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The effects of traffic mix (the percentage of cars, trucks, buses and so on) are of particular interest in the speed-volume relation-
ship in urban signalized arterials under various geometric and control characteristics. The paper presents some empirical observa-
tions on the relation between travel speed, traffic volume and traffic composition in urban signalized arterials. A methodology based 
on emerging self-organizing structures of neural networks to identify regions in the speed-volume relationship with respect to traffic 
composition and Bayesian networks to evaluate the effect of different types of motorized vehicles on prevailing traffic conditions is 
proposed. Results based on data from a large urban network indicate that the variability in traffic conditions can be described by eight 
regions in speed-volume relationship with respect to traffic composition. Further evaluation of the effect of motorized vehicles in each 
region separately indicates that the effect of traffic composition decreases with the onset of congestion. Moreover, taxis and motor-
cycles are the primary affecting parameter of the form of the speed-volume relationship in urban arterials.

Key Words: Speed-volume relationship, Urban signalized arterials, Traffic composition, Emergent self-organizing maps, Bayesian 
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1. INTRODUCTION AND OBJECTIVES

Mathematical relationships between speed and vol-
ume measurements are considered fundamental to traffic 
operations. Their importance lies in speed being an es-
sential indicator of freeway service quality; it is used as a 
congestion or mobility indicator in freeways and it is a 
parameter of primary importance in advanced traveler in-
formation systems. Moreover, the functional form of the 
speed-volume relationship provides valuable information 
regarding the onset of congestion and incidents1.

Most efforts in constructing mathematical relation-
ships between speed and volume measurements are ap-
plicable to uninterrupted flow conditions (particularly in 
freeways)2,3. From a methodological standpoint, starting 
with the Greenshields model4, various models and ap-
proaches have been developed to approximate the func-
tional form of the speed-volume relationship; among 
them are the model-based5-10, macroscopic through curve 
fitting11,12, regression1 and simulation approaches13,14. 
Regardless of the method used or the mathematical func-
tion utilized, the literature agrees on certain findings; 
speed-volume relationship has the free-flow and congest-

ed branches and a middle area where sudden speed 
changes occur15-17. Although the discontinuous form of 
the speed-volume relationship is widely supported, the 
critical points at which speed changes suddenly or transi-
tions to congestion occur have not been fully resolved1,7,16. 
This is probably due to the difficulty in establishing rela-
tionships between speed and volume that can account for 
traffic’s spatiotemporal evolution, geometric and envi-
ronmental condition variability11,18.

The above comment is critical in urban arterials; 
the speed-volume relationship can be described as com-
plex because of the mixed traffic conditions and transi-
tional nature of the functional relationship that governs 
most traffic variables (volume, speed, occupancy and so 
on); This is, at least in part due to the effect of traffic com-
position that is the mix of passenger cars, trucks, buses 
and so on19. Traffic flow in urban signalized arterials is 
characterized by a high degree of manoeuvrability and 
lane changing, a result of the interaction of fast-moving 
and slow moving vehicles14. In urban areas, mixed traffic 
is also affected by substantial pedestrian movement, vio-
lation at intersections, taxi circulation, on-street parking 
and narrow roads. This heterogeneity of traffic flow im-
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posed by traffic’s composition is recognized in various 
fields of urban traffic operations particularly near urban 
signalized intersections (for example saturation flow esti-
mation, delay at signalized intersections and so on)14, 20-

22. These approaches are related to specific geometric and 
control conditions. Moreover, in most of these studies, 
only the effect of trucks in traffic flow is considered10,23. 
The combined effect of traffic’s composition in urban 
traffic flow has not been treated in the literature.

 The present paper utilizes a data-driven approach 
to evaluate the contribution of different types of motor-
ized vehicles to the various traffic conditions as described 
by the speed-volume relationship. We present a frame-
work based on emergent self-organization and Bayesian 
learning to identify regions in the speed-volume relation-
ship in urban arterials under mixed traffic and evaluate 
the effect of traffic composition in each of the regions 
separately. The remainder of the paper is organized as 
follows: in the next section the proposed methodological 
framework is concisely presented. Then, the implementa-
tion concerning data and algorithmic calibration issues 
and the results are presented. The final section summa-
rizes the findings of the paper and offers some conclud-
ing remarks.

2. METHODOLOGY

The proposed methodology has two goals; first to 
identify prevailing regions on the speed-volume relation-
ship related to traffic composition and, second, to evalu-
ate the influence of traffic composition on each revealed 
speed-volume region. The first step is achieved through a 
neural network approach that aims at revealing the emer-
gent structures in complex traffic datasets by self-organi-
zation. The final step is based on a probabilistic Bayesian 
network. The next two sections will present the concep-
tual and mathematical aspects of the proposed method-
ological framework.

2.1 Relationships between traffic variables by emer-
gence
The problem of relating speed-volume relationship 

to traffic composition is complex due, first, to speed and 
volume’s spatial and temporal variability and, second, 
because traffic composition is time dependent and inho-
mogeneously distributed in an urban network17,20,24-26. 
One of the most robust approaches to revealing complex 
structures in multidimentional data is the Kohonen Self-
Organizing Map (SOM). Given an input dataset {x1, x2, 
…, xd} with xi   D, the SOM training generates a set of 

prototype vectors (output neurons) M = {n1, n2, …, xk} 
(with associated weigh vectors W = {w1, w2, …, wk}) rep-
resentative of the original data and carries out a topology 
preserving projection of the prototypes from the high-
dimensional input space usually onto a two-dimensional 
grid27. Each data point xi is mapped to its best-match neu-
ron bm(xi) = nb    M such that d(x, wb)  d(x, wj) wj    
W, where d is the distance on the data set. Each output 
neuron ni has a set Ni of neighboring neurons on the map. 
This ordered grid can be used as a convenient visualiza-
tion surface for showing different features of the SOM 
(and thus of the data), for example, the cluster structure27. 
Apart from the common approach to utilizing a number 
of output neurons that is significantly smaller that the 
original data, the present paper implements the Emergent 
SOM (ESOM) that utilizes a larger number of neurons 
than original data to replicate the emergent behavior of 
traffic flow. Such use of ESOM has been proven to disen-
tangle cluster structures that are linear not separable28.

The emergent structures characterizing speed, vol-
ume and traffic composition can be observed by account-
ing for the distance of each output neuron from its in-
termediate neighbors in a map called U-matrix29. The 
U-matrix is the graphical representation of the average 
distance uh(i) of ni’s weight vectors to the weight vectors 
of its immediate neighbors Ni

30:

1
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j
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n

= =   ..................(1)

The resulting map is a “landscape” where weight 
vectors of neurons with large uh(i)  are distant from other 
vectors in the data space and weight vectors of neurons 
with small uh(i)  are surrounded by other vectors in the 
data space. The resulting topology can be used to visual-
ize the data structure such as best-matching neurons 
(placed at depressions), outliers (at funnels), cluster 
centers (valleys) end so on. The above graphical repre-
sentation of the emergent structures observed in multi-
dimensional datasets are visualizations of clusters that 
include specific knowledge regarding the relationships 
that govern the data variables under study. Based on these 
structures, algorithms have been developed that produce 
the desired clusters; a simple and efficient way to dis-
cover clusters in an emergent SOM is to segment the 
resulting map by utilizing image processing techniques 
such as a area-filling algorithm in the U-matrix as dis-
cussed31,32.
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2.2 Augmented Naïve Bayesian Network Classifier
By acquiring a set of clusters/ regions of speed-vol-

ume relationship that are influenced by traffic composi-
tion, it is possible to construct a classifier, meaning a 
function that, given a set of features (for example speed, 
volume, traffic composition), can assign data to a specific 
class. This paper implements a probabilistic classifier 
with demonstrated simplicity and predictive performance 
that belongs to the category of Naïve Bayesian Classifi-
ers. A Naïve Bayesian Classifier learns the conditional 
probability of each feature Ai  given the class C; Classifi-
cation is conducted by predicting the class ck that maxi-
mizes P(C = ck | A), for a data vector A, under the restrictive 
assumption that each feature Ai  is conditionally indepen-
dent of every other feature given the class membership33:

( ) ( )k i ki
P C c P A C c= = =A  ...............................(2)

In order to overcome this unfeasible assumption, 
the naïve bayes classifier is implemented in a Bayesian 
network framework; A Bayesian network B = <N, A, > 
is a directed acyclic graph <N, A> where each node n    N 
represents a random variable (a dataset feature for ex-
ample), and each arc a    Abetween nodes represents a 
probabilistic dependency, quantified using a conditional 
probability distribution  i      for each node ni 

34. The 
lack of an arc between random variables denotes inde-
pendency while a node in the network for a variable Ai  
represents the probability of Ai  conditioned on the vari-
ables that are immediate parents of Ai , denoted (Ai ). 
Nodes with no parents represent the prior probability for 
that variable. In a network of the above type the indepen-
dence assumption can be overcome by allowing the net-
work to develop relations between features; an arc from 
Ai  to Aj implies that the influence of Ai on the assessment 
of the class variable also depends on the value of Aj 35. 
These structures called Augmented Naïve Bayesian Net-
works have increased computational time regarding train-
ing, but, provide more feasible probabilistic structure 
among data features.

To evaluate the contribution of each feature Ai  to 
the class membership the conditional mutual information 
is used that is defined by35:

( ) ( ) ( )
( ) ( ),

,
; , log

i jA A

P x y
I P x y

P x P y
=X Y   .........................(3)

The Equation (3) accounts for the information that 
Y provide to X.

3. IMPLEMENTATION AND EMPIRICAL 
FINDINGS

The field data inputs required for the model are: (a) 
traffic speed, (b) traffic volume, (c) traffic composition. 
In order to collect such data, an extensive survey was 
conducted in the center of Patras, the second major port 
in Greece (Fig. 1). The road network under study consists 
of 1900 arterial links of various geometric and control 
characteristics. Floating car runs were used to collect 
travel speed measurements and counters were utilized to 
collect volume and traffic composition data. The result-
ing dataset consists of volume (pcu/h) and travel speed 
(km/h) measurements, as well as information on the per-
cent of different types of motorized vehicles that empiri-
cally are said to affect urban traffic flow. These are: 
passenger cars, trucks, buses, motorcycles and taxis.

3.1 Regions of travel speed-volume relationship
The ESOM architecture implemented to reveal re-

gions in speed-volume relationship relating to traffic 
composition is sensitive both to its structural characteris-
tics (for example the extent of the map), as well as to the 
learning process. Regarding structural issues, a bound-
less toroid grid with 4,100 neurons (with a ratio of rows 
and columns different from unity in order to avoid border 

Fig. 1 A graphical representation of the arterial network 
under study 
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effects and topology errors) is implemented; literature in-
dicates that the above structural specifications are ade-
quate for the ESOM to generate valid results30. Moreover, 
the learning algorithm implemented is a combination of 
an online and a batch learning algorithm: online learning 
exhibits better performance with respect to data represen-
tation than batch learning, but is time consuming. For 
this, the k-batch learning algorithm that provides the 
same quality of representation as online learning but 
maintains several important properties of batch learning 
is implemented36. The concept is to update the map struc-
ture after processing k < n, where n is the number of data 
points, instead of only once per learning cycle as done in 
batch learning (literature indicates the use of 15% of 
learning data as a good choice for k). Figure 2 depicts the 
U-matrix of the trained ESOM that is further clustered to 
produce the characteristic regions of speed-volume rela-
tionship with regards to traffic composition.

Results, presented in Table 1 and Figure 3, indicate 
the existence of eight different speed-volume regions in 
the urban arterial network under study. Interestingly, 
there are three major traffic patterns regarding the man-
ner in which travel speed and volume evolve; the first 
pattern reflects free-flow conditions where travel speed 
exhibits a weak oscillating behavior around a mean value, 
but volume exhibits stronger variability. This pattern is 
described by four different regions in the speed-volume 
relationship where volume is kept below 250 pcu/h for a 
mean speed of 30 km/h and 40 km/h (Regions I and II) 
and below 1,850 pcu/h for mean speeds of 50 km/h and 
70 km/h (Regions III and IV). The second pattern sug-
gests the opposite traffic behavior; volume oscillates less 
around mean values while speed varies greatly. This be-
havior is described by three regions with volume exhibit-
ing stability at 400 pcu/h, 500 pcu/h and 650 pcu/h 
respectively (Regions V to VII). The second pattern prob-

Table 1  Regions of characteristic traffic behavior in the speed-volume relationship

Characteristic Travel Speed (km/h) Volume (pcu/h)

Region I

Stability in Travel Speed

30 <250

Region II 40 <250

Region III 50 <1,818

Region IV 70 <1,830

Region V

Stability in Volume

<35 400

Region VI <45 500

Region VII <60 650

Region VIII Low Speed and Volume <15 <250

1.00000
0.96038
0.89239
0.83162
0.76641
0.69970
0.56662
0.49999
0.43332
0.36665
0.29999
0.23332
0.10000
0.09999
0.03333
0.00000

Fig. 2 U-matrix of ESOM based on speed, volume and traffic composition measurements. 
The scale of distances between the prototypes in the map is seen to the right: 
low to high distances is equivalent to dark to light color.
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ably describes the areas of abrupt speed changes1,5. The 
last pattern is when speed takes on low values and prob-

ably depicts the congested branch of speed-volume rela-
tionship (Region VIII).

Fig. 3 Graphical representation of regions of speed-volume relationship
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3.2 Effect of traffic composition on the travel speed 
and volume relationship
In order to assess on the contribution of traffic com-

position to each resulting region in speed-volume rela-
tionship, an augmented naïve Bayesian network is devel-
oped. The seven available variables describing traffic 
conditions (Travel Speed, Volume, Passenger Cars(%), 
Motorcycles(%), Buses(%), Trucks(%) and Taxis(%)), as 
well as the produced regions (Classes) are depicted as 
nodes; the scope is to produce a set of links between the 
nodes having as target value the Classes. The above are 
graphically presented in Figure 4(a). The network is then 
trained. Results can be seen in detail in Table 2; rows re-
flect the actual and columns the predicted classes. The 
number in cells is the percentage of the correct predic-
tions of the target variable (class). The Bayesian classifier 
developed can use the associated data for the prediction 
of the Classes with high precision (function of the num-
ber of correct predictions of the target variable) of 97.5%.

Figure 4(b) shows the graphical representation of the 
resulting relationships among speed, volume and traffic 
composition after training. In a preliminary analysis, the 
mutual information is computed for each link of the net-
work between the parent (start of link) and the child (end 
of link) in order to evaluate the contribution of each vari-
able used to the one that is related. The mutual informa-
tion, as expressed by the Equation 3, provides the amount 
of information or else the contribution of each node (in 
our case travel speed, volume or percent of motorized ve-
hicles) to the knowledge of traffic flow regime. Table 3 
summarizes the revealed relations with respect to their 
importance, in decreasing order. As can be observed, the 
strongest relations are those of speed and volume with 
the classes (regions of speed-volume relationship). Inter-
estingly, the effect of trucks on the motorcycle movements 
seems to be significant. Moreover, taxis seem to have 
more effect to truck movements than the passenger cars do.

Furthermore, relations between the targeted value 

Classes

Travel Speed Volume

Buses (%)

Taxis (%)Passenger Cars (%)
Trucks (%)

Motorcycles (%)

Travel Speed

Volume

Taxis (%)

Passenger Cars (%)
Trucks (%)

Buses (%)
Motorcycles (%)

Classes

Fig. 4 (a) Bayesian Network before training: Traffic variables and types of motorized 
vehicles depicted as nodes and classes or else the resulting regions in 
speed-volume relationship depicted as target node in the analysis. 

 (b) Bayesian Network after training: Links indicate relations between the 
variables, the types of motorized vehicles and the classes.

Table 2 Results (predicted versus actual class) of augmented Naïve Bayesian 
Network

Predicted (%)
I II III IV V VI VII VIII

Actual (%)

I 99 0 0 0 0 0 0 0

II 1 100 2 0 0 0 0 0

III 0 0 91 0 0 0 0 10

IV 0 0 1 100 0 0 0 0

V 0 0 0 0 100 0 0 0

VI 0 0 0 0 0 100 0 0

VII 0 0 0 0 0 0 100 0

VIII 0 0 6 0 0 0 0 90
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(Classes) and the remaining variables are evaluated on av-
erage, but also for each class separately. Table 4 shows

 
each node’s relative significance ( mutual information i

max{mutual information i}
, 

 
i = 1, 2, …, n, where n is the number of variables describ-
ing traffic conditions) on average with respect to the in-
formation gain brought by each node to the knowledge of 
the target node (Classes) (sorted by descending order). 

Table 3 Relations between the traffic variables with respect to their 
importance, in a decreasing order. The mutual information 
is computed for each link of the network between the parent 
(start of link) and the child (end of link).

Parent Child Mutual Information

Classes Travel Speed 2.133

Classes Volume 1.322

Motorcycles (%) Trucks (%) 1.082

Trucks (%) Taxis (%) 1.078

Trucks (%) Passenger Cars (%) 0.848 

Passenger Cars (%) Buses (%) 0.548

Classes Motorcycles (%) 0.518

Classes Buses (%) 0.198

Classes Passenger Cars (%) 0.171

Classes Taxis (%) 0.136 

Classes Trucks (%) 0.086

Table 4 Information gain, on average, 
brought by each variable to the 
knowledge of the speed-volume 
relationship

Node Relative Significance

Travel Speed (km/h) 1.000

Volume (pcu/h) 0.620

Taxis (%) 0.252

Motorcycles (%) 0.243

Trucks (%) 0.216

Passenger Cars (%) 0.162

Buses (%) 0.121

Table 5 Information gain brought by each variable to the knowledge of the speed-volume regions for stable 
speed traffic conditions

Region I Region II

Node Relative 
Significance

Modal Value Node Relative 
Significance

Modal Value

Travel Speed (km/h) 1.00 <=32 Travel Speed (km/h) 1.00 <=44

Volume (pcu/h) 0.49 <=74 Volume (pcu/h) 0.36 <=218

Motorcycles (%) 0.32 <=22.32 %buses 0.23 <=1

Taxis (%) 0.31 <=11.55 Taxis (%) 0.22 <=11.525

Trucks (%) 0.28 <=3.5 Motorcycles (%) 0.17 <=21.44

Passenger Cars (%) 0.21 <=62.63 Trucks (%) 0.13 <=4.6

Buses (%) 0.12 <=1 Passenger Cars (%) 0.06 <=63.94

Region III Region IV

Node Relative 
Significance

Modal Value Node Relative 
Significance

Modal Value

Travel Speed (km/h) 1.00 <=59 Travel Speed (km/h) 1.00 >59

Volume (pcu/h) 0.32 >700 Taxis (%) 0.22 <=8.52

Motorcycles (%) 0.10 <=20.53 Trucks (%) 0.21 >4.6

Taxis (%) 0.09 <=8.52 Motorcycles (%) 0.20 <=20.53

Trucks (%) 0.09 >4.6 Volume (pcu/h) 0.17 >700

Passenger Cars (%) 0.09 <=62.42 Passenger Cars (%) 0.11 >65.46

Buses (%) 0.07 >2.915 Buses (%) 0.09 <=2.915

Results indicate that traffic conditions in urban arterials 
are typically affected by the movements of taxis and mo-
torcycles and less affected by trucks and passenger cars. 
Buses appear to have small contribution to traffic condi-
tions; this result is probably due to the small-scale transit 
system in the city of Patras.

In Tables 5-7 the above relative significance is fur-
ther examined separately for regions describing stable 
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speed conditions (Regions I to IV), for those describing 
speed changes (Regions V to VII), as well as for low val-
ues of speed and volume (Region VIII). Moreover, the 
modal value (most frequent) of the variables under study 
is also depicted in tables. Some interesting findings 
emerge from these results: in stable speed conditions, 
traffic is strongly related to speed and is highly affected 
by taxis and motorcycles, and less affected by passenger 
cars and buses. This does not apply to speeds of 40 km/h 
or above (Region II), where buses seem to be the primary 
affecting parameter, as well as in the case of 70 km/h 
(Regions IV) where the effect of trucks is critical. In the 
case of speed changes, traffic conditions are strongly re-
lated to volume; when speed changes occur in low vol-
umes (Region V), motorcycles are the primary affecting 
parameter with second affecting parameter being the pas-
senger cars. In medium and higher volumes (Regions VI 
and VII), the effect of taxis is greater than the one of mo-
torcycles. Moreover, speed changes are less affected by 
buses. Finally, in low values of volume and speed (Re-
gion VII), taxis and motorcycles are the primary affecting 
parameters. Finally, an in depth look at the relations can 
be obtained by Figures 5 and 6. Figure 5 shows the vari-
ability of the relative significance of travel speed and vol-

ume with respect to the regions. Moreover, Figure 6 gives 
the graphical representation of the relative significance of 
the percent of each motorized vehicle to the regions. As 
can be observed, the evolution of the effect of passenger 

Table 7 Information gain brought by each variable to 
the knowledge of the speed-volume regions 
at congestion

Region VIII

Node Relative 
Significance

Modal Value

Travel Speed (km/h) 1.00 <=13

Volume (pcu/h) 0.31 <=74

Motorcycles (%) 0.16 <=22.32

Taxis (%) 0.16 <=11.55

Trucks (%) 0.14 <=3.5

Passenger Cars (%) 0.09 <=62.63

Buses (%) 0.08 <=1

Region I Region II Region III Region IV

Regions
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Region V Region VI Region VII Region VIII

Travel Speed (km/h)
Volume (pcu/h)

120%

100%

80%

60%

40%

20%

0%

Fig. 5 The graphical representation of the relative 
significance of travel speed and volume with 
respect to regions

Table 6 Information gain brought by each variable to the knowledge of the speed-volume regions of speed 
change occurrence

Region V Region VI

Node Relative 
Significance

Modal Value Node Relative 
Significance

Modal Value

Volume (pcu/h) 1.00 <=438 Volume (pcu/h) 1.00 <=551

Travel Speed (km/h) 0.62 <=29 Travel Speed (km/h) 0.43 <=29

Taxis (%) 0.10 <=11.525 Taxis (%) 0.14 <=8.52

Passenger Cars (%) 0.10 <=63.94 Passenger Cars (%) 0.13 <=63.94

Motorcycles (%) 0.09 <=21.44 Motorcycles (%) 0.13 <=20.53

Trucks (%) 0.07 <=4.6 Trucks (%) 0.09 >4.6

Buses (%) 0.03 <=1 Buses (%) 0.07 >2.915

Region VII

Node Relative 
Significance

Modal Value

Volume (pcu/h) 1.00 <=700

Travel Speed (km/h) 0.35 <=44

Taxis (%) 0.22 <=8.52

Motorcycles (%) 0.22 <=20.53

Trucks (%) 0.17 >4.6

Passenger Cars (%) 0.16 <=62.42

Buses (%) 0.05 <=1
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cars and buses is different from the one of the effect of 
taxis, motorcycles and trucks to the knowledge of regions. 

4. CONCLUSIONS

Developing speed-volume relationships in urban 
arterials is a topic of considerable interest and importance 
in practice. Most approaches for evaluating the functional 
form of the speed-volume relationship are based on mod-
eling and simulation and are applicable to uninterrupted 
homogeneous traffic flow and cannot accommodate traf-
fic conditions imposed by the interaction of fast and slow 
moving vehicles in urban signalized arterials. The pres-
ent paper treats the effect of traffic composition on the 
form of the speed-volume relationship; instead of pro-
posing a specific functional form (be it linear or nonlin-
ear and so on), the present paper adopts an advanced 
data-oriented methodological framework for revealing 
regions in the speed-volume relationship and assessing 
on the contribution of different types of motorized vehi-
cles on each region separately.

Results indicate that in the basic three patterns of 
the speed-volume relationship (free-flow, speed changes 
and congestion) there exist eight different regions of speed-
volume behavior that can be characterized by either sta-
bility in travel speed (at different value levels) or stability 
in volume (at different value levels). It was also deter-
mined that the contribution of traffic composition varies 
in each pattern and in each region. The role of taxis and 

motorcycles is found to be critical in the operation of most 
arterials examined and in most regions of speed-volume 
relationship, with the exception of high speed values 
where trucks affect significantly the speed-volume rela-
tionship. 

The proposed methodology evaluates the arterial 
operation based on the consideration of the effect of traf-
fic composition to the speed-volume relationship without 
providing an a priori functional assumption. This pro-
vides a flexible framework for integrating empirical knowl-
edge for traffic conditions based on real-time traffic 
information into intelligent transportation systems. More-
over, it provides a data-driven and traffic-oriented frame-
work that can be extended to the study of other relationships 
between traffic variables (such as the volume-density re-
lationship) that can be adaptable and applicable to urban 
arterials regardless of geometric and control issues.
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