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We consider the following modification of annihilation games
called node blocking. Given a directed graph, each vertex can be
occupied by at most one token. There are two types of tokens,
each player can move only tokens of his type. The players alternate
their moves and the current player i selects one token of type
i and moves the token along a directed edge to an unoccupied
vertex. If a player cannot make a move then he loses. We consider
the problem of determining the complexity of the game: given an
arbitrary configuration of tokens in a planar directed acyclic graph
(dag), does the current player have a winning strategy? We prove
that the problem is PSPACE-complete.
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1. Introduction

The study of annihilation games has been suggested by John Conway and the first papers were
published by Fraenkel and Yesha [7,9]. They considered a 2-player game played on an underlying
directed graph G (possibly with cycles). The current player selects a token and moves it along an arc
outgoing from a vertex containing the token. If, as a result of this move, a vertex contains two tokens
then they are removed from G (annihilation). The authors in [9] gave a polynomial-time algorithm for
computing a winning strategy. In this paper we assume normal play, that is, the first player unable
to make a move loses (for some results about misère annihilation games see [2]). Fraenkel considered
in [4] a generalization of cellular-automata games to two-player games, which also generalizes the
above annihilation game.

Fraenkel studied in [3] the connections between annihilation games and error-correcting codes.
The authors in [6] gave an algorithm for computing error-correcting codes, which is polynomial in
the size of the code and uses the theory of two-player cellular-automata games.
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Table 1

Game: Directed acyclic graphs General graphs

Annihilation2 PSPACE-complete [5] ?∗

Hit PSPACE-complete [5] ?∗

Capture PSPACE-complete [10] EXPTIME-complete [10]

Node blocking ? EXPTIME-complete [10]

Edge blocking PSPACE-complete [5] ?∗

2 The version with two types of tokens.

In the following we are interested in generalizations of annihilation games, where there is more
than one type of token and/or there is a different interaction between the tokens. The following
generalization of annihilation has been proved to be PSPACE-complete for directed acyclic graphs [5]:
given r � 2 types of tokens, each type of token can be moved along a subset of the edges (the subsets
of edges do not have to be disjoint), and each player can move any token in his turn.

A modification called hit, where r � 2 types of tokens and edges are distinguished was considered
in [5]. A move consists of selecting a token of type i and moving along an arc of type i ∈ {1, . . . , r}.
The target vertex v cannot be occupied by a token of type i, but if v contains token of another type
then it is removed (so, when the move ends v is occupied by the token of type i). The complexity of
determining the outcome of this game is PSPACE-complete for acyclic graphs and r = 2 [5]. A mod-
ification of hit called capture has the same rules except that each token can travel along any edge.
Capture is PSPACE-complete for acyclic and EXPTIME-complete for general graphs [10].

In node blocking [8] each token is of one of the two types. Each vertex can contain at most one
token. Player i can move the tokens of type i, i = 1,2. All tokens can move along all arcs. Player i
makes a move, by selecting one token of type i (occupying a vertex v ∈ V ) and an unoccupied vertex
u ∈ V such that (v, u) ∈ E and moving the token from v to u. The first player unable to make a move
loses and his opponent wins the game. There is a tie if there is no last move. First, the game was
proved to be NP-hard [8], then PSPACE-hard for general graphs [5]. The complexity for general graphs
has been finally proved in [10] to be EXPTIME-complete.

In edge blocking [5] all tokens are identical, i.e. each player can move any token, while each arc
is of type 1 or 2 and player i makes his move by moving a token along an arc of type i, i = 1,2.
Similarly as before, the first player who cannot make a move loses. A tie occurs if there is no last
move. This game is PSPACE-complete for dags [5].

Table 1 summarizes the complexity of all the mentioned two-player annihilation games. We list
only the strongest known results.

Note that for the entries labeled as ‘?∗ ’ can be replaced by ‘PSPACE-hard’ (which can be concluded
from the corresponding results for acyclic graphs), but the question remains whether the games are
in PSPACE. In this paper we are interested in the problem marked by ‘?’, listed also in [1] as one of
the open problems. In Section 3 we prove PSPACE-completeness of this game for dags. In Section 4
we modify the graph obtained in the reduction from Section 3 to prove that the problem remains
PSPACE-complete for planar directed acyclic graphs.

2. Definitions

In the following a token of type 1 (respectively 2) will be called a white token (black token, resp.)
and denoted by symbol T W (T B , resp.). The player moving the white (black) tokens will be denoted
by W (B , respectively).

Let G = (V (G), E(G)) be a directed graph. A notation u →p v , where u, v ∈ V (G), is used to de-
note a move made by player p ∈ {W , B} in which the token has been removed from u and placed at
vertex v . Given the positions of tokens, define f (v) for v ∈ V (G) to be one of three possible values
T W , T B ,∅ indicating that a white or black token is at the vertex v or there is no token at v , respec-
tively. In the latter case we say that v is empty. Note that a move u →p v is correct only if f (v) = ∅,
(u, v) ∈ E(G) and f (u) = T W ∧ p = W or f (u) = T B ∧ p = B .
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Fig. 1. The graphs Gi for (a) i = 2 j − 1 (white component) and (b) i = 2 j (black component), j = 1, . . . ,n/2.

Let us recall a PSPACE-complete Quantified Boolean Formula (QBF) problem [12]. The input for the
problem is a formula Q in the form

Q 1x1 . . . Q nxn F (x1, . . . , xn),

where Q i ∈ {∃,∀} for i = 1, . . . ,n. Decide whether Q is true. In our case we use a restricted case of
this problem [11] where Q 1 = ∃, Q i+1 	= Q i for i = 1, . . . ,n − 1, n is even, and F is a 3CNF formula,
i.e. F = F1 ∧ F2 ∧ · · · ∧ Fm , where Fi = (li,1 ∨ li,2 ∨ li,3) and each literal li, j is a variable or the negation
of a variable, i = 1, . . . ,m, j = 1,2,3.

3. PSPACE-completeness of node blocking

Define a variable component Gi corresponding to xi as follows:

V (Gi) = {s, t, x, y} ∪ {v1, . . . , v4},
E(Gi) = {

(s, v1), (v1, v2), (v2, v3), (v3, t), (v4, t), (v4, v2), (x, v4), (y, v4)
}

for i = 2 j − 1, and

V (Gi) = {s, t, x, y} ∪ {v1, . . . , v8},
E(Gi) = {

(s, v1), (v1, v2), (v2, v3), (v3, t), (v4, t), (v4, v2),

(v5, v4), (v6, v4), (v7, v5), (v8, v6), (x, v7), (y, v8)
}

for i = 2 j, where j = 1, . . . ,n/2. Fig. 1 depicts these subgraphs. If i is odd then Gi is called a white
component and in this case an initial placement of tokens in Gi is f (s) = f (v4) = f (x) = f (y) = T W ,
f (v3) = ∅ and f (v1) = f (v2) = f (t) = T B (see also Fig. 1(a)). In a black component Gi , where i is even,
we have f (s) = f (v4) = . . . = f (v8) = T B , f (v3) = ∅ and f (v1) = f (v2) = f (x) = f (y) = f (t) = T W

(see also Fig. 1(b)). In both cases the above configuration of tokens will be called the initial state of Gi .

Removing a token from a graph without placing it on another vertex is an invalid operation. How-
ever, assume for now that, given an initial state of Gi , the first move is a deletion of a token occupying
the vertex t (we will assume in Lemma 1 that the game starts in this way). Then, W (respectively B)
becomes the current player in the white (black, resp.) component Gi . Furthermore, we assume that
the game in Gi ends when f (s) becomes ∅.

Lemma 1. W (respectively B) has a winning strategy in a white (respectively black) component. At the end of
the game in a white (black) component exactly one of the vertices x, y (x, y, v5, v6 , respectively) is empty.

Proof. First assume that Gi is a white component. Let f (t) = ∅ and W is the current player. The first
two moves are v4 →W t , v2 →B v3. Then, there are two possibilities:

x →W v4 or y →W v4. (1)

In both cases the game continues as follows: v1 →B v2, s →W v1. The thesis follows.
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Fig. 2. A complete instance of the graph G Q corresponding to the formula in (3).

Let Gi be a black component with f (t) = ∅ and B is the current player. Similarly as before we have
v4 →B t , v2 →W v3. The third move is v5 →B v4 or v6 →B v4. Since they are symmetrical, assume
in the following that the first case occurred. We have v1 →W v2. Then B has a choice:

v7 →B v5 or s →B v1. (2)

In the former case the moves x →W v7 and s →B v2 follow, which ends the game and the vertex x
is empty among the vertices listed in the lemma. In the latter case in (2) the game ends immediately
with f (v5) = ∅. �

Now we define a graph G Q , corresponding to the quantified Boolean formula Q . We will use the
symbol v(Gi) in order to distinguish a vertex v ∈ V (Gi) from the vertices of the other variable com-
ponents. G Q contains disjoint white components G2i−1 for i = 1, . . . ,n/2 and disjoint black compo-
nents G2i , i = 1, . . . ,n/2, connected in such a way that s(Gi) = t(Gi+1) for i = 1, . . . ,n − 1. The graph
G Q contains additionally the vertices w, v(F1), . . . , v(Fm), an arc (w, s(Gn)), the arcs (v(F j), w) for
j = 1, . . . ,m, and (x(Gi), v(F j)) ∈ E(G Q ) iff F j contains xi , while (y(Gi), v(F j)) ∈ E(G Q ) iff F j con-
tains xi , a negation of the variable xi . Initially, all the subgraphs Gi are in the initial state, except that
f (t(G1)) = ∅. Let f (w) = T W , f (v(F j)) = T B for j = 1, . . . ,m. Before we prove the main theorem, let
us demonstrate the above reduction by giving an example. Let

Q = ∃x1∀x2∃x3∀x4(x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4). (3)

Fig. 2 shows the corresponding graph G Q .
For brevity we introduce a notation: we say that the game arrives at a component Gi (and leaves

Gi−1, i > 1) if f (t(Gi)) = ∅ (note that for i > 1 this is equivalent to f (s(Gi−1)) = ∅ in the graph G Q ).
The game is in Gi if it arrived at Gi but did not leave Gi .

Theorem 1. Node blocking is PSPACE-complete for directed acyclic graphs.

Proof. First we prove by induction on i = 1, . . . ,n that

(i) if the game arrives at the component Gi , then for each j < i exactly one of the vertices
x(G j), y(G j) (if G j is a white component) or exactly one of the vertices x(G j), y(G j), v5(G j),

v6(G j) (if G j is a black component) is empty in G j ,
(ii) if the game arrives at the component Gi , then all components G j , for j = i, . . . ,n are in the initial

state, except that f (t(Gi)) = ∅,
(iii) when the game is not in Gi then no moves along the arcs in Gi are performed, i = 1, . . . ,n.
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Fig. 3. (a) the game arrives at G j , (b) the game leaves G j , (c) W wins the game.

The cases when i = 1 and i > 1 are analogous. If the game is in Gi then (by the induction hypothesis)
all possible moves are the ones along the arcs in Gi ,

v2(G j) →p v3(G j) for j > i (4)

and

v7(G j) →B v5(G j) or v8(G j) →B v6(G j) (5)

for a black component G j , j < i.
First we exclude (5). The white player may respond to (5) by

x(G j) →W v7(G j) or y(G j) →W v8(G j), (6)

respectively, and the game continues in Gi . The result is equivalent to the situation where (5) was
done when the game was in G j , because in both cases the vertices v4(G j) and v(Fk), k = 1, . . . ,m,
are not empty. So, if B has a winning strategy in which the corresponding moves (5) and (6) occur
then we may w.l.o.g. assume that they are done while the game is in G j . We will conclude at the end
of the proof that B does not have to consider other strategies.

Suppose now that (4) happens while the game is in Gi , where G j is a white component (the other
case is analogous). We have that p = B . Let W respond by

v4(G j) →W v2(G j). (7)

For other moves of B along the arcs of Gi , W replies as in the proof of Lemma 1. Note that B cannot
move another token occupying a vertex of G j until the game arrives at G j . The game finally arrives
at a component G j which is not in the initial state. This situation is given in Fig. 3(a). Since W is
the current player, the first move in G j is x(G j) →W v4(G j) or y(G j) →W v4(G j). In both cases the
remaining sequence of moves is identical: v3(G j) →B t(G j), v2(G j) →W v3(G j), v1(G j) →B v2(G j),
s(G j) →W v1(G j). The result is shown in Fig. 3(b). This proves that if B performs a move along an arc
which is not in Gi when the game is in Gi then W decides among one of the moves x(G j) →W v4(G j)

or y(G j) →W v4(G j) when the game is in G j . This, however is only true under the assumption that
after (4) and (7) W plays according to the schema given in the proof of Lemma 1. If the white
player managed to place a token at the vertex v4(G j) before the game arrived at G j , then, when
the game arrives at G j , the move v4(G j) →W t(G j) gives a situation depicted in Fig. 3(c)—the black
player cannot make a move in G j . So, if the game is in Gi and a move (4) occurred, then either
the game creates the same configuration of tokens in variable components (restricted to the vertices
x(Gk), y(Gk),k = 1, . . . ,n), or B loses the game. Thus, w.l.o.g. we may assume that if the game is in
Gi then the components G j , j > i are in the initial state, i.e. (ii) is true.

Since we have excluded the moves (4) and (5) when the game is in Gi , we have that (iii) holds.
Lemma 1 and (iii) imply that (i) is satisfied.

Now we prove the theorem. The QBF problem in 3CNF form is equivalent to a two-player game
where the players take turns choosing variable assignment. We assume here that the players are
called the ∃-player and the ∀-player. The ∃-player (respectively ∀-player) sets the values of variables
bounded by the existential (universal, resp.) quantifier. If the values of all the variables are determined
then the ∃-player wins if and only if F is satisfied. The game proceeds in such a way that the value
of xi is set in the ith turn, i = 1, . . . ,n. We will show that our graph game on G Q simulates the above
game for Q , by proving on induction on i � 1 that a player in the QBF game assigns a Boolean value
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to the variable xi if and only if the game is in Gi . Moreover, the ∃-player has a winning strategy for
the QBF game (which means that Q is true) if and only if W has a winning strategy for node blocking
in G Q .

Assume first that the ∃-player has a winning strategy in the QBF game and that the ith turn begins
in the QBF game (the cases when i = 1 and i > 1 are similar). At this point, by the induction hypoth-
esis, the values of the variables x1, . . . , xi−1 have been selected by the players and the node blocking
game arrives at Gi . By (ii), Gi is in the initial state, except that f (t(Gi)) = ∅. If i is odd, then the
∃-player makes his decision concerning xi , that is, he sets it to be true or false. The white player ‘mir-
rors’ the move made by the ∃-player so that if the ∃-player decides xi to be true (respectively false),
then W plays in Gi in such a way that if the game leaves Gi then f (x(Gi)) = T W ( f (y(Gi)) = T W ,
respectively). If i is even, then the ∀-player assigns a Boolean value to xi arbitrarily, as well as B
makes the corresponding decision in the variable component Gi . In both cases, when the value of xi

has been set, then it cannot be changed later. Similarly, once the blocking game left Gi , by (iii), no
moves along the arcs in Gi will be performed later during the remaining part of the game.

When the node blocking game leaves Gn , W is the current player. Simultaneously, the last turn
in the QBF game ended and F is satisfied under the variable assignment produced during the game.
We have w →W s(Gn) and v(F j) →B w , for some j ∈ {1, . . . ,m}. Since Q is true, or equivalently, the
formula F is satisfied under the variable assignment obtained during the QBF game regardless of the
choices of the ∀-player, there is a true literal l j,k in F j , k ∈ {1,2,3}. If l j,k = xi , i ∈ {1, . . . ,n}, then
f (x(Gi)) = T W and (x(Gi), v(F j)) ∈ E(G Q ), so W can make the move x(Gi) →W v(F j). If l j,k = xi ,
then f (y(Gi)) = T W , (y(Gi), v(F j)) ∈ E(G Q ) and the move y(Gi) →W v(F j) is possible. Note that if
x(Gi) or y(Gi) belongs to a black component, then (because Q is true) W always has a possibility to
make the above move in such a way that it holds f (v5(Gi)) = T B or f (v6(Gi)) = T B (or equivalently,
no move v5(Gi) →B v4(Gi) or v6(Gi) →B v4(Gi) occurred during the game in Gi ). If B can make a
move then it must be v7(Gk) →B v5(Gk) or v8(Gk) →B v6(Gk) for some k ∈ {1, . . . ,n}, but then W
responds x(Gk) →B v7(Gk) or y(Gk) →B v8(Gk), respectively. The above holds for each index k. No
other moves are possible, so W wins the game.

Let now W have a winning strategy. By the induction hypothesis we have that when the blocking
game leaves a component Gi−1, then the values of x1, . . . , xi−1 are selected in the QBF game. By (iii),
no moves along the edges of G j , j < i, will be done during the remaining part of the game, which is
consistent with the fact that changing the values of the variables x j , j < i, is not allowed in the QBF
game. If i is odd, then the ∃-player, mirrors the way W plays in the white component as follows: he
sets xi to be true if we have the move y(Gi) →W v4(Gi) during the game in Gi , while he decides xi

to be false otherwise, i.e. if there is a move x(Gi) →W v4(Gi) during the game in Gi . If i is even, then
the ∀-player assigns a Boolean value to xi arbitrarily. The game leaves Gn and we have the moves
w →W s(Gn), v(F j) →B w for some j ∈ {1, . . . ,m}. The black player chooses j arbitrarily and, since
W has a winning strategy, there is possible a move

x(Gi) →W v(F j) or y(Gi) →W v(F j) for some i ∈ {1, . . . ,n}. (8)

If Gi is a black component and f (v5(Gi)) = ∅ or f (v6(Gi)) = ∅ then a move v7(Gi) →B v5(Gi) or
v8(Gi) →B v6(Gi), resp., is possible and B has a win. However, B could make this move while the
game was in Gi and force W to make, respectively, x(Gi) →W v7(Gi) or y(Gi) →W v8(Gi). This will
make the move in (8) impossible and give the black player a different winning strategy. This justifies
our earlier assumption that if the moves (5) and (6) are possible then they can be done when the
game is in G j . From the construction of the strategy for W we have that there is a literal xi = true
in F j or a literal xi = true in F j , respectively, as a result of the QBF game, regardless of the choices
made by the ∀-player during the game.

Observe that |V (G Q )| = 7n/2 + 11n/2 + m + 2, so this is a polynomial reduction. This proves
PSPACE-hardness of node blocking. One can argument that G Q is acyclic which implies that the game
is in PSPACE. �
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4. Planar instances

In the following we describe a modification that can be applied to G Q to obtain a new graph,
which is planar and simulates the QBF problem. Define

C = {(
u, v(Fi)

) ∈ E(G Q ): i = 1, . . . ,m
}
,

i.e. C is the set of arcs of G Q between the vertices x(Gi), y(Gi), i = 1, . . . ,n and v(F j), j = 1, . . . ,m.
The subgraph of G Q containing the arcs in E(G Q ) \ C is clearly planar. We skip here a formal descrip-
tion of an embedding of G Q in the plane—we assume that if two arcs are intersecting then they both
belong to C , and it is a straightforward fact to prove (see Fig. 2 for an example). Moreover, the set C
has the following property, assuming that G Q is in the initial state:

(u, v) ∈ C ⇒ (
f (u) = T W ∧ f (v) = T B

)
. (9)

Now we define a gadget, denoted by H , used to modify G Q in order to eliminate arc intersections.
We have

V (H) = {a,b, c,d} ∪ {u1, . . . , u8},
E(H) = {

(a, u1), (u1,b), (b, c), (b, u2), (u3,d),

(u2, u3), (u2, u4), (u3, u5), (u4, u5), (u6, u4), (u5, u7), (u8, u6)
}
.

The initial state of H is: f (a) = f (b) = f (u1) = f (u2) = f (u3) = T B , f (u7) = ∅ and the remaining
vertices of H are occupied by white tokens. The digraph H and its initial configuration are given in
Fig. 4(a).

We apply the following modification to G Q as long as there are intersecting arcs e1 =
(v1, w1), e2 = (v2, w2) in C . We remove e1 and e2 from G Q and we place a copy of the graph H at
the intersection point. Then, e1 is replaced by (v1,a), (d, w1) while e2 is replaced by (v2,b), (c, w2).
The new set C is

(
C \ {e1, e2}

) ∪ {
(v1,a), (d, w1), (v2,b), (c, w2)

}
. (10)

This process is illustrated in Figs. 4(b) and 4(c). We have the following.

Lemma 2. If C satisfies (9), then the new set C given in (10), obtained by the above modification, also satis-
fies (9). �

We will use the symbol G ′
Q to denote the planar graph obtained from G Q by a series of the

above modifications (G Q will refer to the original (non-planar) graph). When one of the white tokens
occupying c or d has been moved along the arc outgoing from c or d, respectively, then we say that
the game arrives at H . Similarly, the game leaves H if one of the vertices a,b has been occupied by a
token which initially does not belong to H . If the game arrived at H , but did not leave H , then we
say that the game is in H .

Observe that if the game did not arrive at a subgraph H then the only move that can be performed
along an arc of H is u5 →W u7. Now we prove that the white player does not contribute by making
this move when the game is not in H .

Lemma 3. Let a configuration of tokens in G ′
Q be given, such that H ⊆ G ′

Q is in the initial configuration, or
in the configuration obtained from the initial one by setting f (b) = T W and f (c) = T B . If W has a winning
strategy, then W has a winning strategy that does not perform a move u5 →W u7 in H while the game is not
in H.

Proof. Suppose that the thesis does not hold, i.e. W has no winning strategy that does not make a
move u5 →W u7 in a subgraph H ⊆ G ′

Q while the game is not in H . We prove that W does not win
by performing this move.
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Fig. 4. (a) The subgraph H with its initial configuration; (b) two intersecting arcs; (c) using H to eliminate arc intersections.

Fig. 5. (a) if the game started with c →W v , then W should not play u5 →W u7; (b) a configuration after 5 moves following
d →W v .

Assume first that H in the initial configuration. The B ’s response to u5 →W u7 is u3 →B u5 which
leads to such a situation that W cannot move a token along an arc of H until the game is in H . So,
the game continues and if it never arrives at this particular component H then (by assumption) B is
the winner. On the other hand, if the game arrives at H then, by Corollary 2, this happens as a result
of one of the two moves: c →W v or d →W v for some v ∈ V (G ′

Q ) \ V (H). The response is u2 →B u3
in both cases and W cannot make a move.

If H is not in the initial configuration, i.e. f (b) = W , then we have a situation when the game
already was in H . (By the construction of G ′

Q , the game cannot arrive at the same component H
more than once.) So, after the moves u5 →W u7 and u3 →B u5 the white player cannot respond. �

Similarly as in the case of Gi ’s we will analyze the flow of the game for H when it arrives at H .

Lemma 4. If the game arrives at H as a result of move c →W v (d →W v) for some v ∈ V (G ′
Q ), then the

game leaves H with a move u →W b (u →W a, respectively) for some u ∈ V (G ′
Q ). Moreover, if p ∈ {B, W }

has a winning strategy when the game arrives at H then p has a winning strategy when the game leaves H.

Proof. In the case of c →W v the black player performs b →B c. If W plays u5 →W u7 (by Lemma 3
this move did not occur before), then B wins as follows: u1 →B b, u4 →W u5, u2 →B u4 and W
cannot continue (this final configuration of tokens is shown in Fig. 5(a)). So, as a response to b →B c,
W plays u →W b for some u ∈ V (G ′

Q ) and the game leaves H . By Lemma 3, no other moves will be
done in H during the game.

Assume now that the game arrives at H by a move d →W v , v ∈ V (G ′
Q ). Then, the following

must occur: u3 →B d, u5 →W u7, u2 →B u3, u4 →W u5, b →B u2. Fig. 5(b) depicts the resulting
configuration of tokens. So, W has a choice: he can either play u →W b for some vertex u ∈ V (G ′

Q )

or u6 →W u4. In the former case B plays u2 →B u4 and W responds by b →W u2. Then, u1 →B b.
The result is that W cannot proceed, because it follows from the construction of G ′

Q that for all the
vertices u′ such that (u′, u) ∈ E(G ′

Q ) we have f (u′) 	= T W . In the latter case, i.e. u6 →W u4, we have
the sequence of moves u1 →B b, u8 →W u6, a →B u1, u →W a for some u ∈ V (G ′

Q ). So, the game
leaves H and the thesis follows. �
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Theorem 2. Node blocking is PSPACE-complete for planar directed acyclic graphs.

Proof. By Lemma 3 and Theorem 1 we have that the game simulates assigning Boolean values to the
variables and when they all are set then B makes a move v(F j) →B w . In the original graph G Q the
white player has a winning strategy if and only if he could perform one more move by choosing a
vertex v ∈ {x(Gi), y(Gi): i = 1, . . . ,n}, occupied by a white token, and sliding the token along an arc
(v, v(F j)). Different subgraphs H in G ′

Q will be distinguished by their indices, i.e. we have subgraphs
Hk , k = 1, . . . ,h, in G ′

Q . To refer to a vertex u ∈ V (Hk) we will write u(Hk).
By the transformation of G Q into G ′

Q , each arc (v, v(F j)) ∈ E(G Q ) corresponds to a sequence of
arcs

(v, s j1), (t j1 , s j2), . . . , (t jl−1 , s jl ),
(
t jl , v(F j)

)
(11)

of G ′
Q , where jk ∈ {1, . . . ,h}, the values of jk are pairwise different, and

(
s jk = a(H jk ) ∧ t jk = d(H jk )

) ∨ (
s jk = b(H jk ) ∧ t jk = c(H jk )

)
(12)

for each k = 1, . . . , l. By Lemma 4, if the game arrives at H jk , k ∈ {1, . . . , l}, as a result of mov-
ing the token occupying d(H jk ) (respectively c(H jk )), then the game has to leave this subgraph by
a move u →W a(H jk ) (u →W b(H jk ), respectively) for some u ∈ V (G ′

Q ). By Lemma 3, no moves
along the arcs of H jk will be performed once the game leaves H jk . By (11) and (12) we have that
u ∈ {d(H jk−1 ), c(H jk−1 )}. We obtain that if the game leaves H jk , k > 1, then it arrives at H jk−1 . If k = 1
then the game leaves H j1 by a move v →W s(H j1 ), s(H j1 ) ∈ {a(H j1 ),b(H j1 )}. So, the white player
makes the last move v →W v(Fi) in the game on G Q and wins the game if and only if W makes the
last move v →W s(H j1 ) in G ′

Q . �
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