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Abstract

In this paper a new Runge—Kutta method with minimal dispersion and dissipation error is developed. The Cheby-
shev pseudospectral method is utilized using spatial discretization and a new fourth-order six-stage Runge—Kutta
scheme is used for time advancing. The proposed scheme is more efficient than the existing ones for acoustic
computations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

There are many phenomena in nature that can be expressed by partial differential equations (PDES).
However, there is no general analytical solution for a well-defined PDE. As regards the wave propagation
there are many recent works on numerical methads4,8] High-order methods are often used to reach
accuracy requirements as well as low dissipation and dispersion {9tors

Mead and Renayf7] have constructed a six-stage fourth-order RK method with extended stability
along the imaginary axes, which was of dissipative order five and of dispersive order four.

Hu et al.[4] propose a six-stage fourth-order RK method with minimal dissipation and dispersion.

* Corresponding author. Fax: +30-1-9420091.

E-mail addresstsimos@mail.ariadne-t.gir.E. Simos).

1Active Member of the European Academy of Sciences and Arts. Corresponding Member of the European Academy of
Sciences.

2 postal address: Amfithea-Paleon Faliron, 26 Menelaou Street, GR-175 64 Athens, Greece.

0377-0427/% - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.06.012


https://core.ac.uk/display/82149641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:tsimos@mail.ariadne-t.gr

174 K. Tselios, T.E. Simos / Journal of Computational and Applied Mathematics 175 (2005) 173-181

Bogey and Bailly[2] following the idea of Hu et al[4], have obtained a six-stage second-order RK
method with minimal dissipation and dispersion.
2. Basic theory
2.1. Modified Chebyshev pseudospectral method (NTRS)

Consider the one-dimensional wave equatipe- u,. If MPS is used in space, then

uy = MSu (1)
with
d
Sij= aTj () [x=x;» (2

whereT;(x) andx; = cogin/N) are the Chebyshev polynomials and the points respectjVglyrhe
entries of matrixM are dependent on the transformation proposed by Kosloff and Talfizemnd are

given by
B sin (@)1 — (ox;)?
” .

For our investigation the parametehas been chosen to be equal t8D(for details ser]).

®3)

i,j

2.2. Dispersion and dissipation in Runge—Kutta methods

For the initial value problem

Uy = f(t7 M) (4)
the generas-stage Runge—Kutta method, is defined by

s
Up+l = Uy + h Z bik;, (5)
i=1

s
ki=f |t + hci, un+hzaivjkj > ©

j=1

wherec; = Z‘;Zlaiyj, i=1,...,s. The coefficient®;, ¢;, a; ; are dependent on the method used and can
be presented by Butchf8] table below

c A
b

We use the linear test equation,

w=Ju, L=x-+yi (7
which has the analytical solution

u(t + h) =Dy ). (8)
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Following the procedure introduced by Albreg¢hj, the RK solution can be written as
Upy1= A+ zp1+ -+ 2 Bun = (Ps + 1 Fy)uy, (9)
wherez = hi, B; =bTA/ e e = (1, ..., 1) € R® (for more details sef])
Pi=1+ hxpq + h? (x2 — y2) Po+ n (x3 — 3xy2) B3,
R (x4 — 6x2y2 y4) Ba 45 (xs — 1032 + 5xy4> s+,
Fy=hypy + 2h*xypy + h* (3x®y — y°) 3 + h* (4x°y — 4xy°) s
45 (5x4y —10x3y3 + y5) s+ - (10)

The explicit form of the coefficients; for methods having up to six stages are given by (8Be
B1= Zbi, Ba= Z bia;jajick,
Ba= Z bici, Ps= Zbiaijajkaklcl,
Pz = Z biaijcj, Ps= Z biaijajkaxiaimcm- (11)

Definition 1. (Van Der Howen and Sommeij¢t0]). The RK method defined by (9) is dissipative of
orderp if

e — | Py +iF,| =O(h"*h (12)
and dispersive of ordeyif
hy —tan *(Fy/ P) = O(h?™h). (13)

The proposed coefficients by Mead and Rerjdhmethod aress = 0.00556 and’g = 0.00093.

Hu et al.[4], minimizing the|r — r,|?, wherer = (u,11) /u, =1+ 21+ - - - +2° B, (9) andr, = u(r +
h)/u(t) = €'+D (9), propose the coefficients; = 0.00781005 angg = 0.00132141.

The proposed coefficients by Bogey and Bai[B] method arefi; = 0.165919771368,5, =
0.04091973204145 = 0.007555704391 anfl; = 0.000891421261.

3. New method

For a four order-six stage method and for the case of the test equation (8) with[10], Ps and Fg
can be written as

Po=1— Ba(hy)* + Ba(hy)* — Pe(hy)®,
Fo=hy — p3(hy)> + Bs(hy)>, (14)

wheref, = 3, f3 = & andf; = 5, while the RK method is of order four.
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Table 1
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Order of dissipation Order of dispersion Bs Bs
9 4 1/128 1/1152
5 8 1/120 1/840
Based on the definitions given above, the dissipation error can be written as
EDShy)=1— |Ps+iF¢| (15)
and the dispersion error is given by
EDP(hy) = hy — tan™ *(Fg/ Ps). (16)
Expanding (15) and (16) via Taylor Series, we have
EDS(hy) =% (<o — s+
144 "5 T76
1 Bs  Ps
88—~ Ps_Pe
Y ( 115276 2
B2 Pe
plo10( _Ps  Pe
ATy > T4
p2 Pe Be
p12,12 5 __—- _re 5 17
ATy 41472+2+ﬁ5 144 6 144 L (17
EDP(hy)=h°y® 1 i
120 °
T (- By
33 2 °
1 Ps | Pe
OO~ _P5_ Ps
L ( 5184 24 6
1 1
p11,11 2 - _ 18
+27 Tooost B5+ Ps 7 Pe) )+ (18)

For a four order-six stage method, the maximum order of dissipation and dispersion and the resulting
coefficients are provided ifable 1

Definition 2. We define the estimation of the error for the dissipation error (SDS) and the estimation of
the error for the dispersion error (SDP), using the coefficients of the powérs iof expressions (17)
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Table 2
Method Error of Error of Total error
dissipation dispersion
Mead and Renalj7] 2.35x 1073 2.99x 1073 5.345x 1073
F.Q. Hu et al[4] 5.09x 10~4 6.60x 104 1.169x 10°3
Bogey and Bailly[2] 433x107° 8.495x 104 8.298x 104
New 148x 1074 9.91x10°° 2.470x 104
and (18), by the formulae:
1 ? 1 Bs_ Bs\°
SD =(—=—— ——— =218
AN 1 e\ Bs )
5 6 5 6 6
_55, 76 - 47 __— _re 6 . 19
+( 2+24) +<41472+2+ﬁ5< 144 6>+144) + (19)
1 2 1 B 2
SDPRBs, fg)=| =—= — B —+ ==
R(Bs. Ps) <120 /5) + ( 336 + > ﬁ6>
1 Bs  PBs\’ 1 1 ?
= DB, - - . 20
+( 5184 24" 6) T\1o00st 5T s\ ")) F (20)
and the estimation of the total error (SDSDP) by the formula
SDSDR s, fg) = SDSfs, fs) + SDRBs, fe). (21)

Minimizing the SDSDRps, fig) using the Levenberg Marquardt methi@dl, the resulting coefficients
are

ps = 0.008267383750863793 andsg = 0.00121166825454822479

In Table 2we present the estimation of the errors SDS, SDP and SDSDP of the new method, the Bogey
and Bailly method2], the Hu et al. methof#] and Mead and Renaut methp. In Fig. 1 we present
the formulae EDS and EDP for the same methods.

For a six-stage fourth-order RK method we have a nonlinear system of 10 equations and 10 unknowns
and can be reduced to 10 equations and 10 unknowns if we assume the method is of the form

01]0

Co|Co

310 c3

Cy 00 Cq

Cs 000 Cs
Cg 0000 Ce

by Do b3 by O bg
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DISSIPATION ERROR
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x 10 x 10
T ]
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z / / Z ' /
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03 , L 03 /
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* / s /
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hy
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Fig. 1. (left)-Dispersion error, (right)-Dissipation error. Methods used+(i)Bogey and Baillyf2] RK method of six stage-second
order; (ii) - - -, Mead and Renal7] RK method of six stage-fourth order; {iii - - Hu et al.[4] RK method of six stage-fourth

order; (iv) — New RK method of six stage-fourth order.

The values of the RK coefficients are given by

b1 = —3.94810815871644627868730966001274

by = 6.15933360719925137209615595259,797

b3z = —8.74466100703228369513719502355456

by =4.07387757397683429863757134989527
be = 3.45955798457264430309077738107406
c2 =0.14656005951358278141218736059,705
¢3=0.27191031708348360233615451628133
c4 = 0.06936819398523233741339353210366
c5 = 0.25897940086636139111948386831,759
ce = 0.48921096998463659243576995327396

In a similar way the values of the RK coefficients for the Hu et al. mefdpcnd Bogey and Bailly

method[2] was obtained.

4. Numerical examples

The new method is compared with the Hu et al. metijdMead and Renaut meth¢d and Bogey

and Bailly method2]. The modified Chebyshev pseudospectral method for the spatial discretization for

N =270 is used7].
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Table 3

Convective wave problem

Temporal approx. Step size Error Tifhe
Bogey and Bailly[2] 0.2 484 x 1074 2min9s
Mead and Renay?] 0.25 131x 104 1min46s
F.Q. Hu et al[4] 0.4 157 x 104 1min7s
New 0.5 668 x 107° 50s

8Execution times, are for Fortran code running on a IBM 400 MHz system.

Bogey and Bailly Mead and Renaut Hu et all. New
0.5 0.5 0.5 0.5
0.4 04 0.4 0.4
0.3 0.3 0.3 0.3
=}

0.2 0.2 0.2 0.2
0.1 0.1 0.1 0.1

0 0 0 0

380 390 400 410 420 380 390 400 410 420 380 390 400 410 420 380 390 400 410 420
r r r r

Fig. 2. Solution of convective wave problem (4é¢3]) with modified Chebyshev pseudospectral at400 andN = 270 (see
[7]). The true solution(-) and the computed solution (0). Methods used: (i) Bogey and BhiR)K method of six stage-second
order withz = 0.2; (ii) Mead and Renay¥] RK method of six stage-fourth order with= 0.25; (iii) Hu et al.[4] RK method
of six stage-fourth order with = 0.4 and; (iv) New RK method of six stage-fourth order witk= 0.5.

4.1. Convective wave equation
Consider the problem

0 0

i %o (22)
or  0Ox

The initial value wherr = 0 is a Gaussian profileg = 0.5e~ 2¢/3” and the domain extends from

x = —50tox = 450. The maximum norm of the errbt, = maX|ucalculated— Uexact at the timer =400,

for several different values of step silagis given inTable 3 Fig. 2illustrates the solutions of the four
compared methods.

4.2. Spherical wave problem

Consider the problem

0 0
ML 0 5<r<315 >0,
ot or r
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Table 4

Spherical wave problem

Temporal approx. Step size Error Tifhe
Bogey and Bailly[2] 0.2 206 x 1073 1min 25s
Mead and Renay] 0.2 202 x 1073 1min 25s
F.Q. Hu et al[4] 0.2 199 x 103 1min25s
New 0.3 197 x 1073 545

8Execution times, are for Fortran code running on a IBM 400 MHz system.

Bogey and Bailly Mead and Renaut Huetall. New

0.015 0.015 0.015 0.015
0.01 0.01 0.01 0.01

0.005 0.005 0.005 0.005

0.005 0.005 0.005 0.005

0.01 0.01 0.01 0.01

0.015 0.015 0.015 0.015

0.02 0.02 0.02 0.02
250 260 270 280 290 300 310 260 280 300 260 280 300 250 260 270 280 290 300 310
r r r r

Fig. 3. Solution of spherical wave problem with modified Chebyshev pseudospectral 200 andN = 270 (seq7]). The
true solution(-) and the computed solution (0). Methods used: (i) Bogey and BilIRK method of six stage-second order
with #2 = 0.2; (i) Mead and Renal#] RK method of six stage-fourth order with= 0.2; (i) Hu et al. [4] RK method of six
stage-fourth order with = 0.2 and; (iv) New RK method of six stage-fourth order witk= 0.3.

u(@r, 0)=0, 5<r<3ls
u(5,t) =sin(nt/3), 0<t <300
The analytic solution is given by

(1) = 0, r>t—+5,
U D= 5lsin(a(t — r +5)/3)1/r, r<t+5.

The maximum norm of the errdt,, = max|ucalculated— “exaci at timer = 300, for several different
values of step sizh, is given inTable 4 Fig. 3illustrates the solutions of the four compared methods.
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