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Runge–Kutta methods with minimal dispersion and dissipation
for problems arising from computational acoustics
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Abstract

In this paper a new Runge–Kutta method with minimal dispersion and dissipation error is developed. The Cheby-
shev pseudospectral method is utilized using spatial discretization and a new fourth-order six-stage Runge–Kutta
scheme is used for time advancing. The proposed scheme is more efficient than the existing ones for acoustic
computations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

There are many phenomena in nature that can be expressed by partial differential equations (PDEs).
However, there is no general analytical solution for a well-defined PDE. As regards the wave propagation
there are many recent works on numerical methods[2,7,4,8]. High-order methods are often used to reach
accuracy requirements as well as low dissipation and dispersion errors[9].

Mead and Renaut[7] have constructed a six-stage fourth-order RK method with extended stability
along the imaginary axes, which was of dissipative order five and of dispersive order four.

Hu et al.[4] propose a six-stage fourth-order RK method with minimal dissipation and dispersion.
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Bogey and Bailly[2] following the idea of Hu et al.[4], have obtained a six-stage second-order RK
method with minimal dissipation and dispersion.

2. Basic theory

2.1. Modified Chebyshev pseudospectral method (MPS)[7]
Consider the one-dimensional wave equationut = ux . If MPS is used in space, then

ut =MSu (1)

with

Si,j = d

dx
Tj (x)|x=xi , (2)

whereTj (x) andxi = cos(i�/N) are the Chebyshev polynomials and the points respectively[7]. The
entries of matrixM are dependent on the transformation proposed by Kosloff and Tal-Ezer[5], and are
given by

Mi,j = sin−1(�)
√

1 − (�xi)
2

�
. (3)

For our investigation the parameter� has been chosen to be equal to 0.99 (for details see[7]).

2.2. Dispersion and dissipation in Runge–Kutta methods

For the initial value problem

ut = f (t, u) (4)

the generals-stage Runge–Kutta method, is defined by

un+1 = un + h

s∑
i=1

biki, (5)

ki = f


tn + hci, un + h

s∑
j=1

ai,j kj


 , (6)

whereci =∑s
j=1 ai,j , i= 1, ..., s. The coefficientsbi, ci, ai,j are dependent on the method used and can

be presented by Butcher[3] table below

We use the linear test equation,

ut = �u, � = x + yi (7)

which has the analytical solution

u(t + h)= eh(x+yi)u(t). (8)
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Following the procedure introduced by Albrecht[1], the RK solution can be written as

un+1 = (1 + z�1 + · · · + zs�s)un = (Ps + iFs)un, (9)

wherez= h�, �j = bTAj−1e , e = (1, ...,1) ∈ Rs (for more details see[7])

Ps=1 + hx�1 + h2 (x2 − y2) �2 + h3 (x3 − 3xy2) �3,

+ h4 (x4 − 6x2y2 + y4) �4 + h5
(
x5 − 10x3y2 + 5xy4

)
�5 + · · · ,

Fs=hy�1 + 2h2xy�2 + h3 (3x2y − y3) �3 + h4 (4x3y − 4xy3) �4

+ h5
(
5x4y − 10x2y3 + y5

)
�5 + · · · . (10)

The explicit form of the coefficients�j for methods having up to six stages are given by (see[8])

�1 =
∑

bi, �4 =
∑

biaij ajkck,

�2 =
∑

bici, �5 =
∑

biaij ajkaklcl,

�3 =
∑

biaij cj , �6 =
∑

biaij ajkaklalmcm. (11)

Definition 1. (Van Der Howen and Sommeijer[10]). The RK method defined by (9) is dissipative of
orderp if

exh − |Ps + iFs | = O(hp+1) (12)

and dispersive of orderq if

hy − tan−1(Fs/Ps)= O(hq+1). (13)

The proposed coefficients by Mead and Renaut[7] method are�5 = 0.00556 and�6 = 0.00093.
Hu et al.[4], minimizing the|r − re|2, wherer = (un+1)/un = 1+ z�1 + · · ·+ zs�s (9) andre =u(t +

h)/u(t)= eh(x+yi) (9), propose the coefficients:�5 = 0.00781005 and�6 = 0.00132141.
The proposed coefficients by Bogey and Bailly[2] method are�3 = 0.165919771368,�4 =

0.040919732041,�5 = 0.007555704391 and�6 = 0.000891421261.

3. New method

For a four order-six stage method and for the case of the test equation (8) withx = 0 [10], P6 andF6
can be written as

P6 = 1 − �2(hy)
2 + �4(hy)

4 − �6(hy)
6,

F6 = hy − �3(hy)
3 + �5(hy)

5, (14)

where�2 = 1
2, �3 = 1

6 and�4 = 1
24, while the RK method is of order four.
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Table 1

Order of dissipation Order of dispersion �5 �6

9 4 1/128 1/1152
5 8 1/120 1/840

Based on the definitions given above, the dissipation error can be written as

EDS(hy)= 1 − |P6 + iF 6| (15)

and the dispersion error is given by

EDP(hy)= hy − tan−1(F6/P6). (16)

Expanding (15) and (16) via Taylor Series, we have

EDS(hy)=h6y6
(

1

144
− �5 + �6

)

+ h8y8
(

− 1

1152
+ �5

6
− �6

2

)

+ h10y10

(
−�2

5

2
+ �6

24

)

+ h12y12

(
1

41472
+ �2

5

2
+ �5

(
− 1

144
− �6

6

)
+ �6

144

)
+ · · · , (17)

EDP(hy)=h5y5
(

1

120
− �5

)

+ h7y7
(

− 1

336
+ �5

2
− �6

)

+ h9y9
(

− 1

5184
− �5

24
+ �6

6

)

+ h11y11
(

1

19008
+ �2

5 + �5

(
− 1

72
− �6

))
+ · · · . (18)

For a four order-six stage method, the maximum order of dissipation and dispersion and the resulting
coefficients are provided inTable 1.

Definition 2. We define the estimation of the error for the dissipation error (SDS) and the estimation of
the error for the dispersion error (SDP), using the coefficients of the powers ofhy in expressions (17)
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Table 2

Method Error of Error of Total error
dissipation dispersion

Mead and Renaut[7] 2.35× 10−3 2.99× 10−3 5.345× 10−3

F.Q. Hu et al.[4] 5.09× 10−4 6.60× 10−4 1.169× 10−3

Bogey and Bailly[2] 4.33× 10−5 8.495× 10−4 8.298× 10−4

New 1.48× 10−4 9.91× 10−5 2.470× 10−4

and (18), by the formulae:

SDS(�5, �6)=
(

1

144
− �5 + �6

)2

+
(

− 1

1152
+ �5

6
− �6

2

)2

+
(

−�2
5

2
+ �6

24

)2

+
(

1

41472
+ �2

5

2
+ �5

(
− 1

144
− �6

6

)
+ �6

144

)2

+ · · · , (19)

SDP(�5, �6)=
(

1

120
− �5

)2

+
(

− 1

336
+ �5

2
− �6

)2

+
(

− 1

5184
− �5

24
+ �6

6

)2

+
(

1

19008
+ �2

5 + �5

(
− 1

72
− �6

))2

+ · · · (20)

and the estimation of the total error (SDSDP) by the formula

SDSDP(�5, �6)= SDS(�5, �6)+ SDP(�5, �6). (21)

Minimizing the SDSDP(�5, �6) using the Levenberg Marquardt method[6], the resulting coefficients
are

�5 = 0.008267383750863793 and�6 = 0.00121166825454822479.

In Table 2we present the estimation of the errors SDS, SDP and SDSDP of the new method, the Bogey
and Bailly method[2], the Hu et al. method[4] and Mead and Renaut method[7]. In Fig. 1we present
the formulae EDS and EDP for the same methods.

For a six-stage fourth-order RK method we have a nonlinear system of 10 equations and 10 unknowns
and can be reduced to 10 equations and 10 unknowns if we assume the method is of the form
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Fig. 1. (left)-Dispersion error, (right)-Dissipation error. Methods used: (i)·+ ·, Bogey and Bailly[2] RK method of six stage-second
order; (ii) - · -, Mead and Renaut[7] RK method of six stage-fourth order; (iii) - - - Hu et al.[4] RK method of six stage-fourth
order; (iv) — New RK method of six stage-fourth order.

The values of the RK coefficients are given by

b1 = −3.94810815871644627868730966001274,

b2 = 6.15933360719925137209615595259797,

b3 = −8.74466100703228369513719502355456,

b4 = 4.07387757397683429863757134989527,

b6 = 3.45955798457264430309077738107406,

c2 = 0.14656005951358278141218736059705,

c3 = 0.27191031708348360233615451628133,

c4 = 0.06936819398523233741339353210366,

c5 = 0.25897940086636139111948386831759,

c6 = 0.48921096998463659243576995327396.

In a similar way the values of the RK coefficients for the Hu et al. method[4] and Bogey and Bailly
method[2] was obtained.

4. Numerical examples

The new method is compared with the Hu et al. method[4], Mead and Renaut method[7] and Bogey
and Bailly method[2]. The modified Chebyshev pseudospectral method for the spatial discretization for
N = 270 is used[7].
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Table 3
Convective wave problem

Temporal approx. Step size Error Timea

Bogey and Bailly[2] 0.2 4.84× 10−4 2 min 9 s
Mead and Renaut[7] 0.25 1.31× 10−4 1 min 46 s
F.Q. Hu et al.[4] 0.4 1.57× 10−4 1 min 7 s
New 0.5 6.68× 10−5 50 s

aExecution times, are for Fortran code running on a IBM 400 MHz system.
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Fig. 2. Solution of convective wave problem (see[4,8]) with modified Chebyshev pseudospectral att = 400 andN = 270 (see
[7]). The true solution(-) and the computed solution (o). Methods used: (i) Bogey and Bailly[2] RK method of six stage-second
order withh= 0.2; (ii) Mead and Renaut[7] RK method of six stage-fourth order withh= 0.25; (iii) Hu et al.[4] RK method
of six stage-fourth order withh= 0.4 and; (iv) New RK method of six stage-fourth order withh= 0.5.

4.1. Convective wave equation

Consider the problem

�u

�t
+ �u

�x
= 0. (22)

The initial value whent = 0 is a Gaussian profileu0 = 0.5e− ln 2(x/3)2 and the domain extends from
x= −50 tox= 450. The maximum norm of the errorL∞ = max|ucalculated− uexact| at the timet = 400,
for several different values of step sizeh, is given inTable 3. Fig. 2 illustrates the solutions of the four
compared methods.

4.2. Spherical wave problem

Consider the problem

�u

�t
+ �u

�r
+ u

r
= 0, 5�r�315, t >0,
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Table 4
Spherical wave problem

Temporal approx. Step size Error Timea

Bogey and Bailly[2] 0.2 2.06× 10−3 1 min 25 s
Mead and Renaut[7] 0.2 2.02× 10−3 1 min 25 s
F.Q. Hu et al.[4] 0.2 1.99× 10−3 1 min 25 s
New 0.3 1.97× 10−3 54 s

aExecution times, are for Fortran code running on a IBM 400 MHz system.

Fig. 3. Solution of spherical wave problem with modified Chebyshev pseudospectral att = 300 andN = 270 (see[7]). The
true solution(-) and the computed solution (o). Methods used: (i) Bogey and Bailly[2] RK method of six stage-second order
with h= 0.2; (ii) Mead and Renaut[7] RK method of six stage-fourth order withh= 0.2; (iii) Hu et al. [4] RK method of six
stage-fourth order withh= 0.2 and; (iv) New RK method of six stage-fourth order withh= 0.3.

u(r,0)= 0, 5�r�315,

u(5, t)= sin(�t/3), 0< t <300.

The analytic solution is given by

u(r, t)=
{

0, r > t + 5,
5[sin(�(t − r + 5)/3)]/r, r� t + 5.

The maximum norm of the errorL∞ = max|ucalculated− uexact| at time t = 300, for several different
values of step sizeh, is given inTable 4. Fig. 3 illustrates the solutions of the four compared methods.
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