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Let d be an algebra and let S be a seminorm on d. In this paper we study 
multiplicativity factors for S, i.e., constants p > 0 for which S(q) < pS(x) S(y) for 
all x, y E d. We begin by investigating these factors in terms of the kernel of S. We 
then specialize our study to function algebras and to seminorms generated by the 
sup norm, where we provide a convenient characterization of multiplicativity 
factors. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Let d be an algebra over a field F where F = R or F = C. Throughout 
the paper we exclude the trivial case where all products in S! are zero. As 
usual, a function 

S:d-+R 

is called a seminorm if for all x, YE&’ and 2~ F: 

S(Ax) = )A[ . S(x), 

S(x + y) < S(x) + S(y). 
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If in addition, S is positive definite, i.e., 

S(x) > 0, .Y # 0, 

then S is a norm. We call a seminorm S proper if S#O and S(x) = 0 for 
some x # 0. Finally, we say that S is multiplicative if 

S(XY) d S(x) S(Y), vx, y E d. 

Of special interest are, of course, operator algebras. A well-known 
example of a nonmultiplicative norm on such an algebra is the numerical 
radius [S, 91, 

r(A)=sup{ l(Ax,x)(:x~H, (X,X)= l}, (1.1) 

defined on g(H), the algebra of bounded linear operators on a Hilbert 
space H over C. 

Another example of considerable interest is the I, norm, 1 < p < co, on 
the algebra C,, x ,) of n x n complex matrices, defined by 

lb‘llp=( i lklP)‘“. A=(&,)ECnxr,. (1.2) 
r,i= I 

Ostrowski [ 121 has shown that this norm is multiplicative if and only if 
l<p62. 

Given a seminorm S on an arbitrary algebra and a fixed constant p> 0, 
then obviously S,, = +S is a seminorm too. Clearly, S, may or may not be 
multiplicative. If it is, we call p a multipZicatiuity,factor for S. That is, ~1 is 
a multiplicativity factor ,for S if and only if 

S(v) <P(x) S(Y), vx, y E .d. 

Evidently, if p0 is a multiplicativity factor for S, then so is any p with 
p >, pO. Thus, having a seminorm S, the question is whether S has multi- 
plicativity factors; and if so, is there a best (least) one? 

If S is a norm, this question can be answered since Theorem 2.1 in [ 51 
is valid for norms: 

THEOREM 1.1. Let d he an algebra, and let S be a norm on .d. Then: 

(a) S has multiplicativity factors if and only !f 

pi”f = sup{ S(xy) :x, y E Jd, S(x) = S(y) = 1) < cc. (1.3) 

(b) If S has multiplicativity factors, then a constant p > 0 is a multi- 
plicativity factor for S if and only if p > pinf. 
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A standard compactness argument implies that if& is finite dimensional 
and S is a norm, then pinl in (1.3) is finite, so S has multiplicativity factors. 
As we shall see, this is not always the case if S is a proper seminorm. 

It is shown, both in [S, Examples 2.1-2.41 and in Section 3 below, that 
in the infinite dimensional case, norms as well as proper seminorms may or 
may not have multiplicativity factors. 

In Theorem 2.4 below we shall provide a characterization of multi- 
plicativity factors for arbitrary seminorms in terms of the quantity /Linr in 
(1.3). While this quantity is often difficult to compute, a more practical 
approach toward checking whether a given constant p> 0 is the best 
(least) multiplicativity factor for a given seminorm S is obviously by 
verifying that 

S(XY 16 Pax) S(Y 1 VX, YE&, 

with equality for some x = x0, y = y, for which S(x,) # 0, S( yO) # 0. 
Using this observation, it was shown in [lo] and later in [4] that if H 

is a Hilbert space over C of dimension at least 2, and r is the numerical 
radius in (l.l), then the best multiplicativity factor for r is ~inf= 4. 

Similarly, it was shown in [ 1 l] and later in [6] that the best multi- 
plicativity factor for the 1, norm on C, x n defined in (1.2) is 

1 
1, 1 <p62 

Pi”f = .l -VP 2<p<co. 

As a final introductory remark let us point out that if pinl remains 
unknown, one may try to obtain multiplicativity factors through the 
following version of a theorem by Gastinel. 

THEOREM 1.2 (Compare [3] and [S, Theorem 2.31). Let S, T be semi- 
norms on an algebra d. Let T be multiplicativity, and let z > c > 0 be 
constants such that 

aT(x) d S(x) 6 zT(x), VXEd. 

Then any p > z/a2 in a multiplicative factor for S. 

This result was utilized by Goldberg and Straus [S, 73 to obtain multi- 
plicativity factors for certain generalizations of the numerical radius. 

2. MULTIPLICATIVITY FACTORS AND KERNELS 

In this section we further discuss multiplicativity factors by studying 
kernels of seminorms. We start with the following observation. 
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THEOREM 2.1. Let .c9 be an algebra, and let S be a seminorm on .d. 
Then: 

(a) X = Ker S is a subspace of d. 

(b) If S has multiplicativity factors, then X is an ideal in d. 

(c) If d is a topological algebra, and S is continuous with multi- 
plicativity factors, then .X is a closed ideal of d. 

Proof X is obviously a subspace of cc9. Now let p >O be a multi- 
plicativity factor for S, and take any x E X, y E d. Then 

S(xy) 6 /4x) S(Y) = 0. 

That is, S(xy) = 0, i.e., xy E 9”. Similarly, yx E X, so X is an ideal. Finally, 
if d is a topological algebra and S is continuous, then this ideal, being 
where a continuous function vanishes, is closed. 1 

COROLLARY 2.1. (a) If ,02 is a simple algebra, then there are no multi- 
plicative proper seminorms on .rQ. 

(b) If d is a topological algebra that has no proper closed ideals, then 
there are no multiplicative, continuous proper seminorms on &. 

Proof Let S have multiplicativity factors. By part (b) of Theorem 2.1, 
X = Ker S is an ideal. Since d is simple, then X = (0) or X = d. In the 
first case S is a norm, and in the second S = 0. Assertion (b) follows from 
part (c) of Theorem 2.1 in the same way. m 

Since F,,,, the algebra of n x n matrices over F, is simple (e.g., [2, 
Theorem 10, p. 4141) we immediately obtain from Corollary 2.1: 

THEOREM 2.2. There are no multiplicative proper seminorms on F, x n. 

A direct proof of this result was given by Goldberg and Straus in [4, 
Theorem 3 1. 

In the finite dimensional case the converse of Theorem 2.1(b) holds, so 
we have: 

THEOREM 2.3. Let d be a finite dimensional algebra, and let S be a 
seminorm on d. Then S has multiplicativity factors if and only if Ker S is 
an ideal. 

Proof If S has multiplicativity factors, then X = Ker S is an ideal by 
Theorem 2.1. 

Conversely, let X be an ideal. Consider the quotient algebra &/Xx, and 
define 

T(x + X) = S(x), XEd. 
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Clearly, T is a seminorm on d/X. Further, T vanishes only for x E X, so 
in fact T is a norm on d/X. Since d/X is linte dimensional, then by the 
remark following Theorem 1.1, T has multiplicativity factors. Thus, S has 
the same multiplicativity factors and the theorem follows. 1 

In Example 3.1 we shall show that in the infinite dimensional case, the 
converse of Theorem 2.1(b), (c) is false. That is, a norm or a proper semi- 
norm S may fail to have multiplicativity factors even when Ker S is a 
(closed) ideal in d. 

We now give a characterization of multiplicativity factors for arbitrary 
seminorms. 

THEOREM 2.4. Let d be an algebra, and let S # 0 be a seminorm on d. 
Then: 

(a) S has multiplicativity factors if and only if X = Ker S is an ideal 
in d and 

~inf~SUP(S(XY):S(X)=S(y)= l} <Co. 

(b) If S has multiplicativity factors and pinf > 0, then ,u is a multi- 
plicativity factor if and only if ,a 3 pinf. 

(c) Zf S has multiplicativity factors and pinf= 0, then p is a multi- 
plicativity factor if and only if ,a > 0. 

Proof: By Theorem 2.1(b), if X is not an ideal, then S has no multi- 
plicativity factors. Similarly, if pinr= co, then for each p there are elements 
x0, y, E d such that 

S(XoYLJ > PS(XcJ S(Y,), S(x,) = S(Y,) = 1; (2.1) 

so again, S has no multiplicativity factors. 
Conversely, suppose X is an ideal and pinf < co. If p < pinr then as above, 

there exists x0, y, E d that satisfy (2.1), so p is not a multiplicativity factor. 
However, if ,U 3 ~inf, then we write 

pL,nf = sup i 

S(XY) 
S(x) S(y) 

:x, Y$X 
I 

and realize that 

s(xY) G PinfSCX) s(Y) 6 P-S(X) S(y) vx, Y $Jf. (2.2) 

Since X is an ideal. we also have 

S(XY I= 0 = PS(X) S(Y) for xEXoryEX, 
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which together with (2.2) implies 

xv) d/a-~) S(Y) vx, y E d, 

and the theorem follows without difficulty. [ 

If S is a norm then clearly, h,,r> 0 and Ker S = (01 is an ideal in d; 
hence in this case Theorem 2.4 says no more than Theorem 1 .I, 

In concluding this section we prove: 

COROLLARY 2.2. Let d and S# 0 he as in Theorem 2.4. Then S has 
multiplicativity factors and 

~,,r=sup{S(xy):S(x)=S(y)= 1) =o (2.3) 

if and only if 

xyEKer S vx, y E .d. (2.4) 

Proof: If S has multiplicativity factors then by Theorem 2.4, 9” = Ker S 
is an ideal. so 

X1’EX if xEX 0ryE.Y. (2.5) 

Further, if pinl = 0 then S(xy) = 0 for x, y # X, i.e., 

XyEx Qx, Y$X 

which together with (2.5) yields (2.4). 
Conversely, if (2.4) holds, then clearly, any p > 0 will serve as a multi- 

plicativity factor, and by (2.3), ~inl.= 0. 1 

In view of Theorem 2.4 and Corollary 2.2, we realize that the only non- 
trivial seminorms on .c4 that have multiplicativity factors, but not a least 
one, are those satisfying (2.4). In this case, the multiplicativity factors are 
just the positive reals. 

For example, take d = C2 with multiplication defined by 

and consider the proper seminorm 

S(x) = 1521. 

Evidently, (2.4) holds; hence the multiplicativity factors of S form the 
interval (0, co). 
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3. A SPECIAL CLASS OF SEMINORMS 

Let d be an algebra with a multiplicative seminorm S. Fix an element 
c E d and define 

S,(x) = S(cx), XEd. (3.1) 

Obviously, S, is a seminorm on &. In fact, it is quite evident that S,. in 
(3.1) is a norm on ~2 if and only if S is a norm and c is not a zero divisor. 

We prove: 

THEOREM 3.1. Let & be an algebra with a multiplicative norm S, and let 
S,., 0 # c E d fixed, be the seminorm in (3.1). Then S,. has multiplicativity 
factors if either 

(a) .r4 has a unit and c is invertible, or 

(b) (compare [ 1, p. 4621) c is in the center of d and c = c2dfor some 
d in d. 

Proof (a) We have 

S,.(x) = S(cx) d S(c) S(x), 

S(x) = S(c-‘cx) < S(c-1) S(cx) = S(c-‘) S,.(x); 

hence S,. is equivalent to S, and by Theorem 1.2, (a) follows. 
(b) For all x, y E d, 

cxy = c2dxy = dcxcy. 

Thus, 

i.e., 

S(CXY 16 S(d) S(cx) S(CY 1, 

S,.(XY) G PScb-1 S,.(Y) 

with p = S(d). 1 

In what follows we specialize our discussion to certain function algebras 
where S in (3.1) is the sup norm. In this case we are able to give simple 
characterizations of multiplicativity factors for S,.. 

THEOREM 3.2. Let T be a set and let ~4 be the algebra of bounded 
functions 

x: T + F, 
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with the usual multiplication 

-KY(t) =x(t) y(t); x, ye&‘; tET. 

For 0 # c E ,d define the serninorm 

S,(x) = SUP It(t) x(t)l. (3.2) 
/ST 

Then: 

(a) S,. has multiplicativity factors if and only if 

a-inf{(c(t)l :tET, c(t)#O) >O. (3.3) 

(b) lf E > 0, then p > 0 is a multiplicativity factor for S,. if and only if 
/L>E- ‘. 

Proof. Evidently, Ker S, is an ideal in d; and c # 0 implies that 

y E d; S,.(x) = S,.(y) = 1) >, - Sc(c2) > o 
S,.(c)2 . 

Thus, by Theorem 2.4, S,. has multiplicativity factors if and only if pinr < co; 
and if pinl < co then p is a multiplicativity factor if and only if p 2 pinl. 

It therefore suffices to prove that if E > 0 then pL,“r= E ~ ‘; and if S,. has 
multiplicativity factors then E > 0. 

Suppose E > 0. Put 

Then 

E= {tET:c(t)#O}. (3.4) 

and 

E = f$ IC(t)l, 

P,“f = ““P’;p& It(t) x(t) Y(t)1 1x2 YE -r9; SUP I4t) x(t)1 
IEE 

= SUP k(t) Y(t)1 = 1) 
IEE 

dSUP{SUP It(t) x(t)1 .SUP Iv(t)l : SUP It(t) x(t)1 
lCZE IEE 1tE 

= SUP I4t) Y(t)1 = 1) 
IEE 

=sup{suply(t)l:supIc(t) y(t)l=l}=C’. 
ttE fC5E 

(3.5) 
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Now define 

tgE 
ZEG=T\E. (3.6) 

Surely de -c4, since E >O. Moreover, S,.(d) = 1. Hence 

/LinfbS,.(d')=SUp I~(t)d(t)~[=SUp Id(t)l=C’y 
IGT rZGE 

and so, using (3.5), 

Next, assume that p >O is a multiplicativity factor for S,, and let us 
show that E >O. Choose a sequence t,,EE such that 

Let V, be the subset of T where 

Ic(t)l < 2&,, 

and choose an element u, E d with 

l%I(t)l G 1, tET, 

%(f”) = 1, 

u,(t) = 0, t$V,. 

Then 
Ic(t,) 47(t,)l = 62, 

and 

Hence. 

Thus, 

&, < sup IC(t) U,(t)1 = SUP jC(t) U,,(t)/ < 2E,. 
IET 1EV, 

Now of satisfies the same conditions (3.7) as u,, so as before 

E,, < s,( U;) 6 2.5,. 

(3.7a) 

(3.7b) 

(3.7c) 
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By hypothesis, 

hence 

F,, d s&4;) d I*Sc(u,J2 6 P4Ef;. 

Therefore, ~PLE,, > 1, and consequently, E 3 (41.1) -I > 0. 1 

A similar result is the following: 

THEOREM 3.3. Let T be a topological space and let sd be the algebra of 
bounded, continuous function 

x:T+F. 

For 0 # CE .d let S, be the seminorm in (3.2). Then conclusions (a) and (b) 
qf Theorem 3.2 hold. 

Proof. The proof goes precisely along the lines of the previous proof, 
subject to the following two clarifications: 

First, we must show that if (3.3) holds then the function d in (3.6) is 
continuous on T, hence belonging to 8. Indeed, since ICI is continuous, the 
set E in (3.4) is open, being where Ic(t)l > 0. Since E > 0, the complement 
G of E is actually where lc(f)( < e, and is thus open too. Since E and G 
complement each other and are open, they are also closed. Now d is 
continuous on E and on G. Since E and G have no common limit points, 
d is continuous on E u G = T, so dE &. 

We must also show that the functions u,, satisfying (3.7) can be chosen 
to be continuous on T. This can be done, for example, by taking the 
composite functions 

u,(t) =;1- cp,(lc(t)l)3 
n 

where (Pi is the real-valued continuous function on [0, co): 

This completes the proof. 1 

If T is connected, Theorem 3.3 takes the following form: 
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THEOREM 3.4. Let T, d, c, and S,. be as in Theorem 3.3. Suppose T is 
connected. Then 

(a) The following are equivalent: 
(i) S, has multiplicativity factors. 
(ii) 6=inf{lc(t)j:tET}>O. 
(iii) c is invertible. 

(b) [f6>0 then 
(i) S,. is a norm on d. 
(ii) A constant p > 0 is a multiplicativity factor for S,. if and only if 

p>cl. 

Proof. Evidently, c is invertible if and only if 6 > 0. Moreover, since T 
is connected and c is continuous on T then 6 = E, where E is given in (3.3). 
By Theorem 3.3, this completes the proof of (a) and of (b)(ii). For (b)(i) 
we note that if 6 > 0 then c is not a zero divisor; hence S,. is a norm on 
Jd. I 

Our last result states exactly when S,. has multiplicativity factors in terms 
of the generalized invertibility condition in Theorem 3.1(b). 

THEOREM 3.5. Let d be the function algebra in Theorem 3.2 or 3.3. Then 
S,. in (3.2) has multiplicativity factors if and only if c satisfies the condition 
(b) of Theorem 3.1. 

Proof. One-half of this is Theorem 3.1(b) with S being the sup norm. 
Conversely, if S,. has multiplicativity factors then, by Theorems 3.2 and 3.3, 
(3.3) holds. So by the proof of these theorems, the function d in (3.6) 
belongs to d; where obviously c = c*d. 1 

EXAMPLE 3.1. Consider 1 z, the algebra of bounded sequences x= 
{ [,i},E 1 over F, with the usual Hadamard multiplication 

XY = ~5jvl,L x= &>, y= {Ylj}EIZ. 

Fix an element c = { y, } E 1 O”, c # 0, and define the seminorm, 

sc(x)=suP lUji"jl2 XEl°C’. 
.i 

Obviously, S,. is a norm on 1 m if and only if 

Yj Z O, j= 1, 2, 3 ) . . . . 

Otherwise S,. is a proper seminorm. 
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By Theorem 3.2 (here T = Z + = { 1, 2, 3, . . . }), S,. has multiplicativity 
factors if and only if 

E= inf JyjJ >O, 
Y, f 0 

and if E > 0 then the best (least) multiplicativity factor for S,. is prnln = E I. 
The four simple selections 

y,= 1, j= 1, 2, 3, . . . (3.8a) 

?$=j-‘3 j= 1, 2, 3, . . . (3.8b) 

y, =o; y,=l,j=2,3,4 ,... (3.8c) 

Yl =o; yj=j--l, j=2,3,4, (3.8d) 

show, as indicated in the Introduction, that in the infinite dimensional case, 
norms and proper seminorms may or may not have multiplicativity factors. 

Further, in cases (3.8b) and (3.8d) we have 

Ker S,.= (0) 

and 

KerS,.={~={{~):<,=O,j=2,3,4 ,... }, 

respectively. Hence, as mentioned in Section 2, in the infinite dimensional 
case, both norms and seminorms may fail to have multiplicativity factors 
even when the kernel is a (closed) ideal in &. 

EXAMPLE 3.2. Let ‘Z[O, l] be the algebra of continuous functions on 
[0, 11, and consider the seminorm 

S,.(x)= SUP Ic(t)x(t)l, XEqo, 11, 
0<r<1 

where 0 # c E U[O, 11 is fixed. 
By Theorem 3.4 (T = [0, l]), S,. has multiplicativity factors if and 

only if 

and if 6 > 0 then S,. is a norm whose best multiplicativity factor is 
P m*” = 6 - ‘. 

We remark that the converse of Theorem 3.4(b)(i) is false. For instance, 
if c(t) = t then c is not a zero devisor in %[O, 11, so S,. in (3.2) is a norm. 
On the other hand, S = 0 for this c. 
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