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Abstract--Two vasa recta models of the renal concentrating mechanism are presented. It is 
shown that by considering the effects of ascending vasa recta permeabilities, interstitial resistance, 
lateral small scale histotopography, and standard deviations in permeability values, these models lead 
to significant improvements in collecting duct urea and salt concentration ratios. (~) 1998 Elsevier 
Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

The composition of body fluids of mammals is maintained within very narrow limits. One of the 
primary organs for this purpose is the kidney. 

A lengthwise cross-section of the kidney reveals two distinct regions: the cortex and the medulla 
(see Figures 1 and 2). The medulla is further subdivided into the outer and inner parts; and it 
contains the loops of Henle (which turn at different levels) and the collecting ducts. The renal 
corpuscles, and the proximal and the distal tubules reside in the cortex. Blood enters the kidney 
and is filtered at the renal corpuscle. The resulting ultrafiltrate then flows successively through 
the proximal tubule (which winds around the renal corpuscle), Henle's loop (the descending 
(DHL) and ascending (AHL) parts are joined by a hairpin turn), the distal tubule (which winds 
around in the cortex and makes contact with the Juxta-glomerular apparatus related to the renal 
corpuscle), and the Collecting Duct (CD) which is connected to the renal pelvis. The ultrafiltrate 
then enters the ureter, empties into the bladder, and finally exits the body through the urethra 
as urine. The final urine may be either more or less concentrated than plasma or other body 
fluids. Until the ultrafiltrate reaches the renal pelvis, the tubules (proximal tubule, Henle's loop, 
distal tubule, and collecting duct) may selectively exchange solutes and water through the tubule 
walls with the surrounding interstitium. Blood also flows down into the medulla and then back 
to the cortex through the vasa recta (DVR and AVR). This retrieves the water and solutes 
absorbed from the tubules. This selective reabsorption and secretion adjusts the composition 
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Figure 1. Kidney cross section. Figure 2. Schematic of nephrons and collecting duct. 

of the interstitial fluid bathing the cells of the body. This fluid is maintained within the strict 
tolerances necessary for life. See [1-7] for more details and an extensive list of references. 

Mathematical models are necessary in the testing many of the basic ideas leading to our un- 
derstanding of renal concentrating mechanism [8-14]. Computer models that use experimentally 
available parameters have generated concentration gradients in the outer medulla but not in 
the inner medulla. How the inner medulla concentrates urine is still one of the major unsolved 

problems in renal physiology. 

In this paper, we describe two models M1 (Figure 3) and M2 (Figure 4). M1 results by 
incorporating, in our seven tube vasa recta model [14] (called M0 in the present paper), more 
realistic and comprehensive direct interactions between each of the tubes (DHL, AHL, and CD) 
and the vasa recta (AVR's). M2 is a result of allowing, in M1, preferential interaction between 
each of the tubes (DHL, AHL, and CD) and the vasa recta (DVR). The role of interstitium 
and permeability ramps is also investigated. In our previous paper [14], we showed that, if 
suitable modifications are made to a few carefully selected subset of the parameters, then the 
vasa recta models lead to the same osmolality and concentration ratios as our central core models 
[11,12,15]. In the present paper, we show that by choosing the permeabilities within the ranges 
of experimentally known results and realistic input values, all models (M0, M1, and M2) yield 
concentration ratios for the CD that are closer to the experimental values than the values obtained 
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Figure 3. Seven tuber model (M1). 



Numerical Solutions 

AVR2 DVR DHL AHL AVR1 AVR3 CD 

71 

Axial Flows Trsnsmural Fluxes and Shunts 

Figure 4. Seven tube model with preferential interaction (M2). 

from past models. The salt and urea concentrations of the output  from CD are well within the 
ranges of values given in [16]. 

2. SEVEN TUBE MODEL (M1) 

In most of the current models, the primary reason for having DHL, AHL, and CD interact 
transmurally with only AVR's is due to the relatively large permeabilities of AVR's. In view 
of the available pictures of the cross sections of the inner medulla (for example see [5, p. 540, 
Figure ld]), it seems reasonable to consider the relative proximity of other tubes. Therefore, 
adding more transmural fluxes to our earlier model M0 (see [14, Figure 3]), we get model M1, 
shown in Figure 3. In this model, DHL now interacts, not only, with AVR1 and AVR3, but also, 
with AVR2. New transmural interactions between CD and AVR2 have also been included. 

Let i = 1, 2, 3, 4, 5, 6, and 7 denote, respectively, DHL, AHL, CD, AVR1, DVR, AVR2, and 
AVR3, and x be the distance measured from the top (x = 0) to the bottom (x = 1) of the inner 
medulla. The variables are: F~v(x) = axial volume flows, C~k(X) = solute concentrations, where 
k = s (salt), u (urea). The entering flows and concentrations F~(0),  C~k(0), i -- 1,3, 5, k = s, u 
are given. At x = 1, DHL (Tube 1) makes a hairpin turn to become AHL (Tube 2) and, therefore, 
F2v(1) = - F l y ( l )  and C2k(1) = Clk(1). Also, at x = 1, DVR (Tube 5) makes a hairpin turn to 
become AVR1 (Tube 4), AVR2 (Tube 6), and AVR3 (Tube 7), and, therefore, C4k(1) = Csk(1) = 
Csk(1) = CTk(1), F4v(1) = -74Fsv(1), FTv(1) = -77Fsv(1), and For(1) = -(I - 74 - -  77)Fsv(1), 
where 74 and 77 are, respectively, the fractions of DVR volume flow going to AVRI and AVR3. 

The differential equations are [14] 

dF,~, 
d---"x- + g ~ ( x )  = O, (1) 

d( F~vC, k ) 
+ Jik(x)  = O, (2) 

dx 
dF~k 

d'---x + J~k(x) = 0, (3) 

where Jiv (x) and Jik (x) are, respectively, transmural volume and solute fluxes. Ji,,(x) and J,k (x) 
are functions of only Cik(x) ,  i = 1, 2, 3, 5, and Cav,k(X), av = 4, 6, 7. We have 

Jiv(x)  = h~,,(x) E RT[Ca~,k(x)  - C~k(x)]a~k(X), k = s ,u ,  (4) 
k 

Jik(X) = J~.(x)[1 - ask(X)] C~a(x) + Cav,k(X) + hik(x)[Cik(x)  -- Cav,k(X)], k = s, u, (5) 
2 

where ark is the Staverman reflection coefficient of the wall of the ith tube for the k th solute, 
hia is its passive permeability for the k th solute, h~v is its hydraulic permeability coefficient, R is 
the gas constant, and T is the absolute temperature. 
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Mass balance requires that  

7 7 

Z Jiv(x)  = O, ~ J ,k(x)  = O. (6) 
i----1 i----1 

If we set h = l / n ,  x j  = (j - 1)h, where j = 1 , . . . ,  n + 1; Fi• = F~v(xi), Fikj = F~a(xi), and 
C~kj = C~k(xj), then, as shown in [17], integrating (1)-(3) and using the boundary conditions we 
get a system of nonlinear algebraic equations, which can be written as 

I (y ,  z) = 0, (7) 

g(y, z) = 0, (s) 

where y = (C~kj), i = 1,2,3, k = s,u;  for i = 1,3, j = 2 , . . . , n +  1 and for i = 2, j = n, n -  1, 
. . . , 1 ;  z = (Fsvj ,Ci~j) ,  k = s ,u;  for i = 4,6,7, j = 1 , . . . , n ,  and for i = 5, j = 2 . . . . .  n + l .  
Therefore, in equations (7) and (8), for this model, f ,  y E R 6n and g, z E R 9n. The basic equations 
and variables are the ones associated with DVR, AVR1, AVR2, and AVR3. 

As shown in [17] and [18], the nonbasic variables y are expressed as a functions of the basic 
variables z by solving the nonbasic equations f ( y ( z ) ,  z) = 0 for y(z) .  This leads to an efficient 
algorithm for the basic equations g(y(z) ,  z) = 0 for z. 

3. SEVEN TUBE MODEL WITH 
PREFERENTIAL INTERACTION (M2) 

By considering the total transmural connectivity between all tubes, we get the model shown 
in Figure 4. For this model, we let y = (C~kj), i = 1,2, 3, 4, 5, 6, 7, k = s, u; for i = 1, 3, 5, j = 2, 
. . . , n + l ,  a n d f o r i  = 2,4,6,7,  j = n , n - 1 , . . . , 1 ;  z = (Fsvj ,C~j) ,  k = s,u;  fo r i  = 2,4,6,7,  j = 
1 , . . . , n ,  and for i = 1,3,5, j = 2 , . . . , n  + 1. Therefore, in equations (7) and (8), nonbasic 
equations and variables f ,  y E R lan and basic equations and variables g, z E R 15n. 

Using the picture of the cross section of the inner medulla [5], we define a distance ]'unction 
Amj, between the pth and i th tubes at the jth level, to calculate the transmural fluxes. The 

rationale for doing this is given in [5]. 

"The importance of axial and lateral compartmentalization of the medulla in general 
for the process urine concentration seems indisputable, . . . .  Our fundamental assump- 
tion is that  patterns of solute and water exchange among tubules and vessels in the IM 
are determined not only by specific membrane permeabilities and concentration differ- 
ences but also by the small scale histotopography of the region. As a result of their 
locations either distant from one another or on opposite sides of interposed structures, 
the likelihood of significant solute or water exchange between some tubules and ves- 
sels is decreased (that is, they are separated from each other). Since the AVR are net 
reabsorbers of water--having significant exchange not just with DVR (in classical coun- 
tercurrent exchange), but also with CD and possibly DHL-- the i r  interposition between 
other structures could influence water and (indirectly) solute exchanges." 

The formulas for the distance functions for DHL were derived as follows. Let AI~, i = 
2, 3, 4, 5, 6, 7, be the relative distances between DHL and the i t h  tube (obviously, i ~ 1). From 
[4,19], the number of loops (in CD and vasa recta) has to be equal to the value of distance 
function for DHL (AHL, CD, and vasa recta) at each level j ,  let 

7 

Ai,  =  tpj, (9) 
i = 2  

7 

T1 = ~ A-~, 1, A~O ~- A 51n lp ia ,  (10) 
i=2  
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where a is a proportionality constant, nlpj is the number of loops at level j,  and therefore, 
from (9) and (10), 

-1  1 
X l q  = AI~ nlpj-~l ,  i = 2,3 ,4 ,5 ,6 ,7 .  (11) 

Now, we derive formulas for AHL. Let A2~, i = 1, 3, 4, 5, 6, 7, be the relative distances between 
AHL and other tubes i. Let 

7 

AI2q = nips - AI2xj, 
i=3 

7 

A~I ~ = Ai2 j, (12) 

= A -1 T2 ~ 2~ , A~2q = A~/lnlp38, (13) 
i=3  

where 6 is a proportionality constant and A~q is the value of distance function at each level for 
AHL. From (12) and (13), 

7 

Z A2ilnlpi6 = nlpi -- AI2U ' (14) 
i=3  

1 
nlpi6 = [nlpj - A~U ] "~2" (15) 

Therefore, 
A' A' 1 2 q = A 2 , 1 [ n l p i  - 21j] ~-~2, i = 3 ,4 ,5 ,6 ,7 .  (16) 

Next, we derive formulas for CD. Let A3i, i = 1, 2, 4, 5, 6, 7, be the relative distances between 
CD and other tubes i. Let 

7 

A~/j = ncdj - A~x ~ - A~2j, 
i = 4  

7 

A~I i ' ' ' (17) = A 1 3 j ,  A32j = A 2 3 i ,  

i=4  

where ~/is a proportionality constant, ncd i is the number of CD's at level j ,  and A~q is the value 
of distance function at each level for CD. From (17) and (18), 

Therefore, 
1 

A~q = A3/1 [ncdj - At31i - A~2j] ~33' 

Formulas for DVR can be derived in a similar manner. 
each level for DVR, are 

1 
A~q = A ~  1 [nvrj - A~,j  - A~2 i - A~3i] ~ ,  

where nvrj  is the number of vasa recta at level j ,  and 

Ts = A ~  + A ~  + A~, 

Atslj = Atlsj, 

7 

i=4  
1 

i = 4, 6, 7, (22) 

(23) 

A~2 ~ = A~5~, A~3 j = A~5~, (24) 

(19) 

(20) 

i=4 ,5 ,6 ,7 .  (21) 

A~q, values of distance function at 

T3 = Z A3~l' A~3q = A3iXncd/7, (18) 



74 I. H. MOON AND R. P. TEWARSON 

Table I. Relative distances Api for M2. 

DHL (1) 

AHL (2) 

CD (3) 

DVR (5) 

AVR1 (4) 

AVR2 (6) 

DHL (1) AHL (2) CD (3) DVR (5) AVR1 (4) AVR2 (6) AVR3 (7) 

1.5 2.5 1.5 1.0 2.5 2.0 

1.5 3.0 1.0 1.5 3.0 

4.0 2.0 1.0 4.0 

2.0 4.5 1.0 

2.0 2.0 

4.0 

Table 2. Parameter  values with s tandard deviations. 

DHL - Upper 

- Lower 

AHL - Upper 

- Lower 

CD - Upper 

- Lower 

D V R -  Upper 

- Lower 

Unnormalized Values 

hw x 10 - s  hs x 10 -5 h~, x 10 -5  

25.08 4- 6.47 3.50 4- 1.2 13.50 4- 6.5 

25.08 4- 6.47 3.50 4- 1.2 13.50 4- 6.5 

0.18 ± 0.144 79.60 4- 3.6 22.80 4- 4.5 

0.18 4- 0.144 79.60 4- 3.6 22.80 4- 4.5 

1.095 ::h 0.37 0.00 4.10 4- 0.7 

1.535 4- 0.24 1.18 4- 0.24 69.20 4- 15.2 

106.40 75.00 + 10.00 76.00 4- 11.00 

106.40 75.00 =h 10.00 76.00 4- 11.00 

0.99 =h 0.04 0.97 :£ 0.04 

0.99 4- 0.04 0.97 4- 0.04 

1 1 

1 1 

1.00 4- 0.05 1 

1.00 :h 0.05 1 

0.017 0.07 

0.017 0.07 

Table 3. Unnormalized and normalized parameter  values. 

Unnormalized Values Normalized Values 

hw x 10 -5 hs x 10 -5  hu x 10 -5 hw hs hu as au 
DHL - Upper 25.2508 3.50 13.635 0.0049119 0.5174388 2.0157937 0.99 0.97 

- Lower 25.08 3.50 13.50 0.0048787 0.5174388 1.9958353 0.99 0.97 

A H L -  Upper 0.18 79.60 22.572 0.0000350 11.768037 3.3370367 1.00 1.00 

- Lower 0.18 79.60 22.80 0.0000350 11.768037 3.3370367 1.00 1.00 

CD - Upper 1.095 0.00 4.10 0.0003195 0.0 0.9092139 1.00 1.00 

- Lower 1.535 1.18 69.20 0.0004479 0.2616762 15.345756 1.00 1.00 

D V R -  Upper 91.0313 75.75 74.25 0.0159372 10.078968 9.8793849 0.017 0.07 

- Lower 90.13 75.00 75.00 0.0157794 9.9791767 9.9791767 0.017 0.07 

w h e r e  A5~, i = 4, 6, 7, a r e  t h e  r e l a t i v e  d i s t a n c e s  b e t w e e n  D V R  a n d  i. T h e  v a l u e s  for  t h e  r e l a t i v e  

d i s t a n c e s  b e t w e e n  a l l  t u b e s  a r e  s h o w n  in  T a b l e  1. 

4. C O M P U T A T I O N A L  RESULTS 

I n  T a b l e  2, w e  h a v e  s h o w n  p e r m e a b i l i t i e s  a n d  r e f l ec t i on  coef f ic ien ts .  T h e s e  v a l u e s  a r e  r e a d i l y  

a v a i l a b l e  [20-27] .  

I n  T a b l e  3, we s h o w  t h e  u n n o r m a l i z e d  p e r m e a b i l i t i e s  ( s e l e c t e d  w i t h i n  t h e  r a n g e s  of  v a l u e s  in  

T a b l e  2) a n d  t h e  c o r r e s p o n d i n g  n o r m a l i z e d  va lues .  T h e  n o r m a l i z a t i o n  w a s  d o n e  as  fol lows.  L e t  

2~rl~ri 
N, = flv--'-'-~' i = 1 , . . . , 5 ,  (25) 

w h e r e  li a n d  r i  d e n o t e ,  r e s p e c t i v e l y ,  t h e  l e n g t h  a n d  r a d i u s  of  t h e  i th  t u b e ,  i = 1 , . . . ,  5, a n d  Fly1 

is t h e  a m o u n t  o f  v o l u m e  flow a t  t h e  t o p  (x  = 1) o f  D H L .  T h e  n o r m a l i z e d  p e r m e a b i l i t i e s  a r e  g i v e n  

by 

norm N~h~,~j (26)  
h~,v,j = 760 ' 

n o r m  = = ( 2 7 )  h~,kj Nih~,kj, k sa l t ,  u r ea .  
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Let haw ,  hays, and havu be AVR hydranlic, salt and urea permeabilities [1-5,22-25]. We used 
harmonic means [28], for calculating the composite permeabilities to account for the effect of 
AVR and interstitial permeabilities 

hihv (28) 
hiv = hi + hp" 

The composite reflection coefficients between two membranes were calculated by [29] 

a~h v + aphi 
a = , (29) 

hi + h v 

where ai and a v are the reflection coefficients, and hi and h v are permeabilities of the i th and pth 

membranes, respectively. 
Let hlw, hls, and hlu be interstitial normalized hydraulic, salt and urea permeability functions. 

The rationale for using interstitial permeability functions is as follows. Interstitial spaces in the 
inner medulla are 15% by volume in rat, 20%-25% in rabbit at the top and 30% in rat, 40% 
in rabbit at the tip. Thus, there is approximately a two fold increase from the top of the inner 
medulla to its tip. It is pointed out in [4], that  the interstitial cells are arranged like rungs 
of a ladder between parallel running tubules or vessels. In [2, Figure 12.8], light and electron 
micrographs of these lipid laden interstitial cells of the inner medulla are given. We posit that  
this inhibits, not only, axial diffusion in the interstitium, but also the transmural fluxes between 
tubules. The interstitial cells cover part of the tubule walls and it is also reasonable to assume 
that  there is some resistance to lateral diffusion. Therefore, in order to approximate the effect 
of resistance to the lateral movement of water, salt and urea in the interstitium, we used the 
maximum permeabilities from all the tubes as approximations for the interstitial permeability 
functions. 

Using the composite permeabilities (computed from Table 3), and the boundary values (esti- 
mated from [2,30]) shown in Table 4, we get the results in Table 5. 

Table 4. Estimated boundary values from [2,30]. 

DHL (1) CD (3) DVR (5) 

Volume Flow, 10 -7  ml/sec 1.76 0.12 2.16 

NaCl Concentration, mmol/ml 0.212 0.117 0.053 

Urea Concentration, mmol/ml 0.035 0.195 0.674 

Table 5. Osmolality and conc. ratios using AVR permeabilities and interstitial per- 
meability functions. 

M1 

M2 

DHL (Tube 1) CD (Tube 3) 

havw hays havu hlw his hlu Osm. Salt Urea Osm. Salt Urea 

co co co co co co 1.873 1.231 9.946 1.928 2.199 1.633 

1185.0 125.0 131.0 co co co 1.825 1.129 9.499 1.872 1.958 1.777 

1185.0 125.0 131.0 0.0158 11.768 9.9792 1.857 1.093 10.286 1.899 1.814 1.992 

co co co co co co 1.930 1.210 9.870 1.981 2.112 1.838 

1185.0 125.0 131.0 c¢ co co 1.831 1.065 10.268 1.874 1.768 1.990 

1185.0 125.0 131.0 0.0158 11.768 9.9792 1.832 1.027 10.706 1.876 1.651 2.122 

In Table 5, the first and fourth lines are the initial results that  use infinite AVR and interstitial 
permeabilities. The osmolality, salt and urea concentrations ratios between bottom (x = 1) and 
top (x = 0) are given in the last six columns. It is evident that,  for both M1 and M2, the urea 
concentration ratios increase if AVR permeabilities and interstitial permeability functions are 
included in the computational process. 
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If the standard deviations in the parameter values, given in Table 2, are used to put  linear 
ramps with positive slopes on the urea permeabilities, then we get the results shown in Table 6. 
In this case, by comparing the first and fourth lines, and also, the fifth and eighth lines, we see 
that  there is some improvement in the urea concentration ratios in CD. 

Table 6. Osmolality and concentration ratios with linear ramps on permeabilities. 

M1 

M2 

Z~hAHL ahDRV 

0 0 

1.5 x 10 - 5  0 

0 i i . 0  x I0 - s  

1.5 x 10 -5  I i .0  x 10 - 5  

0 0 

1.5 x 10 -5  0 

0 i i . 0  x 10 -5  

1.5 x i0 -5  i i . 0  x 10 -5  

DHL (Tube 1) 

Osm. Salt Urea 

1.853 1.197 9.087 

1.860 1.201 9.126 

1.913 1.211 9.648 

1.919 1.215 9.684 

1.726 1.033 9.368 

1.731 1.035 9.401 

1.738 1.034 9.496 

1.743 1.037 9.528 

CD (Tube 3) 

Osm. Salt Urea 

1.909 2.139 1.657 

1.916 2.146 1.664 

1.970 2.161 1.762 

1.976 2.167 1.768 

1.775 1.824 1.722 

1.780 1.829 1.727 

1.788 1.826 1.745 

1.793 1.831 1.751 

Finally, we varied the relative distances from those in Table 1 to those given in Table 7. The 
resulting concentration ratios are also given in Table 7. Comparing the last three entries of the 
fifth line in Table 6 with the corresponding entries of the third line in Table 7, we see that  there 
is again some improvement in the concentration ratios for CD. 

Table 7. Relative distances Ap~ and the corresponding osm. and con. ratios from M2. 

DHL AHL CD DVR AVR1 AVR2 AVR3 Osm. Salt Urea 

DHL (1) - 85 85 1.5 1.0 2.5 2.0 1.748 1.021 9.764 

AHL (2) - - 85 3.0 1.0 1.5 3.0 

CD (3) - - - 4.0 2.0 1.0 4.0 1.800 1.820 1.778 

DVR (5) . . . .  2.0 4.5 1.0 

AVRI (4) . . . . .  2.0 2.0 

AVR2 (6) . . . . . .  4.0 

5. C O N C L U D I N G  R E M A R K S  

It was pointed out in the first section that  M1 was obtained from M0, our previous seven tube 
model described in [14]. The rationale for the development of M0 was to show that ,  with only 
minor variations in the parameter values, vasa recta models lead to similar osmolality and con- 
centration ratios as the central core models [11,12,15]. The parameters used for model M0 in [14] 
had lead to, respectively, 1.537, 5.937, and 0.617, as the osmolality, salt and urea concentration 
ratios for CD. For the new set of parameters presented in this paper, the corresponding values 
from M0 are 1.820, 2.082, and 1.533. Clearly, this is a significant improvement. The salt and 
urea concentrations at the bot tom of CD are, respectively, 0.229 and 0.347 mmol/ml,  which are 
well within the ranges of values given in [16]. Furthermore, it follows from the last three entries 
of the first line in Table 5, that  M1 leads to further improvements in the concentration ratios. 

In Table 5, comparing the first and second lines, and also the fourth and fifth lines, it is clear 
that  incorporating the AVR permeabilities in both models, M1 and M2, CD urea concentration 
ratios increase and CD salt concentration ratios decrease. Furthermore, comparing the second and 
third lines, and also, the fifth and sixth lines, we see that  the inclusion of interstitial permeability 
functions leads to additional improvements. These are very desirable results in terms of the renal 
concentrating mechanism since they are closer to the currently known experimental values than 
the results from previous models. 

We have also shown in Table 6 that  a linear ramp on permeabilities, using the standard devi- 
ations from Table 1, also leads to some improvements in the concentration ratios. Furthermore, 



Numerical Solutions 77 

changing the distance functions between the tubes, from the values in Table 1 to Table 7, also 

leads to some improvements shown in the last three columns of Table 7. 

Using permeabilities, reflection coefficients and boundary values that are within the ranges of 

experimentally known results, we have shown that our models give realistic concentration profiles 

and outputs. 
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