
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 341 (2008) 445–456

www.elsevier.com/locate/jmaa

Analytical blowup solutions to the 2-dimensional isothermal
Euler–Poisson equations of gaseous stars

Yuen Manwai

Department of Mathematics and Statistics, Hang Seng School of Commerce, Hang Shin Link, Siu Lek Yuen, Shatin, New Territories, Hong Kong

Received 27 February 2007

Available online 22 October 2007

Submitted by Goong Chen

Abstract

We study the Euler–Poisson equations of describing the evolution of the gaseous star in astrophysics. Firstly, we construct
a family of analytical blowup solutions for the isothermal case in R2. Furthermore the blowup rate of the above solutions is also
studied and some remarks about the applicability of such solutions to the Navier–Stokes–Poisson equations and the drift-diffusion
model in semiconductors are included. Finally, for the isothermal case (γ = 1), the result of Makino and Perthame for the tame
solutions is extended to show that the life span of such solutions must be finite if the initial data is with compact support.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Blowup solutions; Euler–Poisson equations; 2-Dimensional; Isothermal; Blowup rates

1. Introduction

The evolution of a self-gravitating fluid such as gaseous stars can be formulated by the Euler–Poisson equation of
the following form:

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u) + ∇P = −ρ∇Φ,

St + u · ∇S = 0,

�Φ(t, x) = α(N)gρ, (1)

where α(N) is a constant related to the unit ball in RN : α(1) = 2; α(2) = 2π . For simplicity, we take the constant
term g = 1. For N � 3,

α(N) = N(N − 2)V (N) = N(N − 2)
πN/2

�(N/2 + 1)
,

where V (N) is the volume of the unit ball in RN and � is a Gamma function. As usual, ρ = ρ(t, x), u = u(t, x) ∈ RN

and S(t, x) are the density, the velocity and the entropy respectively. P = P(ρ) is the pressure. In the above system,
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the self-gravitational potential field Φ = Φ(t, x) is determined by the density ρ through the Poisson equation. Equa-
tions (1)1 and (1)2 are the compressible Euler equation with forcing term. Equation (1)3 is the Poisson equation
through which the gravitational potential is determined by the density distribution of the gas itself. Thus, we called
the system (1) the Euler–Poisson equations. Here, the viscosity term does not appear, that is, the viscous effect is ne-
glected. In this case, the equations can be viewed as a prefect gas model. For N = 3, (1) is a classical (non-relativistic)
description of a galaxy, in astrophysics. See [2,9] for a detail about the system.

If we take S(t, x) = lnK , for some fixed K > 0, we have a γ -law on the pressure P(ρ), i.e.

P(ρ) = Kργ .= ργ

γ
, (2)

which is a commonly the hypothesis. The constant γ = cP /cv � 1, where cP , cv are the specific heats per unit
mass under constant pressure and constant volume respectively, is the ratio of the specific heats, that is, the adiabatic
exponent in (2). In particular, the fluid is called isothermal if γ = 1. It can be used for constructing models with non-
degenerate isothermal cores, which have a role in connection with the so-called Schonberg–Chandrasekhar limit [8].

For the physical dimension N = 3, we are interested in the hydrostatic equilibrium specified by u = 0, S = lnK .
According to [2], the ratio between the core density ρ(0) and the mean density ρ̄ for 6/5 < γ < 2 is given by

ρ̄

ρ(0)
=

(−3

z
ẏ(z)

)
z=z0

where y is the solution of the Lane–Emden equation with n = 1/(γ − 1),

ÿ + 2

z
ẏ + yn = 0, y(0) = α > 0, ẏ(0) = 0, n = 1

γ − 1
,

and z0 is the first zero of y(z0) = 0. We can solve the Lane–Emden equation analytically for

yanal(z)
.=

⎧⎪⎪⎨
⎪⎪⎩

1 − 1
6z2, n = 0,

sin z
z

, n = 1,

1√
1+z2/3

, n = 5,

and for the other values, only numerical values can be obtained. It can be shown that for n < 5, the radius of polytropic
models is finite; for n � 5, the radius is infinite.

Gamblin [6] and Bezard [1] obtained the existence results about the explicitly stationary solution (u = 0) for
γ = 6/5:

ρ =
(

3KA2

2π

)5/4(
1 + A2r2)−5/2

. (3)

The Poisson equation (1)3 can be solved as

Φ(t, x) =
∫

RN

G(x − y)ρ(t, y) dy,

where G is the Green’s function for the Poisson equation in the N -dimensional spaces defined by

G(x)
.=

⎧⎪⎨
⎪⎩

|x|, N = 1,

log|x|, N = 2,
−1

|x|N−2 , N � 3.

In the following, we always seek solutions in spherical symmetry. Thus, the Poisson equation (1)3 is transformed to

rN−1Φrr(t, x) + (N − 1)rN−2Φr = α(N)ρrN−1,

Φr = α(N)

rN−1

r∫
0

ρ(t, s)sN−1 ds.
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Definition 1 (Blowup). We say a solution blows up if one of the following conditions is satisfied:

(1) The solution becomes infinitely large at some point x and some finite time T ;
(2) The derivative of the solution becomes infinitely large at some point x and some finite time T .

In this paper, we concern about blowup solutions for the N -dimensional isothermal Euler–Poisson equations, which
may describe the phenomenon called the core collapsing in physics. And our aim is to construct a family of such
blowup solutions to it.

Historically in astrophysics, Goldreich and Weber [7] constructed the analytical blowup solution (collapsing) solu-
tion of the 3-dimensional Euler–Poisson equation for γ = 4/3 for the non-rotating gas spheres. After that, Makino [9]
obtained the rigorously mathematical proof of the existence of such kind of blowup solutions. And in [5], we find the
extension of the above blowup solutions to the case N � 3 and γ = (2N − 2)/N . In [11], the solutions with a from is
written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(t, r) =
{

1
a(t)N

y( r
a(t)

)N/(N−2), for r < a(t)Zμ,

0, for a(t)Zμ � r,
u(t, r) = ȧ(t)

a(t)
r, S(t, r) = LnK,

ä(t) = − λ

a(t)N−1
, a(0) = a0 > 0, ȧ(0) = a1,

ÿ(z) + N − 1

z
ẏ(z) + N(N − 2)2V (N)

(2N − 2)K
y(z)N/(N−2) = μ, y(0) = α > 0, ẏ(0) = 0,

(4)

where μ = [N(N − 2)λ]/(2N − 2)K and the finite Zμ is the first zero of y(z). And no other analytical blowup
solution for the Euler–Poisson equation has been obtained. Through there are a lot of numerical simulation results on
the Euler–Poisson equation.

In Section 2, we obtain the blowup solutions for the Euler–Poisson equation in spherical symmetry in the 2-
dimensional case,

ρt + uρr + ρur + 1

r
ρu = 0,

ρ(ut + uur) + Kρr = −2πρ

r

r∫
0

ρ(t, s)s ds, (5)

in the form of the following theorem.

Theorem 2. For the 2-dimensional Euler–Poisson equations in radial symmetry (5), there exists a family of solutions,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ(t, r) = 1

a(t)2
ey(r/a(t)), u(t, r) = ȧ(t)

a(t)
r,

ä(t) = − λ

a(t)
, a(0) = a0 > 0, ȧ(0) = a1,

ÿ(x) + 1

x
ẏ(x) + α(N)

K
ey(x) = μ, y(0) = α, ẏ(0) = 0,

(6)

where K > 0, μ = 2λ/K with a sufficiently small λ and α are constants.

(1) When λ > 0, the solutions blow up in a finite time T ;
(2) When λ = 0, if a1 < 0, the solutions blow up at t = −a0/a1.

The blowup rate of the solution (6) is discussed in Section 3. Actually, we have

Theorem 3. The blowup rate of the solution (6) is

lim
t→T

ρ(t,0)(T − t)η � O(1),

with η < 2.
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In the last section, we can rewrite (1) in scalar form,

∂ρ

∂t
+

N∑
k=1

uk

∂ρ

∂xk

+ ρ

N∑
k=1

∂uk

∂xk

= 0,

ρ

(
∂ui

∂t
+

N∑
k=1

uk

∂ui

∂xk

)
+ ∂P

∂xi

+ ρ
∂Φ

∂xi

= 0, for i = 1,2, . . . ,N. (7)

The tame solution is introduced in here.

Definition 4. A solution (ρ,u) for (7) is called “tame” solution if

(1) (ρ,u) ∈ C1([0, T ) × RN), ρ � 0, ρ(t) has compact support, and
(2) ρ(γ−1)/2 ∈ C1([0, T ) × RN), u ∈ C([0, T );B0), and

∂ui

∂t
+

N∑
k=1

uk

∂ui

∂xk

+ ∂Φ

∂xi

= 0, for i = 1,2, . . . ,N, (8)

holds on the exterior of the support of ρ.

If only the condition (1) is assumed, the solution is called “classical.” For γ > 1, under the transformation

w = 2
√

Kγ

γ − 1
ρ(γ−1)/2,

Makino and Perthame [10] showed that the life span of tame solution of the Euler–Poisson equation in spherical
symmetry is finite. As we are interested in non-global existence for the isothermal case (γ = 1) in 2 dimension, i.e.

ρt + uρr + ρur + 1

r
ρu = 0,

ρ(ut + uur) + Kρr = −2πρ

r

r∫
0

ρ(t, s)s ds, (9)

the result of Makino and Perthame [10] for the tame solutions is extended as the following theorem.

Theorem 5. Let (ρ(t), u(t)) be a radially symmetric tame solution of (9) on 0 � t < T . If the support of (ρ(0), u(0))

is compact and ρ(0) is not identically equal to zero, then T must be finite.

2. Separable blowup solutions

In this section, before presenting the proof of Theorem 2, we prepare some lemmas. First, we obtain a general class
of solutions for the continuity equation of mass in radial symmetry (5)1.

Lemma 6. For the equation of conservation of mass in radial symmetry

ρt + uρr + ρur + 1

r
ρu = 0, (10)

there exist solutions,

ρ(t, r) = f (r/a(t))

a(t)2
, u(t, r) = ȧ(t)

a(t)
r, (11)

with the form with f � 0 ∈ C1 and a(t) > 0 ∈ C1.
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Proof. We just plug (11) into (10). Then

ρt + uρr + ρur + 1

r
ρu = −2ȧ(t)f (r/a(t))

a(t)3
− ȧ(t)rḟ (r/a(t))

a(t)4
+ ȧ(t)r

a(t)

ḟ (r/a(t))

a(t)3
+ f (r/a(t))

a(t)2

ȧ(t)

a(t)

+ 1

r

f (r/a(t))

a(t)2

ȧ(t)

a(t)
r

= 0.

The proof is completed. �
Secondly, we obtain an estimate to the equation,

ä(t) = − λ

a(t)
, a(0) = a0 > 0, ȧ(0) = a1. (12)

Lemma 7. For the Emden equation (12), we have:

(1) If λ > 0, there exists a finite time T− < +∞ such that a(T−) = 0;
(2) If λ = 0, it holds that for any t � 0,

a(t) = a0 + a1t.

Proof. (1) By integrating (12), we have

0 � 1

2
ȧ(t)2 = −λ lna(t) + θ (13)

where θ = λ lna0 + 1
2a2

1 .

From (13), we get

a(t) � eθ/λ.

If the statement (1) is not true, we have

0 < a(t) � eθ/λ, for all t � 0.

But since

ä(t) = − λ

a(t)
� −λ

eθ/λ
,

we integrate this twice to deduce

a(t) �
t∫

0

τ∫
0

−λ

eθ/λ
ds dτ + C1t + C0 = −λt2

2eθ/λ
+ C1t + C0.

By taking t large enough, we get

a(t) < 0.

As a contradiction is met, the statement (1) is true. It is trivial to verify (2). �
Remark 8. The modified systems of the above Emden equation may be referred more detailedly in [2,5,11].

Lemma 9. There exists a sufficiently small x0 > 0, such that the equation{
ÿ(x) + 1

x
ẏ(x) + σey(x) = μ,

y(0) = α, ẏ(0) = 0,

(14)

where σ > 0, μ, and α are constants, has a solution y = y(x,μ) ∈ C2[0, x0].
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Proof. The lemma can be proved by the fixed point theorem. Multiply (14) by x, to give

d

dx

(
xẏ(x)

) = x
(
μ − σey(x)

)
.

Notice ẏ(0) = 0, we have

ẏ(x) = 1

x

x∫
0

s
(
μ − σey(s)

)
ds.

By using y(0) = α, (14) is reduced to

ẏ(x) = 1

x

x∫
0

s
(
μ − σey(s)

)
ds, y(0) = α.

Set

f
(
x, y(x)

) = 1

x

x∫
0

s
(
μ − σey(s)

)
ds.

Then for any x0 > 0, we get f ∈ C1[0, x0], and for any y1, y2 ∈ C2[0, x0], we have

∣∣f (
x, y1(x)

) − f
(
x, y2(x)

)∣∣ = σ |∫ x

0 s(ey2(s) − ey1(s)) ds|
x

.

As ey is a C1 function of y, we can show that the function ey , is Lipschitz-continuous. And we get

∣∣f (
x, y1(x)

) − f (x, y2(x)
∣∣ = O(1)

∫ x

0 s|y2(s) − y1(s)|ds

x
� O(1)x0 sup

0�x�x0

∣∣y1(s) − y2(s)
∣∣,

where τ ∈ [0, x] ⊆ [0, x0]. Let

Ty(x) = α +
x∫

0

f
(
s, y(s)

)
ds.

We have Ty ∈ C[0, x0] and

∣∣Ty1(x) − Ty2(x)
∣∣ =

∣∣∣∣∣
x∫

0

f
(
s, y1(s)

)
ds −

x∫
0

f
(
s, y2(s)

)
ds

∣∣∣∣∣ � O(1)x0 sup
0�x�x0

∣∣y(x)1 − y(x)2
∣∣.

By choosing x0 > 0 to be a sufficiently small number, such that O(1)x0 < 1, this shows that the mapping
T :C[0,X0] → C[0, x0], is a contraction with the sup-norm. By the fixed point theorem, there exists a unique
y(x) ∈ C[0, x0], such that Ty(x) = y(x). The proof is completed. �
Lemma 10. The equation,{

ÿ(x) + 1

x
ẏ(x) + σey(x) = 0,

y(0) = α, ẏ(0) = 0,
(15)

where σ > 0 and α are constants, has a solution in [0, +∞) and limx→+∞ y(x) = −∞.

Proof. By integrating (15), we have

ẏ(x) = −σ

x

x∫
sey(s) ds � 0. (16)
0
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Thus, for 0 < x < x0, y(x) has a uniform lower upper bound

y(x) � y(0) = α.

As we obtained he local existence in Lemma 9, there are two possibilities:

(1) y(x) only exists in some finite interval [0, x0]:
(1a) limx→x0− y(x) = −∞;
(1b) y(x) has an uniformly lower bound, i.e. y(x) � α0 for some constant α0.

(2) y(x) exists in [0, +∞):
(2a) limx→+∞ y(x) = −∞;
(2b) y(x) has an uniformly lower bound, i.e. y(x) � α for some constant α0.

We claim that possibility (1) does not exist. We need to reject (1b) first: If the statement (1b) is true, (16) becomes

−σxeα = −σ

x

x∫
0

xeα ds � ẏ(x). (17)

Thus, ẏ(x) is bounded in [0, x0]. Therefore, we can use the fixed point theorem again to obtain a large domain of
existence, such that [0, x0 + δ] for some positive number δ. There is a contradiction. Therefore, (1b) is rejected.

Next, we do not accept (1a) because of the following reason: It is impossible that limx→x0− y(x) = −∞, as
from (17), ẏ(x) has a lower bound in [0, x0]:

−σx0e
α � ẏ(x). (18)

Thus, (18) becomes

y(x0) = y(0) +
x0∫

0

ẏ(x) dx � α −
x0∫

0

σx0e
α dx = α − σx2

0eα.

Since y(x) is bounded below in [0, x0], it contracts the statement (1a), such that limx→x0− y(x) = −∞. So, we can
exclude the possibility (1).

We claim that the possibility (2b) does not exist. It is because

ẏ(x) = −σ

x

x∫
0

sey(s) ds � −σ

x

x∫
0

eα0s ds = −σea0x

2
.

Then, we have

y(x) � α − σea0

4
x2. (19)

By letting x → ∞, (19) turns out to be

y(x) = −∞.

Since a contradiction is established, we exclude the possibility (2b). Thus, Eq. (15) exists in [0, +∞) and
limx→+∞ y(x) = −∞. This completes the proof. �

Now transferring (14) to the first-order system,⎧⎪⎨
⎪⎩

dy

dx
= ẏ,

dẏ

dx
= − 1

x
ẏ − σey + μ,

we consider the system along the solution curve y = y(x,0), ẏ = ẏ(x,0), 0 < x0 � x < +∞. Since the right-hand
side of this system is continuously differentiable in x, y, ẏ and μ. We apply the comparison theorem (Theorem 7.4)
in [3], to obtain the following lemma.
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Lemma 11. For a sufficiently small ε such that |μ| < ε, the equation,{
ÿ(x) + 1

x
ẏ(x) + σey(x) = μ,

y(0) = α, ẏ(0) = 0,

exists in [0, ∞), and limx→+∞ y(x) = −∞.

Now, we give the proof of Theorem 2.

Proof of Theorem 2. From Lemma 11, we easily get that (6) satisfy (5)1. For the momentum equation (5)2, we get

ρ(ut + uur) + Kρr + 2πρ

r

r∫
0

ρ(t, s)s ds = ρ

a(t)

[
ä(t)r + Kẏ

(
r

a(t)

)
+ 2π

ra(t)

r∫
0

ey(s/a(t))s ds

]

= ρ

a(t)

[
− λr

a(t)
+ Kẏ

(
r

a(t)

)
+ 2π

( r
a(t)

)

r/a(t)∫
0

ey(s)s ds

]

= ρ

a(t)
Q

(
r

a(t)

)
.

Here, we use the property of a(t):

ä(t) = − λ

a(t)
,

and denote

Q

(
r

a(t)

)
= Q(x) = −λx + Kẏ(x) + 2π

x

x∫
0

ey(s)s ds.

Differentiate Q(x) with respect to x,

Q̇(x) = −λ + Kÿ(x) + 2πey(x) − 2π

x

x∫
0

ey(s)s ds

= −λ + K

(
− 1

x
ẏ(x) + μ

)
− 2π

x2

x∫
0

ey(s)s ds

= − 1

x

(
λx + Kẏ(x) − Kμx + 2π

x

x∫
0

ey(s)s ds

)

= − 1

x
Q(x).

The above result is due to the fact that we choose the following ordinary differential equation:{
ÿ(x) + 1

x
ẏ(x) + 2π

K
ey(x) = μ, μ = 2λ

K
,

y(0) = α, ẏ(0) = 0.

With Q(0) = 0, this implies that Q(x) = 0. By using Lemma 7 about a(t) and Lemma 10 about y(x), we have shown
that the family of the solutions blows up in finite time T under the prescribed conditions of Theorem 2. This completes
the proof. �



M.W. Yuen / J. Math. Anal. Appl. 341 (2008) 445–456 453
Remark 12. Besides, the above solution requiring y(0) > 0 is not necessary for (6) in contrast to (4) in [5,9]. And the
mass of the above solution is

M =
∫
R2

ρ(t, s) ds =
+∞∫
0

2π

a(0)2
ey(s/a(0))s ds = 2π

+∞∫
0

ey(s)s ds,

where η(N) is the measure of a unit ball. Thus the mass of the solution (6) depends on the initial data y(0). And it
is not easy to determine if the mass is finite or infinite with different datum. It is different for the finite mass of the
family of solutions (4) for γ = 4/3 and N = 3 which is independent of y(0) in [4].

Remark 13. Now, we consider the stationary solutions of (1), in spherical symmetry, i.e.

Pr = −ρΦr. (20)

For γ = 1, (20) becomes

ρ = e−Φ/K+C,

where C is a constant.
For our convenience, C = 0 is chosen

ρ = e−Φ/K.

From the Poisson equation (1)3, we obtain

�Φ = α(N)e−Φ/K. (21)

As the solution is in radially symmetric, (21) becomes

Φrr + 1

r
Φr − 2πe−Φ/K = 0.

Under the transformation

y(x) = −Φ(r)

K
,

we have

ÿ(x) + 1

x
ẏ(x) + 2π

K
ey(x) = 0. (22)

Furthermore by setting λ = 0 and ȧ(0) = 0 in Theorem 2, we easily have the following corollary for the non-trivial
stationary solutions.

Corollary 14. For the 2-dimensional isothermal Euler–Poisson equation, there exists a family of stationary solution,
i.e. ⎧⎪⎨

⎪⎩
ρ(t, r) = 1

a2
ey(r/a);

ÿ(x) + 1

x
ẏ(x) + 2π

K
ey(x) = μ, y(0) = α, ẏ(0) = 0,

(23)

where α is an arbitrary positive constant.

Remark 15. Our blowup solutions only work for the 2-dimensional case. But we do not know what will happen after
the critical time that the solutions blow up.

If we consider the system of conservation laws with viscosity, i.e. with ν > 0,

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u) + ∇P = −ρ∇Φ + ν�u,

�Φ(t, x) = 2πρ.
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We get the corresponding Navier–Stokes–Poisson equation. The equation describes the situation closer to the real
model compared with the Euler–Poisson equations in gaseous stars. And our family of solutions is also suitable for it.
This is due to the fact in spherical symmetry for the vector Laplacian in u(t, r),

�u = urr + 1

r
ur − 1

r2
u.

Remark 16. In [11], we have the lemma to control the modified Emden equation with β > 0,

ä(t) + βa(t) = − λ

a(t)
, a(0) = a0 > 0, ȧ(0) = a1.

The similar blowup results may be obtained for the 2-dimensional Euler–Poisson equation with frictional damping or
Navier–Stokes–Poisson equation with frictional damping or not, i.e.

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u) + ∇P = −ρ∇Φ − βρu + ν�u,

�Φ(t, x) = 2πρ,

where β > 0 and ν � 0. The corresponding family of blowup solution is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ(t, r) = 1

a(t)2
ey(r/a(t)), u(t, r) = ȧ(t)

a(t)
r;

ä(t) + βa(t) = − λ

a(t)
, a(0) = a0 > 0, ȧ(0) = a1;

ÿ(x) + 1

x
ẏ(x) + 2π

K
ey(x) = μ, y(0) = α, ẏ(0) = 0,

(24)

where μ = 2λ/K and α are constants.

Remark 17. Besides, if we consider the drift-diffusion model in semiconductors,

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u) + ∇P = +ρ∇Φ − βρu + ν�u,

�Φ(t, x) = 2πρ,

the special solutions with infinite mass may be obtained as follows⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ(t, r) = 1

a(t)2
ey(r/a(t)), u(t, r) = ȧ(t)

a(t)
r;

ä(t) + βa(t) = − λ

a(t)
, a(0) = a0 > 0, ȧ(0) = a1;

ÿ(x) + 1

x
ẏ(x) − 2π

K
ey(x) = μ, y(0) = α, ẏ(0) = 0.

(25)

3. Blowup rate

In this section, we present the confirmation of Theorem 3. The blowup rate of the constructed solutions (6), for the
Euler–Poisson equation is studied. It is interesting to investigate how fast the blowup solution tends to infinity as the
time tends to the critical value T .

Proof of Theorem 3. We choose a finite time t to make a(t) sufficiently small enough, such that −λ lna + θ > 0.
From the Lemma 7, it is clear for that there exists a finite time t0 > 0 such that ȧ(t) < 0 for t > t0. Next, since

ä(t) = − λ
< 0,
a(t)
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when t > t0 + ε = t1, this means there exists a constant ε > 0, such that

a(t) � eθ/λ − δ,

where δ is a sufficiently small positive constant, we have a smaller upper bound of a(t). On the other hand, as

ȧ = −√−2λ lna + θ,

it is easy to see, that

t = t1 +
t∫

t1

ds = t1 −
a(t)∫

a(t1)

da√−2λ lna + θ
� t1 +

a(t)∫
0

O(1) da√− lna
. (26)

We denote δ as a sufficiently small positive number, such that x ∈ (0, δ],

− lnx � 1

xS
,

where the constant S > 0. Then, (26) becomes

T − t1 �
a(t)∫
0

O(1) da√
1/aS

= O(1)a(t)S/2+1.

By letting t1 → T−, we get

lim
t1→T−

a(t)(T − t1)
−2/(S+2) � O(1).

As y(0) = α, we can estimate the blowup rate at the origin by

lim
t→T−

ρ(t,0)(T − t)4/(S+2) � O(1).

Thus, we obtain

lim
t→T−

ρ(t,0)(T − t)η � O(1),

with η < 2, and complete the proof. �
4. Non-global existence for tame solutions

In this section, we present the proof for Theorem 5. The technique to Makino and Perthame’s [10] is similar.

Proof of Theorem 5. We denote the radius of the compact support of the tame solution by R(t). Under the assumption
that the initial data has a compact support, i.e. ρ(0, r) = u(0, r) = 0 for r � R(0), from (9)2, we must have

Kρr = 0.

And Eq. (9)2 becomes

ut + uur = −2π

r

r∫
0

ρ(t, s)s ds,

along the curve r = r(t;0, y) where r = r(t; t0, r0) is the solution of the characteristic equation outside the support of
the tame solution, i.e.

dr = u(t, r), r|t=t0 = r0.

dt
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Clearly we have for y � R(t),

d

dt
u
(
t, r(t;0, y)

) = ut + uur = −Φr = G(r)
.= −2π

r

r∫
0

ρ(t, s)s ds � 0.

Therefore, we get

d

dt
r(t;0, y) = u

(
t, r(t;0, y)

) =
t∫

0

G
(
τ, r(τ ;0, y)

)
dτ � 0,

as u(0, y) = 0. Hence r(t;0, y) � y for 0 � t < T , R(t) � y. For ρ(t) ≡ 0 outside the compact support of the tame
solution, this implies

G
(
t, r

(
t,0,R(0)

)) = − M

r(t,0,R(0))
,

where

M =
∫
R2

ρ(t, x) dx = 2π

∞∫
0

ρ(t, s)s ds,

is the total mass and independent of t . And If ρ(0) is not identically equal to zero, as the solution belongs C1, we
have M > 0. Therefore r = r(t;0,R(0)) satisfies the equation of free fall

d2r

dt2
= −M

r
, r(0) = R(0), ṙ(0) = 0. (27)

From this it follows

0 � r � R(0) − M

2R(0)
t2.

This implies

T �
√

2R(0)2/M.

The proof is completed. �
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