
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 338 (2008) 152–161

www.elsevier.com/locate/jmaa

Strong convergence theorems for nonexpansive semigroup
in Banach spaces

Yisheng Song a,∗, Sumei Xu b

a College of Mathematics and Information Science, Henan Normal University, 453007, China
b Department of Mathematics and Applied Mathematics, Anyang Normal University, PR China

Received 23 January 2007

Available online 18 May 2007

Submitted by T.D. Benavides

Abstract

Let K be a nonempty closed convex subset of a reflexive and strictly convex Banach space E with a uniformly Gâteaux differ-
entiable norm, and F = {T (t): t > 0} a nonexpansive self-mappings semigroup of K , and f :K → K a fixed contractive mapping.
The strongly convergent theorems of the following implicit and explicit viscosity iterative schemes {xn} are proved.

xn = αnf (xn) + (1 − αn)T (tn)xn,

xn+1 = αnf (xn) + (1 − αn)T (tn)xn.

And the cluster point of {xn} is the unique solution to some co-variational inequality.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let E be a Banach space and let K be a nonempty closed convex subset of E. A (one-parameter) nonexpansive
semigroup is a family F = {T (t): t > 0} of self-mappings of K such that

(i) T (0)x = x for x ∈ K;
(ii) T (t + s)x = T (t)T (s)x for t, s > 0 and x ∈ K ;

(iii) limt→0 T (t)x = x for x ∈ K ;
(iv) for each t > 0, T (t) is nonexpansive, that is,

∥∥T (t)x − T (t)y
∥∥ � ‖x − y‖, ∀x, y ∈ K.
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We shall denote by F the common fixed point set of F , that is,

F := Fix(F) = {
x ∈ K: T (t)x = x, t > 0

} =
⋂
t>0

Fix
(
T (t)

)
.

(Here Fix(T ) = {x ∈ C: T x = x} is the set of fixed points of a mapping T .)
Let T :K → K be a nonexpansive mapping (that is, ‖T x −Ty‖ � ‖x − y‖ for all x, y ∈ K). Assume that the fixed

point set Fix(T ) of T is nonempty. One classical method to study nonexpansive mappings is to use contractions to
approximate nonexpansive mappings. More precisely, for a fixed point u ∈ K , define for each 0 < t < 1, a contraction
Tt by Ttx = tu+ (1 − t)T x, x ∈ K . Let xt be the fixed point of Tt obtained by Banach contraction mapping principle.
Thus,

xt = tu + (1 − t)T xt . (1.1)

Browder [4] (Reich [9], respectively) proves that as t → 0, xt converges strongly to a fixed point of T in a Hilbert
space (uniformly smooth Banach space, respectively). Halpern [6] firstly introduced the following explicit iterative
scheme (1.2) in Hilbert space,

xn+1 = αnu + (1 − αn)T xn. (1.2)

He pointed out that the control conditions (C1) and (C2) are necessary for the convergence of the iteration scheme
(1.2) to a fixed point of T .

(C1) limn→∞ αn = 0,

(C2)
∑∞

n=1 αn = ∞.

In 1992, Wittmann [24], still in Hilbert space, obtained a strong convergence result [24, Theorem 2] for the iteration
scheme (1.2) under the control conditions (C1), (C2) and

(C3)
∑∞

n=1 |αn − αn+1| < ∞.

Shioji and Takahashi [11] extended Wittmann’s results to a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm. In 2004, for T : K → K a nonexpansive mapping with F(T ) �= ∅, and f : K → K a
fixed contractive mapping, H.K. Xu [20] proposed the following viscosity iterative process {xn}:

xn+1 = αnf (xn) + (1 − αn)T xn, (1.3)

and prove that {xn} converges to a fixed point p of T in a uniformly smooth Banach space. (Related results can be
found in [7,12–15].)

It is an interesting problem to extend above (Browder’s, Halpern’s and so on) results to the nonexpansive semigroup
case. However, only partial answers have been obtained. In [10], Shioji and Takahashi introduced the implicit iteration
(1.4) in a Hilbert space,

xn = αnu + (1 − αn)σtn(xn), n � 1, (1.4)

where {αn} is a sequence in (0,1), and {tn} is a sequence of positive real numbers divergent to ∞, and for each t > 0
and x ∈ C, σt (x) is the average given by

σt (x) = 1

t

t∫
0

T (s)x ds.

Under certain restrictions to the sequence {αn}, Shioji and Takahashi [11] prove the strong convergence of {xn} to a
member of F . (See also Xu [22].) Recently, Chen and Song [5] introduced the following implicit and explicit viscosity
iteration processes defined by (1.5) and (1.6) to nonexpansive semigroup case,

xn = αnf (xn) + (1 − αn)σtn(xn), n � 1, (1.5)

xn+1 = αnf (xn) + (1 − αn)σtn(xn), n � 1. (1.6)
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And proved that {xn} converges to a same point of F in a uniformly convex Banach space with a uniformly Gâteaux
differentiable norm.

Note however that their iterate xn at step n is constructed through the average of the semigroup over the interval
(0, t). Suzuki [16] is the first to introduce again in a Hilbert space the following implicit iteration process:

xn = αnu + (1 − αn)T (tn)xn, n � 1, (1.7)

for the nonexpansive semigroup case.
In 2002, Dominguez Benavides, López Acedo and Xu [3] in a uniformly smooth Banach space, showed that if F

satisfies an asymptotic regularity condition and αn fulfills the control conditions (C1) and (C2) and

(C4) limn→∞ αn

αn+1
= 1,

then both the implicit iteration process (1.7) and the explicit iteration process (1.8) converge to a same point of F (cf.
the discussion in [1,2]).

xn+1 = αnu + (1 − αn)T (tn)xn, n � 1. (1.8)

Recently, Xu [21] studied the strong convergence of the implicit iteration process (1.4) and (1.7) in a uniformly convex
Banach space which admits a weakly sequentially continuous duality mapping.

In this paper, under the framework of a reflexive and strictly convex Banach space with a uniformly Gâteaux
differentiable norm, we will study the convergence of the following implicit and explicit viscosity iterative schemes:

xn = αnf (xn) + (1 − αn)T (tn)xn, n � 1, (1.9)

xn+1 = αnf (xn) + (1 − αn)T (tn)xn, n � 1. (1.10)

Our work improves and generalizes some of the results obtained in the above paper. In particular, our results extend
the main results of Chen and Song [5] to a uniformly convex Banach space with a uniformly Gâteaux differentiable
norm. At the same time, the main conclusions of Dominguez Benavides, López Acedo and Xu [3], Aleyner and Censor
[1, Theorem 20], Aleyner and Reich [2, Theorem 3.1] are not only proved in more generalized Banach space, but the
control condition (C4) or (C3) for the iterative coefficient αn is removed also.

2. Preliminaries

Throughout this paper, let J denote the normalized duality mapping from E into 2E∗
given by

J (x) = {
f ∈ E∗, 〈x,f 〉 = ‖x‖‖f ‖, ‖x‖ = ‖f ‖}, ∀x ∈ E,

where E∗ denotes the dual space of E and 〈·,·〉 denotes the generalized duality pairing. In the sequel, we shall denote
the single-valued duality mapping by j . When {xn} is a sequence in E, then xn → x (respectively xn ⇀ x, xn ⇁ x)
will denote strong (respectively weak, weak∗) convergence of the sequence {xn} to x.

Recall that the norm of Banach space E is said to be Gâteaux differentiable (or E is said to be smooth), if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(∗)

exists for each x, y on the unit sphere S(E) of E. Moreover, if for each y in S(E) the limit defined by (∗) is uniformly
attained for x in S(E), we say that the norm of E is uniformly Gâteaux differentiable. The norm of E is said to
be Fréchet differentiable, if for each x ∈ S(E), the limit (∗) is attained uniformly for y ∈ S(E). The norm of E is
said to be uniformly Fréchet differentiable (or E is said to be uniformly smooth), the limit (∗) is attained uniformly
for (x, y) ∈ S(E) × S(E). A Banach space E is said to strictly convex if ‖x+y‖

2 < 1 for ‖x‖ = ‖y‖ = 1, x �= y;
uniformly convex if for all ε ∈ [0,2], ∃δε > 0 such that ‖x+y‖

2 < 1 − δε for ‖x‖ = ‖y‖ = 1 and ‖x − y‖ � ε. It is well
known that each uniformly convex Banach space E is reflexive and strictly convex [18, Theorems 4.1.6, 4.1.2], and
every uniformly smooth Banach space E is a reflexive Banach space with uniformly Gâteaux differentiable norm [18,
Theorems 4.3.7, 4.1.6] (also see [8]).
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Lemma 2.1. (See [18, Theorems 4.3.1, 4.3.2].) E is a smooth Banach space if and only if the normal duality mapping
J in E is single valued. Moreover, for x, y ∈ E,

〈
y,J (x)

〉 = lim
t→0

‖x + ty‖2 − ‖x‖2

2t
.

Now, we present the concept of uniformly asymptotically regular semigroup (also see [1–3]). Let K be a nonempty
closed convex subset of a Banach space E, F = {T (t): t > 0} a continuous operator semigroup on K . Then F is said
to be uniformly asymptotically regular (in short, u.a.r.) on K if for all h � 0 and any bounded subset C of K ,

lim
t→∞ sup

x∈C

∥∥T (h)
(
T (t)x

) − T (t)x
∥∥ = 0.

The nonexpansive semigroup {σt : t > 0} defined by the following lemma is an example of u.a.r. operator semi-
group. Other examples of u.a.r. operator semigroup can be found in [1, Examples 17, 18].

Lemma 2.2. (See [5, Lemma 2.7].) Let K be a nonempty closed convex subset of a uniformly convex Banach space E,
and D a bounded closed convex subset of K , and F = {T (t): t > 0} a nonexpansive semigroup on K such that
F := ⋂

t>0 Fix(T (t)) is nonempty. For each h > 0, set σt (x) = 1
t

∫ t

0 T (s)x ds, then

lim
t→∞ sup

x∈D

∥∥σt (x) − T (h)σt (x)
∥∥ = 0.

Example. The set {σt : t > 0} defined by Lemma 2.2 is an u.a.r. nonexpansive semigroup. In fact, it is obvious that
{σt : t > 0} is a nonexpansive semigroup. For each fixed h > 0, we have

∥∥σt (x) − σhσt (x)
∥∥ =

∥∥∥∥∥
1

h

h∫
0

(
σt (x) − T (s)σt (x)

)
ds

∥∥∥∥∥ � 1

h

h∫
0

∥∥σt (x) − T (s)σt (x)
∥∥ds.

Therefore, using Lemma 2.2,

lim
t→∞ sup

x∈D

∥∥σt (x) − σhσt (x)
∥∥ � 1

h

h∫
0

lim
t→∞ sup

x∈D

∥∥σt (x) − T (s)σt (x)
∥∥ds = 0.

Finally, we also need the following definitions and results [17,18]. Let μ be a continuous linear functional on l∞
satisfying ‖μ‖ = 1 = μ(1). Then we know that μ is a mean on N if and only if

inf{an;n ∈ N} � μ(a) � sup{an;n ∈ N}
for every a = (a1, a2, . . .) ∈ l∞. Occasionally, we shall use μn(an) instead of μ(a). A mean μ on N is called a Banach
limit if

μn(an) = μn(an+1)

for every a = (a1, a2, . . .) ∈ l∞. Using the Hahn–Banach theorem, or the Tychonoff fixed point theorem, we can prove
the existence of a Banach limit. We know that if μ is a Banach limit, then

lim inf
n→∞ an � μn(an) � lim sup

n→∞
an

for every a = (a1, a2, . . .) ∈ l∞. So, if a = (a1, a2, . . .), b = (b1, b2, . . .) ∈ l∞ and an → c (respectively, an −bn → 0),
as n → ∞, we have

μn(an) = μ(a) = c
(
respectively, μn(an) = μn(bn)

)
.

Subsequently, the following result was showed in Refs. [17, Lemma 1] and [18, Lemma 4.5.4].

Lemma 2.3. (See [17, Lemma 1].) Let K be a nonempty closed convex subset of a Banach space E with a uniformly
Gâteaux differentiable norm, and {xn} a bounded sequence of E. If z0 ∈ K, then

μn‖xn − z0‖2 = minμn‖xn − y‖2
y∈K
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if and only if

μn

〈
y − z0, J (xn − z0)

〉
� 0, ∀y ∈ K.

3. Implicit iteration scheme

In order to prove the strong convergence of the iterative process (1.9), we first apply the property of Chebyshev set
to show the following proposition.

Let (M,d) a metric space. A subset A of M is called a Chebyshev set, if for each x ∈ M , there exists an unique
element y ∈ A such that d(x, y) = d(x,A), where d(x,A) = infy∈A d(x, y).

Day–James Theorem. (See [8, Theorem 5.1.18, Corollary 5.1.19].) E is a reflexive strictly convex Banach space if
and only if every nonempty closed convex subset of E is a Chebyshev set.

Proposition 3.1. Let E be a reflexive strictly convex Banach space with a uniformly Gâteaux differentiable norm, and
K a nonempty closed convex subset of E. Suppose xn is a bounded sequence in K such that limn→∞ ‖xn −T xn‖ = 0,
an approximate fixed point of nonexpansive self-mapping T on K . Define the set

K∗ = {
x ∈ K: μn‖xn − x‖2 = inf

y∈K
μn‖xn − y‖2}.

If Fix(T ) �= ∅, then K∗ ∩ Fix(T ) �= ∅.

Proof. Set g(y) = μn‖xn−y‖2, ∀y ∈ K , then g(y) is a convex and continuous function, and g(y) → ∞ as ‖y‖ → ∞.
Using [18, Theorem 1.3.11], there exists x ∈ K such that g(x) = infy∈K g(y) by the reflexivity of E, that is, K∗ is
nonempty. Clearly, K∗ is closed convex by the convexity and continuity of g(y).

Since limn→∞ ‖xn − T xn‖ = 0, for ∀x ∈ K∗, we get that

g(T x) = μn‖xn − T x‖2 = μn‖T xn − T x‖2 � μn‖xn − x‖2 = g(x).

Hence, T x ∈ K∗. As x is arbitrary, then T (K∗) ⊂ K∗.
Let p ∈ Fix(T ). It follows from Day–James’s theorem that there exists an unique v ∈ K∗ such that

‖p − v‖ = inf
x∈K∗ ‖p − x‖.

Since p = Tp and T v ∈ K∗,

‖p − T v‖ = ‖Tp − T v‖ � ‖p − v‖.
Hence v = T v by the uniqueness of v ∈ K∗. Thus v ∈ K∗ ∩ Fix(T ). This completes the proof. �
Theorem 3.2. Let E be a real reflexive strictly convex Banach space with a uniformly Gâteaux differentiable norm,
and K a nonempty closed convex subset of E, and {T (t)} a u.a.r. nonexpansive semigroup from K into itself such
that F := Fix(F) = ⋂

t>0 Fix(T (t)) �= ∅, and f :K → K a fixed contractive mapping with contractive coefficient
β ∈ (0,1). Suppose limn→∞ tn = ∞ and αn ∈ (0,1) such that limn→∞ αn = 0. If {xn} is defined by

xn = αnf (xn) + (1 − αn)T (tn)xn, n � 1.

Then as n → ∞, {xn} converges strongly to some common fixed point p of F such that p is the unique solution in F

to the following co-variational inequality:〈
f (p) − p,J (y − p)

〉
� 0 for all y ∈ F . (3.1)

Proof. We first show that the uniqueness of solution to the variational inequality (3.1) in F . In fact, suppose p,q ∈ F

satisfy (3.1), we have that〈
f (p) − p,J (q − p)

〉
� 0, (3.2)〈

f (q) − q,J (p − q)
〉
� 0. (3.3)



Y. Song, S. Xu / J. Math. Anal. Appl. 338 (2008) 152–161 157
Combining (3.2) and (3.3), it follows that

(1 − β)‖p − q‖2 �
〈
(p − q) − (

f (p) − f (q)
)
, J (p − q)

〉
� 0.

We must have p = q and the uniqueness is proved.
Now we show the boundedness of {xn}. Indeed, for any fixed y ∈ F ,

‖xn − y‖2

= 〈
αn

(
f (xn) − y

) + (1 − αn)
(
T (tn)xn − y

)
, J (xn − y)

〉
= αn

〈
f (xn) − f (y) + f (y) − y,J (xn − y)

〉 + (1 − αn)
〈
T (tn)xn − T (tn)y, J (xn − y)

〉
� αn

∥∥f (xn) − f (y)
∥∥∥∥J (xn − y)

∥∥ + αn

〈
f (y) − y,J (xn − y)

〉 + (1 − αn)
∥∥T (tn)xn − T (tn)y

∥∥∥∥J (xn − y)
∥∥

�
(
1 − (1 − β)αn

)‖xn − y‖2 + αn

〈
f (y) − y,J (xn − y)

〉
.

Therefore,

‖xn − y‖2 � 1

1 − β

〈
f (y) − y,J (xn − y)

〉
� 1

1 − β

∥∥f (y) − y
∥∥‖xn − y‖. (3.4)

Furthermore,

‖xn − y‖ � 1

1 − β

∥∥f (y) − y
∥∥.

Thus {xn} is bounded, and so are {T (tn)xn} and {f (xn)}. This implies that

lim
n→∞

∥∥xn − T (tn)xn

∥∥ = lim
n→∞αn

∥∥T (tn)xn − f (xn)
∥∥ = 0.

Since {T (t)} is u.a.r. nonexpansive semigroup and limn→∞ tn = ∞, then for all h > 0,

lim
n→∞

∥∥T (h)
(
T (tn)xn

) − T (tn)xn

∥∥ � lim
n→∞ sup

x∈C

∥∥T (h)
(
T (tn)x

) − T (tn)x
∥∥ = 0,

where C is any bounded subset of K containing {xn}. Hence,∥∥xn − T (h)xn

∥∥ �
∥∥xn − T (tn)xn

∥∥ + ∥∥T (tn)xn − T (h)
(
T (tn)xn

)∥∥ + ∥∥T (h)
(
T (tn)xn

) − T (h)xn

∥∥
� 2

∥∥xn − T (tn)xn

∥∥ + ∥∥T (h)
(
T (tn)xn

) − T (tn)xn

∥∥ → 0.

That is, for all h > 0,

lim
n→∞

∥∥xn − T (h)xn

∥∥ = 0. (3.5)

We claim that the set {xn} is sequentially compact. Indeed, define the set

K∗ =
{
x ∈ K: μn‖xn − x‖ = inf

y∈K
μn‖xn − y‖

}
.

By Proposition 3.1, we can found p ∈ K∗ such that p = T (h)p. Since h is arbitrary, it follows that p ∈ F. Using
Lemma 2.3 together with p ∈ K∗, we get that

μn

〈
y − p,J (xn − p)

〉
� 0, ∀y ∈ K.

From (3.4), we have

μn‖xn − p‖2 � 1

1 − β
μn

〈
f (p) − p,J (xn − p)

〉
� 0,

i.e.

μn‖xn − p‖ = 0.

Hence, there exists a subsequence {xnk
} of {xn} which strongly converges to p ∈ F as k → ∞.

Next we show that p is a solution in F to the variational inequality (3.1). In fact, for any fixed y ∈ F , there exists
a constant M > 0 such that ‖xn − y‖ � M , then
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‖xn − y‖2 = αn

〈
f (xn) − f (p) + p − xn, J (xn − y)

〉 + αn

〈
f (v) − p,J (xn − y)

〉 + αn

〈
xn − y,J (xn − y)

〉
+ (1 − αn)

〈
T (tn)xn − T (tn)y, J (xn − y)

〉
� (1 + β)αnM‖xn − v‖ + αn

〈
f (p) − p,J (xn − y)

〉 + ‖xn − y‖2.

Therefore,〈
f (p) − p,J (y − xn)

〉
� (1 + β)M‖xn − p‖. (3.6)

Since the duality mapping J is single-valued and norm topology to weak∗ topology uniformly continuous on any
bounded subset of a Banach space E with a uniformly Gâteaux differentiable norm, we have〈

f (p) − p,J (y − xnk
)
〉 → 〈

f (p) − p,J (y − v)
〉
.

Taking limit as nk → ∞ in two sides of (3.6), we get〈
f (p) − p,J (y − p)

〉
� 0 ∀y ∈ F.

This is, p ∈ F is a solution of the variational inequality (3.1). From this we conclude that p ∈ F is the unique solution
of the variational inequality (3.1). In a similar way it can be show that each cluster point of the sequence {xn} is equal
to p. Therefore, the entire sequence {xn} converges to p and the proof is complete. �
Corollary 3.3. Let E be an uniformly convex Banach space with a uniformly Gâteaux differentiable norm, and K ,
f , tn, αn be as Theorem 3.2. Assumed {T (t)} a nonexpansive semigroup from K into itself such that F := Fix(F) =⋂

t>0 Fix(T (t)) �= ∅, and {xn} given by

xn = αnf (xn) + (1 − αn)
1

tn

tn∫
0

T (s)x ds.

Then as n → ∞, {xn} converges strongly to some common fixed point p of F such that p is the unique solution in F

to the co-variational inequality (3.1).

Remark 3.4. The conclusion of Theorem 3.2 still holds if E is assumed to have the fixed point property for nonexpan-
sive self-mappings instead of to be a strictly convex space. In fact, the same proof works (remains valid) disregarding
of Proposition 3.1. In particular, when E is an uniformly smooth Banach space and therefore, when f (x) ≡ u for all
x ∈ K , our result contains Theorem 3.1 in [3].

4. Explicit iterative scheme

In order to prove our main result we will need the following numerical lemma (see, e.g., [10–14,19–21,23]).

Lemma 4.1. (See [23, Lemma 2.5].) Let {an} be a sequence of nonnegative real numbers satisfying the property

an+1 � (1 − γn)an + βn, n � 0,

where {γn} ⊂ (0,1) and {βn} is real number sequence such that

(i)
∑∞

n=0 γn = ∞;
(ii) lim supn→∞

βn

γn
� 0.

Then {an} converges to zero, as n → ∞.

Theorem 4.2. Let E be a real reflexive strictly convex Banach space with a uniformly Gâteaux differentiable norm,
and K a nonempty closed convex subset of E, and {T (t)} a u.a.r. nonexpansive semigroup from K into itself such
that F := Fix(F) �= ∅, and f :K → K a fixed contractive mapping with contractive coefficient β ∈ (0,1). Suppose
limn→∞ tn = ∞ and αn ∈ (0,1) such that limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. If {xn} is given by the following

equation
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xn+1 = αnf (xn) + (1 − αn)T (tn)xn, n � 1. (4.1)

Then as n → ∞, {xn} converges strongly to some common fixed point p of F such that p is the unique solution in F

to the co-variational inequality (3.1).

Proof. Firstly, we show that {xn} is bounded. Take u ∈ F . It follows that

‖xn+1 − u‖ � (1 − αn)
∥∥T (tn)xn − u

∥∥ + αn

∥∥f (xn) − u
∥∥

� (1 − αn)‖xn − u‖ + αn

(
β‖xn − u‖ + ∥∥f (u) − u

∥∥)
= (

1 − (1 − β)αn

)‖xn − u‖ + αn

∥∥f (u) − u
∥∥

� max

{
‖xn − u‖, 1

1 − β

∥∥f (u) − u
∥∥}

...

� max

{
‖x1 − u‖, 1

1 − β

∥∥f (u) − u
∥∥}

.

Thus {xn} is bounded, which leads to the boundedness of {f (xn)} and {T (tn)xn}. Using the assumption that
limn→∞ αn = 0, we get that

∥∥xn+1 − T (tn)xn

∥∥ = αn

∥∥f (xn) − T (tn)xn

∥∥. (4.2)

Since {T (t)} is u.a.r. nonexpansive semigroup, then for h > 0,

lim
n→∞

∥∥T (h)
(
T (tn)xn

) − T (tn)xn

∥∥ � lim
n→∞ sup

x∈C

∥∥T (h)
(
T (tn)x

) − T (tn)x
∥∥ = 0, (4.3)

where C is any bounded subset of K containing {xn}.
Hence, for all h > 0,

∥∥xn+1 − T (h)xn+1
∥∥ �

∥∥xn+1 − T (tn)xn

∥∥ + ∥∥T (tn)xn − T (h)
(
T (tn)xn

)∥∥ + ∥∥T (h)
(
T (tn)xn

) − T (h)xn+1
∥∥

� 2
∥∥xn+1 − T (tn)xn

∥∥ + ∥∥T (tn)xn − T (h)
(
T (tn)xn

)∥∥.

Combining (4.2) and (4.3), we get that for all h > 0,

lim
n→∞

∥∥xn+1 − T (h)xn+1
∥∥ = 0. (4.4)

From Theorem 3.2, there exists the unique solution p ∈ F to the variational inequality (3.1). Since p = T (t)p, for all
t > 0, we have

‖xn+1 − p‖2

= αn

〈
f (xn) − p,J (xn+1 − p)

〉 + (1 − αn)
〈
T (tn)xn − p,J (xn+1 − p)

〉
� αn

〈
f (p) − p,J (xn+1 − p)

〉 + αn

〈
f (xn) − f (p), J (xn+1 − p)

〉 + (1 − αn)
∥∥T (tn)xn − p

∥∥‖xn+1 − p‖
� αn

〈
f (p) − p,J (xn+1 − p)

〉 + αn

∥∥f (xn) − f (p)
∥∥‖xn+1 − p‖ + (1 − αn)‖xn − p‖‖xn+1 − p‖

� αn

〈
f (p) − p,J (xn+1 − p)

〉 + αn

β2‖xn − p‖2 + ‖xn+1 − p‖2

2
+ (1 − αn)

‖xn − p‖2 + ‖xn+1 − p‖2

2
.

And thus,

‖xn+1 − p‖2 �
(
1 − αn

(
1 − β2))‖xn − p‖2 + 2αn

〈
f (p) − p,J (xn+1 − p)

〉
,

that is

‖xn+1 − p‖2 = (1 − γn)‖xn − p‖2 + γnλn, (4.5)

where γn = αn(1 − β2) and λn = 2
2 〈f (p) − p,J (xn+1 − p)〉.
1−β
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In order to prove that xn → p as n → ∞, we apply Lemma 4.1 to (4.5). Indeed, since by assumption
∑∞

n=1 γn = ∞,
we only need to show that lim supn→∞ λn � 0 to conclude limn ‖xn − p‖ = 0. We claim that

lim sup
n→∞

〈
f (p) − p,J (xn+1 − p)

〉
� 0. (4.6)

Let zm = αmf (zm) + (1 − αm)T (tm)zm, where tm and αm satisfies the condition of Theorem 3.2. Then it follows
from Theorem 3.2 that p = limm→∞ zm.

Since

‖zm − xn+1‖2 = (1 − αm)
〈
T (tm)zm − xn+1, J (zm − xn+1)

〉 + αm

〈
f (zm) − xn+1, J (zm − xn+1)

〉
= (1 − αm)

(〈
T (tm)zm − T (tm)xn+1, J (zm − xn+1)

〉 + 〈
T (tm)xn+1 − xn+1, J (zm − xn+1)

〉)
+ αm

〈
f (zm) − zm − (

f (p) − p
)
, J (zm − xn+1)

〉 + αm

〈
f (p) − p,J (zm − xn+1)

〉
+ αm

〈
zm − xn+1, J (zm − xn+1)

〉
� ‖xn+1 − zm‖2 + ∥∥T (tm)xn+1 − xn+1

∥∥M + αm

〈
f (p) − p,J (zm − xn+1)

〉
+ M

(∥∥f (zm) − f (p)
∥∥ + ‖zm − p‖),

and hence

〈
f (p) − p,J (xn+1 − zm)

〉
� ‖xn+1 − T (tm)xn+1‖

αm

M + (1 + β)M‖zm − p‖, (4.7)

where M is a constant such that M � ‖xn+1 − zm‖. Therefore, taking upper limit as n → ∞ firstly, and then as
m → ∞ in (4.7), (using (4.4))

lim sup
m→∞

lim sup
n→∞

〈
f (p) − p,J (xn+1 − zm)

〉
� 0. (4.8)

On the other hand, since limm→∞ zm = p due to the fact the duality map J is single-valued and norm topology to
weak* topology uniformly continuous on bounded sets of E, we obtain limm→∞(xn+1 − zm) = xn+1 − p, therefore〈

f (p) − p,J (xn+1 − zm)
〉 → 〈

f (p) − p,J (xn+1 − p)
〉

uniformly.

Thus given ε > 0, there exists N � 1 such that if m > N , for all n we have

〈
f (p) − p,J (xn+1 − p)

〉
<

〈
f (p) − p,J (xn+1 − zm)

〉 + ε. (4.9)

Hence, by taking upper limit as n → ∞ firstly, and then as m → ∞ in two sides of (4.9),

lim sup
n→∞

〈
f (p) − p,J (xn+1 − p)

〉
� lim sup

m→∞
lim sup
n→∞

〈
f (p) − p,J (xn+1 − zm)

〉 + ε � ε.

Since ε is arbitrary, (4.6) is proved. Finally, we apply Lemma 4.1 to conclude that xn → p. �
Similar to the discussion of Theorem 3.3, the following result is clearly gained.

Corollary 4.3. (See [5, Theorem 3.2].) Let E be an uniformly convex Banach space with an uniformly Gâteaux
differentiable norm, and K , f , tn, αn be as Theorem 4.2. Assumed {T (t)} a nonexpansive semigroup from K into
itself such that F := Fix(F) = ⋂

t>0 Fix(T (t)) �= ∅, and {xn} given by

xn+1 = αnf (xn) + (1 − αn)
1

tn

tn∫
0

T (s)x ds.

Then as n → ∞, {xn} converges strongly to some common fixed point p of F such that p is the unique solution in F

to the co-variational inequality (3.1).
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Remark 4.4. (i) The conclusion of Theorem 4.2 still holds if E is an uniformly smooth Banach space and therefore,
when f (x) ≡ u for all x ∈ K , our result contains [3, Theorem 3.2] and [1, Theorem 20], and the control conditions
limn→∞ αn

αn+1
= 1 in [3, Theorem 3.2] and

∑∞
n=0 |αn − αn+1| < ∞,

∑∞
n=0 |rn − rn+1| < ∞ in [1, Theorem 20] can be

respectively removed.
(ii) The method of proof in Theorem 4.2 carries over to a reflexive Banach space with a uniformly Gâteaux

differentiable norm which has the fixed point property for nonexpansive self-mappings. Therefore, the condition∑∞
n=0 |αn − αn+1| < ∞ in [3, Theorem 3.1] (f (x) ≡ u) can be dropped.

Acknowledgments

The authors would like to thank Prof. T. Dominguez Benavides and the anonymous referee for his valuable suggestions which helps to improve
this manuscript.

References

[1] A. Aleyner, Y. Censor, Best approximation to common fixed points of a semigroup of nonexpansive operators, J. Nonlinear Convex Anal. 6 (1)
(2005) 137–151.

[2] A. Aleyner, S. Reich, An explicit construction of sunny nonexpansive retractions in Banach spaces, Fixed Point Theory Appl. 2005 (3) (2005)
295–305.

[3] T.D. Benavides, G.L. Acedo, H.K. Xu, Construction of sunny nonexpansive retractions in Banach spaces, Bull. Austral. Math. Soc. 66 (1)
(2002) 9–16.

[4] F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. USA 53 (1965) 1272–1276.
[5] R. Chen, Y. Song, Convergence to common fixed point of nonexpansive semigroup, J. Comput. Appl. Math. 200 (2007) 566–575.
[6] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 957–961.
[7] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000) 46–55.
[8] Robert E. Megginson, An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998.
[9] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 287–292.

[10] N. Shioji, W. Takahashi, Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 34 (1998)
87–99.

[11] N. Shioji, W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math.
Soc. 125 (1997) 3641–3645.

[12] Y. Song, R. Chen, Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings, Appl. Math. Comput. 180
(2006) 275–287.

[13] Y. Song, R. Chen, Viscosity approximation methods for nonexpansive nonself-mappings, J. Math. Anal. Appl. 321 (2006) 316–326.
[14] Y. Song, R. Chen, Iterative approximation to common fixed points of nonexpansive mapping sequences in reflexive Banach spaces, Nonlinear

Anal. 66 (2007) 591–603.
[15] Y. Song, R. Chen, H. Zhou, Viscosity approximation methods for nonexpansive mapping sequences in Banach spaces, Nonlinear Anal. 66

(2007) 1016–1024.
[16] T. Suzuki, On strong convergence to common fixed points of nonexpansive semigroup in Hilbert spaces, Proc. Amer. Math. Soc. 131 (2002)

2133–2136.
[17] W. Takahashi, Y. Ueda, On Reich’s strong convergence for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984) 546–553.
[18] W. Takahashi, Nonlinear Functional Analysis—Fixed Point Theory and Its Applications, Yokohama Publishers Inc., Yokohama, 2000

(in Japanese).
[19] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003) 659–678.
[20] H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279–291.
[21] H.K. Xu, A strong convergence theorem for contraction semigroup in Banach spaces, Bull. Austral. Math. Soc. 72 (2005) 371–379.
[22] H.K. Xu, Approximations to fixed points of contraction semigroup in Hilbert spaces, Numer. Funct. Anal. Optim. 19 (1998) 157–163.
[23] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002) 240–256.
[24] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 59 (1992) 486–491.


