϑ̂t−1)).

A nice property of the recursive algorithm is that it does not
require to know the coefficient in (9). In addition, the derivative of
ẑ(t|t − 1, ϑ) can be easily computed in Lemma 1 below. It should
be careful that the recursive estimation in (12) has to start from an
appropriate time step due to the fact that the estimated Hessian
matrix R(t, ϑ̂t−1)with a small size of observation samples is likely
to be rank deficient. Overall, there is no difficulty in implementing
the algorithm.

Lemma 1. The first-order derivative of the predictor ẑ(t|t − 1, ϑ)
with respect to ϑ is computed by

ψ(t, ϑ) =
∂ ẑ(t|t − 1, ϑ)

∂ϑ

=


−q−1Γna−1

 D(q)B(q)
A2(q)C(q)

u(t)

,Γnb

D(q)u(t)
A(q)C(q)

,

q−1Γnc−1
D(q) (A(q)z(t)− B(q)u(t))

A(q)C2(q)
,

q−1Γnd−1
B(q)u(t)− A(q)z(t)

A(q)C(q)

T
,

where Γn =

1 q−1 · · · q−n

T .
Proof. It is straightforwardly derived based on the definition of the
first-order derivative of the prediction function ẑ(t|t − 1, ϑ)with
respect to ϑ , i.e.,

ψ(t, ϑ) =

∂

∂a1
. . .

∂

∂ana

∂

∂b0
. . .

∂

∂bnb

∂

∂c1
. . .

∂

∂dnd

T
× ẑ(t|t − 1, ϑ), where

∂ ẑ(t|t − 1, ϑ)
∂ak

= −q−k


D(q)B(q)
A2(q)C(q)

u(t)

,

∂ ẑ(t|t − 1, ϑ)
∂bk

= q−k
D(q)u(t)
A(q)C(q)

,

∂ ẑ(t|t − 1, ϑ)
∂ck

= q−k
D(q) (A(q)z(t)− B(q)u(t))

A(q)C2(q)
,

∂ ẑ(t|t − 1, ϑ)
∂dk

= q−k
B(q)u(t)− A(q)z(t)

A(q)C(q)
.

This can easily complete the proof.

Let DM be a compact region containing the true parameter vector
ϑ∗ and the prediction model (11) be stable for all ϑ̂N ∈ DM . To
improve convergence, the updated estimator is further projected
back to the region DM per iteration, i.e., ϑ̂t = ΠDM (ϑ̂t) where
ΠDM (·) is a Euclidean projector, and ϑ̂t in the right hand side
is computed from (12) with a slight abuse of notation. Note that
the existence of such a compact region DM is common in the
literature (Ljung, 1999), and can be obtained by inspecting the
specific identification task.
3.3. Summary of the identification algorithm

In summary, the quantized identification algorithm is given in
Algorithm 1.

Algorithm 1. (a) Give any initial conditions θ̂0 and ϑ̂0. Set t = 1.
(b) Generate the quantized observation z(t) by (4)–(5).
(c) Update ϑ̂t as in (12) by using z(t).
(d) Update θ̂t by extracting the estimated coefficients of A(q), B(q)

and D(q) from ϑ̂t .
(e) Let t ← t + 1 and go to (b).

Remark 1. Strictly speaking, the alternative system in (7) cannot
completely characterize (3). Themain difference lies in the fact that
C(q)η(t) may not be adequate to capture the possible temporal
correlations of the quantization noise ϵ(t). If the estimate is far
from the true parameter vector θ∗, it is conceivably impossible
to correctly obtain the statistics of ϵ(t). However, if the estimate
is close to the true parameter vector θ∗, it follows from (6)
that the quantization noise ϵ(t) becomes a white noise. Then,
both the alternative model (7) and the original model (3) are
statistically equivalent. This implies that the above identification
algorithm is also accurate for model (3). From this perspective,
the quantized algorithm is an approximate version of the original
model (3). Nonetheless, we perform quite a few simulations, and
the results suggest that the identification algorithmwith quantized
observations always works well for the system (3) once the system
(7) is identifiable. To this end, we shall study the identifiability of
the system in (7) in the next section.

4. Identifiability and convergence analysis

The new idea for dealing with colored noises depends heavily
on the alternative model (7). Thus, it is essential to examine its
identifiability under quantized observations, which is shown in the
following lemma.

Lemma 2. Suppose that Assumptions A2–A3 hold and that C(q) and
D(q) satisfy (8). Then, the alternative system model in (7) is always
identifiable.

Proof. By Assumption A2, it is clear that B(q)/A(q) is irreducible.
From the spectrum equivalency equation (8), C(q) and D(q) have
no common zeros. In addition, the orders of A(q), B(q), C(q) and
D(q) are known exactly. By Theorem 4.1 of Ljung (1999), we
conclude that the system in (7) is identifiable.

Clearly, the optimization problem in (10) with respect to the
parameter vector ϑ is non-convex (Verhaegen & Verdult, 2007).
Thus, the developed recursive estimator can only converge to a
local optimal solution. However, the global optimal solution of the
quantized identification problem has the following properties.

Proposition 3. Under Assumptions A1–A3 and

P = lim
t→∞

1
t

t
j=1

E

ψ(j, ϑ∗)ψT (j, ϑ∗)


.

Consider the alternative system model in (7). If ϑ̂t is an optimizer
of (10), it holds that

(a) ϑ̂t → ϑ∗ as t →∞ with probability one.

(b)
√
t · (ϑ̂t − ϑ

∗)
in dist.
−−−→ N (0, σ 2

η · P
−1) as t →∞, where

in dist.
−−−→

means the convergence in distribution and ση is the variance of
η(t) in (8).
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Proof. It can be straightforwardly obtained by following Theorem
9.1 of Ljung (1999), and the details are omitted.

By Proposition 3, the CRLB for the estimation of ϑ is σ 2
η P
−1. As

ψ(t, ϑ∗) is expressed in terms of z(t), P−1 is a matrix having
complicated relations with σ 2

η . Therefore, it is difficult to explicitly
show the dependence of the CRLB on σ 2

η .
Next, we show the quantization effects on the value of σ 2

η .
Suppose that Q[·] is a fixed-level Lloyd–Max quantizer (Max,
1960). Let ζ (t) = Q[e(t)] and ϵ(t) = ζ (t) − e(t). Then, it has
the following properties:

E (ζ (t)ϵ(t)) = 0,
E

e2(t)


= E


ζ 2(t)


+ E


ϵ2(t)


,

cov (e(t), ϵ(t)) = −E

ϵ2(t)


.

Inserting cov (e(t), ϵ(t)) into (8) yields σ 2
η C(q)C(q

−1) = σ 2
e −

σ 2
ϵ D(q)− σ

2
ϵ D(q

−1)+ σ 2
ϵ D(q)D(q

−1). This implies that

σ 2
η =

σ 2
e − (2− ∥d∥

2)σ 2
ϵ

∥c∥2
, (14)

where c = [1, c1, . . . , cnc ]′ and d = [1, d1, . . . , dnd ]
′.

By (14), it is clear that when ∥d∥2 > 2, the value of σ 2
η increases

along with σ 2
ϵ . It implies that σ 2

η will be larger when the number
of quantization levels becomes fewer. If ∥d∥2 < 2, the value of
σ 2
η will be smaller as the number of quantization levels becomes

fewer. This is an interesting phenomenon since it suggests that
the measurement noise in the alternative model might not be
proportional to the number of quantization levels.

As shown in (4), the quantizer plays two roles: one is to compute
the predicted output ŷ(t|t − 1, θ̂t−1), and the other is to send the
estimator the quantized observation. In practice, the quantizer can
access the exact system output y(t), it is reasonable to assume that
quantizer has the knowledge of the exact predictor as shown in (5).
As shown in Eqs. (4) and (6), when θ̂t → θ∗, it has that

z(t) = ŷ(t|t − 1, θ̂t−1)+Q

y(t)− ŷ(t|t − 1, θ̂t−1)


→ ŷ(t|t − 1, θ∗)− e(t)+Q[e(t)]. (15)

In the above equation, since e(t) is a white noise, the quantization
error Q[e(t)] − e(t) is generically a white noise (Godoy et al.,
2011). When −e(t) + Q[e(t)] is a white noise and under
Assumptions A1–A3, it can be verified that the true parameter
vector θ∗ is indeed the unique solution for the identification of
(15) or (1). The developed identification algorithm summarized
in Section 3.3 provides a recursive estimation approach for the
integrated model (15). At time step t , substituting the expressions
of z(t) in (4) and ẑ(t|t−1, ϑ) in (11), the parameter update in (12)
can be rewritten as

ϑ̂t = ϑ̂t−1 + µtΨ (t, ϑ̂t−1)


D(q, ϑ̂t−1)

C(q, ϑ̂t−1)
ŷ(t|t − 1, ϑ̂t−1)

+
D(q, ϑ̂t−1)

C(q, ϑ̂t−1)
Q[y(t)− ŷ(t|t − 1, ϑ̂r−1)]

−
D(q, ϑ̂t−1)B(q, ϑ̂t−1)

C(q, ϑ̂t−1)A(q, ϑ̂t−1)
u(t)


, (16)

where Ψ (t, ϑ̂t−1) = R−1(t, ϑ̂t−1)ψ(t, ϑ̂t−1). Suppose that D(q) =
1. It follows from (8) that C(q) = 1. Then, (16) can be simplified as

ϑ̂t = ϑ̂t−1 + µtΨ (t, ϑ̂t−1)Q[y(t)− ŷ(t|t − 1, ϑ̂t−1)], (17)
where Ψ (t, ϑ̂t−1) depends on Ut−1 rather than Zt−1 or Yt−1.
It is remarked that the above parameter update performs like
a quantized LMS algorithm (Bermudez & Bershad, 1996) or a
recursive estimator of stochastic approximation type (You, 2015).
Thus, the recursive algorithm in this paper can be adapted for
identifying the FIR model in You (2015) and the ARMA model in
Marelli et al. (2013).

5. Identification of the Box–Jenkins model

The striking feature of the proposed algorithm is that we
can easily generalize it to identify the Box–Jenkins model using
quantized observations

y(t) =
B(q)
A(q)

u(t)+
F(q)
D(q)

e(t)

z(t) = Qt [y(t)].
(18)

Under the predictive quantization scheme and denoting the
quantization error as ϵ(t) = z(t)− y(t), we obtain

z(t) =
B(q)
A(q)

u(t)+
F(q)
D(q)

e(t)+ ϵ(t). (19)

The equivalent system model having the same second-order
statistics is written as

z(t) =
B(q)
A(q)

u(t)+
C(q)
D(q)

η(t) (20)

where η(t) is a white noise and

C(q) = 1+ c1q−1 + · · · + cnc q
−nc

satisfies the following equation

σ 2
η C(q)C(q

−1) = σ 2
e F(q)F(q

−1)+ ρσeσϵF(q)D(q−1)

+ ρσeσϵF(q−1)D(q)+ σ 2
ϵ D(q)D(q

−1) (21)

with ρ being defined in (9).
Letφt be the parameter vector of the Box–Jenkinsmodel at time

t . The associated output prediction is

ŷ(t + 1|t, φt) =
D(q, φt)B(q, φt)

F(q, φt)A(q, φt)
u(t + 1)

+
F(q, φt)− D(q, φt)

F(q, φt)
y(t + 1),

and the quantized observation is generated by

z(t + 1) = ŷ(t + 1|t, φt)+Q[y(t + 1)− ŷ(t + 1|t, φt)].

For the ARARX system, only A(q), B(q) andD(q) are to be estimated.
However, for the Box–Jenkins model, we have to compute F(q)
using the spectrum equivalency equation in (21) and send to the
quantizer. The following lemma gives a sufficient condition for the
unique solution of F(q).

Lemma 4. Suppose that A(q), B(q), C(q) and D(q) in (20) are
available. Let σ 2

e , σ
2
ϵ and cov (e(t)ϵ(t)) be known as a priori

knowledge. Then F(q) can be uniquely determined if σeF(q) +
ρσϵD(q) is a minimum-phase function, i.e. the amplitudes of its roots
are less than one.

Proof. Eq. (21) can be recast as

σ 2
η C(q)C(q

−1) = [σeF(q)+ ρσϵD(q)][σeF(q−1)

+ ρσϵD(q−1)] + (1− ρ2)σ 2
ϵ D(q)D(q

−1). (22)
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Table 1
Coefficients of the ARARX model and the Box–Jenkins model.

a1 a2 b0 b1 f1 f2 d1 d2

−0.2000 0.4421 0.7000 0.3000 0.2014 −0.2707 −0.4040 0.5649

In addition, the variance of η(t) can be unbiasedly estimated by
Ljung (1999, Lemma II.1):

σ̂ 2
η =

1
t − nφ

t
j=1


z(j)− ẑ(j|j− 1, φ̂j−1)

2
(23)

where nφ is the dimension of the parameter vector φ. After
identifying the system model in (20), the value of

σ 2
η C(q)C(q

−1)− (1− ρ2)σ 2
ϵ D(q)D(q

−1)

in (22) can be computed off-line. Since σeF(q) + ρσϵD(q) is
minimum-phase, it can be uniquely obtained by minimum and
maximum-phase factorization. As a result, F(q) is determined.

Remark 2. For the Box–Jenkins model, the joint-design of the
adaptive quantizer and recursive estimator can be obtained as in
the previous section. Assume that F(q)/D(q) is irreducible and
minimum phase. By Lemma 4, the alternative system model (20)
is identifiable. Different from the identification of the ARARX
model, the knowledge of σ 2

e , σ
2
ϵ and cov (e(t)ϵ(t)) here should

be known in advance. For the system model in (18), if we set the
system input to u(t) = 0 for all times, then it becomes a blind
system identification problem. Thus, the proposed identification
algorithm can solve the quantized blind identification problem
with the input being a white noise.

6. Numerical simulation

In this section, simulation examples are provided to illustrate
the effectiveness of the quantized identification algorithm. The
identification performance under different quantization schemes
will be illustrated.

The input signal u(t) is generated by a truncated standardwhite
Gaussian noise in the interval [−3, 3]. The noise e(t) is generated
as a standard white Gaussian noise, which is uncorrelated with the
input signal u(t). In this section, the recursive estimation starts
from the 151st sample. To obtain its initial point, we collect the
first 150 quantized samples by a zero-mean static Lloyd–Max
quantizer, and calculate the minimizer of the prediction error
criterion in (10).

The numerical simulations are based on the following ARARX
model and the Box–Jenkins model

y(t) =
b0 + b1q−1

1+ a1q−1 + a2q−2
u(t)+

1
1+ d1q−1 + d2q−2

e(t)

y(t) =
b0 + b1q−1

1+ a1q−1 + a2q−2
u(t)+

1+ f1q−1 + f2q−2

1+ d1q−1 + d2q−2
e(t).

(24)

The associated true system parameters are given in Table 1
which are identifiable by applying a two-bit Lloyd–Max quantizer.
Implementing a two-bit Lloyd–Max quantizer, the values of σ 2

ϵ and
cov(e(t)ϵ(t)) can be computed off-line.

The mean square error (MSE) criterion is adopted to evaluate
the identification performance:

MSEt =
1
T

T
i=1

∥θ̂
(i)
t − θ

∗
∥
2
2, (25)

where t is the time step, T denotes the number of Monte-Carlo
runs, and θ̂ (i)t is the i-th estimate of the system parameters at the
time step t .
Fig. 2. Top: one sample trial of the ARARX model identification; bottom: one
sample trial of the Box–Jenkins model identification.

In Fig. 2, the estimated parameters of the ARARX model and
the Box–Jenkins model are plotted at different time steps by one
Monte-Carlo trial. It can be observed that the estimated parameters
fluctuate around their true values and the deviations become
smaller as the number of quantized samples increases. Fig. 3
shows the estimate of the parameters by averaging 300 Monte-
Carlo trials at each time step. The averaged estimates are close
to their true values when the time index is large, which provides
an experimental validation that the proposed identification works
well under a two-bit Lloyd–Max quantizer. In addition, we observe
that the MSE curve of the Box–Jenkins model decays slower than
that of the ARARX model. This is mainly caused by the estimation
of F(q). Since the estimation of F(q) is based on the estimated
C(q) and D(q), the associated estimation error of F(q) may be
propagated and intensified from those of C(q) and D(q).

Next, we examine the identification performance of different
quantization schemes based on the ARARX model in (24). Two
alternative quantization schemes are adopted: a uniformquantizer
with unit quantization interval and a two-bit static Lloyd–Max
quantizer, and they all use the same identification algorithmwhich
is developed in this paper. From Fig. 4, one can find that both
the uniform quantizer and the adaptive quantizer can result in
accurate estimates. For the uniform quantizer, it can be considered
as a dithered quantizer since there already exists a white noise
before quantization. However, the static Lloyd–Max quantizer
leads to a biased estimation, which is caused by the fact that the
quantization errors are temporally correlated. Moreover, Fig. 5
shows the identification performance of the adaptive Lloyd–Max
quantizers with different numbers of quantization levels, where
the convergence speed of the proposed identification algorithm
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Fig. 3. Top: averaged identification result of the ARARX model; middle: averaged
identification result of the Box–Jenkins model; bottom: MSE curves.

is much faster when more quantization levels are involved. It is
noteworthy that the MSE can better reflect the performance of the
proposed identification algorithm. The MSE values at the first few
iterationsmay not be reliable, which are caused by following facts:
(a) the initial conditions are randomly chosen; (b) the sequences of
step sizes for different sample trials are distinct; (c) the associated
recursive algorithm may not produce satisfactory results under a
small number of observation samples.

7. Conclusion

In this paper, we have dealt with the quantized identification
problems of the ARARX model and the Box–Jenkins model via
Fig. 4. MSE associated with the adaptive Lloyd–Max quantizer, static Lloyd–Max
quantizer and uniform quantizer.

Fig. 5. MSE associated with the Lloyd–Max quantizers with different numbers of
quantization levels.

jointly designing the quantizer and estimator. The designed
quantizer adaptively adjusts its quantization thresholds according
to the latest estimate of the system parameters, which aims
to provide the estimator the ‘‘innovation’’ of outputs. For the
estimator, it recursively estimates the system parameters based on
the quantized observations. Since the received observations at the
estimator are contaminated by the quantization error and colored
measurement noise, a second-order statistically equivalent system
model was constructed and identified. Simulation results show
that the proposed method works well, even under one-bit
quantized observations.

The connections between the existing adaptive quantized iden-
tification algorithms and the presented approach are discussed.
It shows that the presented algorithm is a generalized version
of quantized LMS algorithm or the recursive estimation of the
stochastic approximation type. Thus, the presented algorithm can
be applied for the identification of ARMA systemswith whitemea-
surement noises. Moreover, when the concerned system model
does not have the term involving the deterministic system input
but the colored noise term, the associated quantized identification
becomes a blind identification problem under quantized observa-
tions, which will be further investigated in our future work.
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