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Let o/ be an algebra and let S be a seminorm on . In this paper we study
multiplicativity factors for S, ie., constants p >0 for which S(xy)<uS(x) S(y) for
all x, ye .o/. We begin by investigating these factors in terms of the kernel of S. We
then specialize our study to function algebras and to seminorms generated by the
sup norm, where we provide a convenient characterization of multiplicativity
factors.  © 1990 Academic Press, Inc.

1. INTRODUCTION

Let & be an algebra over a field F where F =R or F = C. Throughout
the paper we exclude the trivial case where all products in .o/ are zero. As
usual, a function

S: o/ >R

is called a seminorm if for all x, ye &/ and AeF:

S(x)=0,
S(Ax)=14] - S(x),
S(x+ y)<S(x)+ S(y).
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If in addition, S is positive definite, i.e.,
S(x) >0, x#0,

then S is a norm. We call a seminorm S proper if §#0 and S(x)=0 for
some x #0. Finally, we say that S is multiplicative if

Sxy)<S(x) S(y), Vx,yed.

Of special interest are, of course, operator algebras. A well-known
example of a nonmultiplicative norm on such an algebra is the numerical
radius [8, 91,

r(A)=sup{|(4x, x)|:xeH, (x, x)=1}, (1.1)

defined on #(H), the algebra of bounded linear operators on a Hilbert
space H over C.

Another example of considerable interest is the /, norm, 1< p< o, on
the algebra C,,, , of n xn complex matrices, defined by

n 1/p

a,=( T ) A= @)eC,, (12)
fj=1

Ostrowski [12] has shown that this norm is multiplicative if and only if

1<p<2.

Given a seminorm S on an arbitrary algebra and a fixed constant p >0,
then obviously S, = uS is a seminorm too. Clearly, S, may or may not be
multiplicative. If it is, we call u a multiplicativity factor for S. That is, p is
a multiplicativity factor for S if and only if

S(xy)spS(x)S(y),  Vx, yed.

Evidently, if p, is a multiplicativity factor for S, then so is any pu with
U= ,. Thus, having a seminorm S, the question is whether S has multi-
plicativity factors; and if so, is there a best (least) one?

If S is a norm, this question can be answered since Theorem 2.1 in [5]
is valid for norms:

THEOREM 1.1. Let o/ be an algebra, and let S be a norm on of. Then:
(a) S has multiplicativity factors if and only if
Hing=sup{S(xy):x, ye o, S(x)=S(y)=1} <co. (1.3)

(b) If S has multiplicativity factors, then a constant p>0 is a multi-
plicativity factor for S if and only if p= py.
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A standard compactness argument implies that if &/ is finite dimensional
and S is a norm, then u,, in (1.3) is finite, so S has multiplicativity factors.
As we shall see, this is not always the case if S is a proper seminorm.

It is shown, both in [5, Examples 2.1-2.4] and in Section 3 below, that
in the infinite dimensional case, norms as well as proper seminorms may or
may not have multiplicativity factors.

In Theorem 2.4 below we shall provide a characterization of multi-
plicativity factors for arbitrary seminorms in terms of the quantity p;, in
(1.3). While this quantity is often difficult to compute, a more practical
approach toward checking whether a given constant >0 is the best
(least) multiplicativity factor for a given seminorm S is obviously by
verifying that

S(xy)<pS(x) S(y)  Vx, yed,

with equality for some x = x,, y =y, for which S(x,)#0, S(y,) #0.
Using this observation, it was shown in [10] and later in [4] that if H
is a Hilbert space over C of dimension at least 2, and r is the numerical
radius in (1.1), then the best multiplicativity factor for r is u;,,=4.
Similarly, it was shown in [11] and later in [6] that the best multi-
plicativity factor for the /, norm on C,,, defined in (1.2) is

L I<p<2
Uing =

n'm¥ 2< pg oo

As a final introductory remark let us point out that if p;; remains
unknown, one may try to obtain multiplicativity factors through the
following version of a theorem by Gastinel.

THEOREM 1.2 (Compare [3] and [5, Theorem 2.3]). Let S, T be semi-
norms on an algebra of. Let T be multiplicativity, and let 126>0 be
constants such that

oT(x)<S(x)<tT(x), Vxe .

Then any p>t/a? in a multiplicative factor for S.

This result was utilized by Goldberg and Straus [5, 7] to obtain multi-
plicativity factors for certain generalizations of the numerical radius.
2. MULTIPLICATIVITY FACTORS AND KERNELS

In this section we further discuss multiplicativity factors by studying
kernels of seminorms. We start with the following observation.
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THEOREM 2.1. Let of be an algebra, and let S be a seminorm on .
Then:

(a) A =Ker S is a subspace of /.
(b) If S has multiplicativity factors, then X" is an ideal in .

(c) 1If o is a topological algebra, and S is continuous with multi-
plicativity factors, then A is a closed ideal of o/ .

Proof. A is obviously a subspace of /. Now let u>0 be a multi-
plicativity factor for S, and take any xe 4", ye.«/. Then

S(xy) < wS(x) S(y) = 0.

That is, S(xy)=0, ie., xy € #". Similarly, yxe A, so X is an ideal. Finally,
if o/ is a topological algebra and S is continuous, then this ideal, being
where a continuous function vanishes, is closed. ||

CorOLLARY 2.1. (a) If o/ is a simple algebra, then there are no multi-
plicative proper seminorms on .

(b) If o is a topological algebra that has no proper closed ideals, then
there are no multiplicative, continuous proper seminorms on <.

Proof. Let S have multiplicativity factors. By part (b) of Theorem 2.1,
A =Ker § is an ideal. Since ¢ is simple, then # = {0} or # =</ In the
first case S is a norm, and in the second S=0. Assertion (b) follows from
part (c) of Theorem 2.1 in the same way. |

Since F,,,, the algebra of nxn matrices over F, is simple (e.g., [2,
Theorem 10, p. 4147]) we immediately obtain from Corollary 2.1:

THEOREM 2.2. There are no multiplicative proper seminorms on F, .

A direct proof of this result was given by Goldberg and Straus in [4,
Theorem 31].

In the finite dimensional case the converse of Theorem 2.1(b) holds, so
we have:

THEOREM 2.3. Let o/ be a finite dimensional algebra, and let S be a
seminorm on /. Then S has multiplicativity factors if and only if Ker S is
an ideal.

Proof. 1f S has multiplicativity factors, then " =Ker § is an ideal by
Theorem 2.1.
Conversely, let #” be an ideal. Consider the quotient algebra &7/, and
define
T(x + A7) = S(x), xed.
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Clearly, T is a seminorm on &//% . Further, T vanishes only for xe X", so
in fact 7 is a norm on o//X . Since //A is finte dimensional, then by the
remark following Theorem 1.1, T has multiplicativity factors. Thus, S has
the same multiplicativity factors and the theorem follows. ||

In Example 3.1 we shall show that in the infinite dimensional case, the
converse of Theorem 2.1(b), (c) is false. That is, a norm or a proper semi-
norm S may fail to have multiplicativity factors even when Ker S is a
(closed) ideal in <.

We now give a characterization of multiplicativity factors for arbitrary
seminorms.

THEOREM 2.4. Let of be an algebra, and let S #0 be a seminorm on oA
Then:

(a) S has multiplicativity factors if and only if # =Ker S is an ideal
in o/ and

fine = sUp{S(xy):S(x) = S(y)=1} < c0.

(b) If S has multiplicativity factors and >0, then p is a multi-
plicativity factor if and only if u2 p.

() If S has multiplicativity factors and p,;=0, then u is a multi-
plicativity factor if and only if 1> 0.

Proof. By Theorem 2.1(b), if " is not an ideal, then .S has no multi-
plicativity factors. Similarly, if y;,,= oo, then for each u there are elements
Xo, Vo€ & such that

S(xg yo) > uS(x0) S(yo)s S(xp)=S(yo) = 1; (2.1)

so again, S has no multiplicativity factors.

Conversely, suppose " is an ideal and u,,; < co. If u <y, , then as above,
there exists x,, y, € &/ that satisfy (2.1), so u is not a multiplicativity factor.
However, if u 2 u;,, then we write

S
Hing = SUP {Tx()% X, )’¢f}
and realize that
S(xy) < pineS(x) S(¥) < uS(x) S(y)  Vx, y¢ A (22)

Since ¢ is an ideal, we also have

S(xy)=0=puS(x) S(y) for xeAX oryed,
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which together with (2.2) implies
S(xy)<suS(x)S(y)  Vx, yed,

and the theorem follows without difficulty. |

If §is a norm then clearly, u;,;>0 and Ker S= {0} is an ideal in .«¢;
hence in this case Theorem 2.4 says no more than Theorem 1.1.
In concluding this section we prove:

COROLLARY 2.2. Let of and S#0 be as in Theorem 2.4. Then S has
multiplicativity factors and

Hin = SUP{ S(x): S(x) = S(») =1} =0 (23)
if and only if
xyeKer S Vx, ye . (2.4)

Proof. If S has multiplicativity factors then by Theorem 2.4, #" = Ker §
is an ideal, so

xyeA if xeX oryed. (2.5)

Further, if =0 then S(xy)}=0 for x, y¢ ., 1.e.,
xyeX Vx, y¢ X

which together with (2.5) yields (2.4).
Conversely, if (2.4) holds, then clearly, any x>0 will serve as a multi-
plicativity factor, and by (2.3), u;,;=0. §

In view of Theorem 2.4 and Corollary 2.2, we realize that the only non-
trivial seminorms on .o/ that have multiplicativity factors, but not a least
one, are those satisfying (2.4). In this case, the multiplicativity factors are
just the positive reals.

For example, take .« = C? with multiplication defined by

xy:(élrll’o)’ x=(éla€2)=y=('lla'72)e=d,
and consider the proper seminorm
S(x) =&,

Evidently, (2.4) holds; hence the muitiplicativity factors of S form the
interval (0, c0).
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3. A SpeciaL CLASS OF SEMINORMS

Let o/ be an algebra with a multiplicative seminorm S. Fix an element
ce o/ and define

S.(x)=S(cx), xesd. (3.1)

Obviously, S, is a seminorm on /. In fact, it is quite evident that S. in
(3.1) is a norm on </ if and only if S is a norm and c is not a zero divisor.
We prove:

THEOREM 3.1. Let of be an algebra with a multiplicative norm S, and let
S., 0#£ce s fixed, be the seminorm in (3.1). Then S, has multiplicativity
factors if either

(a) & has a unit and c is invertible, or

(b) (compare [1, p. 462]) c is in the center of o and c = c*d for some
din .

Proof. (a) We have
S.(x)=S(cx) < S(c) S(x),
S(x)=58(c 'ex)<S(c™ ') S(ex)=S(e™ ") S.(x);

hence S, is equivalent to S, and by Theorem 1.2, (a) follows.
(b) Forall x, yeof,

cxy = c*dxy = dexcy.
Thus,
S(exy) < S(d) S(ex) S(cey),
ie.,
S xy) < puSc(x) S(y)
with u=S(d). |

In what follows we specialize our discussion to certain function algebras
where S in (3.1) is the sup norm. In this case we are able to give simple
characterizations of multiplicativity factors for S..

THEOREM 3.2. Let T be a set and let o/ be the algebra of bounded
Sfunctions

x:T-F,
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with the usual multiplication
xy(t)=x(t) y(t);  x,yesd;teT.
For 0+ ce of define the seminorm

S.(x)=sup |e(t) x(1)]. (3.2)

teT

Then:
(a) S. has multiplicativity factors if and only if

e=inf{|c(t)|:teT, c(t)#0} >0. (3.3)

(b) Ife>0, then u>0 is a multiplicativity factor for S, if and only if

Proof. Evidently, Ker S, is an ideal in o/; and ¢ # 0 implies that
SAc?)

Uine=sup{S.(xy):x, ye ;S (x)=S(y)=1}=

Thus, by Theorem 2.4, S, has multiplicativity factors if and only if x,,, < 0;
and if p,< oo then u is a multiplicativity factor if and only if u >y,

It therefore suffices to prove that if £>0 then u,;=¢"'; and if S, has
multiplicativity factors then ¢ > 0.

Suppose ¢ > 0. Put

E={reT:c(t)#0}. (3.4)
Then
¢=1nf |c(2)],
teE
and

Hins = sup{sup [c(1) x(¢) y(t)|:x, y € o; sup |c(1) x(1)|

teE tek
=sup le(8) y(6)l =1}
gsup{ixg le(t) x(1)] -sup [y(e)]: sup le(2) x(2)]
=sup le(r) y()l =1}
=sup{sup | y(1)|:sup |c(t) ¥(1)| =1} =¢"". (3.5)

teE teE
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Now define

(1/c(2), teE
d(t)=
(1) {0, teG=T\E.
Surely de &/, since ¢ >0. Moreover, S.(d)= 1. Hence

Mine= Sc(d?)=sup |c(t) d(1)*| =sup |d(t) =&,

and so, using (3.5),

-t
Hing=¢€ .

Next, assume that y >0 is a multiplicativity factor for S,, and let us
show that ¢ > 0. Choose a sequence ¢, € E such that

le(t) =¢, ——5— ¢
Let V, be the subset of T where
le()] < 2,

and choose an element u, € .o/ with

[u() <1, teT, (3.7a)
u,(t,)=1, (3.7b)
u,(t)=0, t¢v,. (3.7¢)
Then
lc(t’l) un(tn)l =£n5
and
le(6) u, (1) <le(t)] <2, teV,.
Hence,
£, <sup |c(t) u,(t) =sup |c(r) u,(t)) < 2e,.
teT reV,
Thus,
€, < Sc(u,) <2,

Now u? satisfies the same conditions (3.7) as u,, so as before

L < Sc(ui) < 28n'
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By hypothesis,

hence
£, < S.(12) < S (u,)* < pdel.

Therefore, 4ue, > 1, and consequently, ¢ > (4u) ' >0. |

A similar result is the following:

THEOREM 3.3. Let T be a topological space and let o/ be the algebra of
bounded, continuous function

x:T-F.

For 0#ce.of let S, be the seminorm in (3.2). Then conclusions (a) and (b)
of Theorem 3.2 hold.

Proof. The proof goes precisely along the lines of the previous proof,
subject to the following two clarifications:

First, we must show that if (3.3) holds then the function d in (3.6) is
continuous on T, hence belonging to .«. Indeed, since |¢| is continuous, the
set E in (3.4) is open, being where |c(¢)| > 0. Since ¢ > 0, the complement
G of E is actually where |¢(r)| <e, and is thus open too. Since E and G
complement each other and are open, they arc also closed. Now d is
continuous on E and on G. Since E and G have no common limit points,
d is continuous on EUG =T, so de «#.

We must also show that the functions u, satisfying (3.7) can be chosen
to be continuous on T. This can be done, for example, by taking the
composite functions

1
1(1)= = @, (le(1))

where ¢, is the real-valued continuous function on [0, oo ):

A, 0<i<e,,
@ (A)=<2¢,— 4, £, <A< 2¢,,
0, 122,

This completes the proof. |

If T is connected, Theorem 3.3 takes the following form:
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THEOREM 34. Let T, o/, ¢, and S, be as in Theorem 3.3. Suppose T is
connected. Then
(a) The following are equivalent:
(1) S, has multiplicativity factors.
(i) S=inf{|c(?)]:1eT}>0.
(iii) ¢ is invertible.
(b) If 6 >0 then
(1) S, is a norm on .
(i) A constant u>0 is a multiplicativity factor for S, if and only if
u=o6"L

Proof. Evidently, ¢ is invertible if and only if 6 > 0. Moreover, since T
is connected and c is continuous on T then d = ¢, where ¢ is given in (3.3).
By Theorem 3.3, this completes the proof of (a) and of (b)(ii). For (b)(i)
we note that if >0 then ¢ is not a zero divisor; hence S, is a norm on
. |

Our last result states exactly when S, has multiplicativity factors in terms
of the generalized invertibility condition in Theorem 3.1(b).

THEOREM 3.5. Let of be the function algebra in Theorem 3.2 or 3.3. Then
S, in (3.2) has multiplicativity factors if and only if ¢ satisfies the condition
(b) of Theorem 3.1.

Proof. One-half of this is Theorem 3.1(b) with S being the sup norm.
Conversely, if S, has multiplicativity factors then, by Theorems 3.2 and 3.3,
(3.3) holds. So by the proof of these theorems, the function d in (3.6)
belongs to «/; where obviously c=c’d. |

ExampPLE 3.1. Consider /=, the algebra of bounded sequences x=
{¢;}72, over F, with the usual Hadamard multiplication

xy={&n}, x={Ly={nlel™
Fix an element c= {y;} €/, ¢ #0, and define the seminorm,
Sdx)=sup |y, xel™,
Obviously, S, is a norm on [/* ilf and only if
7, #0,  j=1,2,3, ..

Otherwise S, is a proper seminorm.
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By Theorem 3.2 (here T=Z" ={1,2,3,..}), S, has multiplicativity
factors if and only if

e= inf |y;{>0,
yi#0

and if ¢ > 0 then the best (least) multiplicativity factor for S, is p, =€ %
The four simple selections

y,=1, j=1,2,3,.. (3.8a)
v=Jih  j=1,23,. (3.8b)
7, =0; vi=1,7=2,34, .. (3.8¢)
v, =0; y,=i" =234, .. (3.8d)

show, as indicated in the Introduction, that in the infinite dimensional case,
norms and proper seminorms may or may not have multiplicativity factors.
Further, in cases (3.8b) and (3.8d) we have

Ker S.= {0}
and
Ker S, = {x={¢}:{,=0,j=2,3,4,..},

respectively. Hence, as mentioned in Section 2, in the infinite dimensional
case, both norms and seminorms may fail to have multiplicativity factors
even when the kernel is a (closed) ideal in &/.

ExampLE 3.2. Let 4[0, 1] be the algebra of continuous functions on
[0, 1], and consider the seminorm

S.(x)= sup |c(t) x(1)], xe¥[0, 1],

O0<r<1

where 0 # ce ¥[0, 1] is fixed.

By Theorem 3.4 (T=[0,1]), S. has multiplicativity factors if and
only if

6= min |c(t)] >0,
0<rg!

and if 6>0 then S, is a norm whose best multiplicativity factor is
Hmin = 5 B l’

We remark that the converse of Theorem 3.4(b)(i) is false. For instance,
if ¢(t)=1t then c is not a zero devisor in ¢[0, 1], so S, in (3.2) is a norm.

On the other hand, 6 =0 for this c.
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