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Abstract

This paper is concerned with the nonoscillatory problems of odd-dimensional systems of linear
retarded functional differential equations. Based upon the corresponding characteristic equations, we
get some criteria for nonoscillations by utilizing the matrix measures.
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1. Introduction

Recently there have been several papers concerning the study of the oscillations for lin-
ear functional differential systems; see, for example, [1-11] and references therein. Some
explicit conditions for oscillation are investigated by exploiting the characteristic equations
or by some other methods, such as the matrix measures (some authors also use the term
logarithmic derivatives, or Lozinskii measures); see [1-4,6,9]. However, there are few re-
sults about the corresponding nonoscillation problems. Our purpose in this paper is to study
some explicit nonoscillation criteria for certain linear functional differential systems.

Consider the linear system

0

x'(t) = Qox (1) +/dn(9)x(t +0) (1.1)
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and the system of neutral type
0
(30 = Axtt = 1) = Qox() + [ dn@)x(t+0). (1.2)
wherex(t) e R", r > 0,7 > 0, Qg, A € R, n(0) is a left-continuous matrix-valued
function of bounded variation onr-r, 0] and vanishes &t = 0.
Obviously, if we assume(§) = Z;”:lH(e +1/)Q;j, tj € (0,r], where H (9) is the
Heaviside function and); € R"*", j =1,2,...,m, then Eq. (1.1) becomes

xX(6) = Qox(t)+ ) Qjx(t — 1)), (1.3)

j=1
and Eq. (1.2) becomes

(x(t) — Ax(t — 1)) = Qox(t) + »_ Qjx(t — ). (1.4)

j=1
We first give the definitions of oscillation and nonoscillation of Eq. (1.1). The corre-
sponding definitions of the system (1.2) of neutral type are similar.

Definition 1.1. A nontrivial vector solutionx(z) = (x1(¢), x2(2), ..., x,(t)) :[—r, 00) —

R" of Eq. (1.1) is oscillatory if at least one of its nontrivial component(s), 1 <i < n,

has arbitrarily large zeros. We say Eq. (1.1) is oscillatory if all its nontrivial solutions are
oscillatory. Otherwise, Eq. (1.1) is said to be nonoscillatory.

The following Lemmas 1.1 and 1.2 are due to Krisztin [12]. One also can see [4,5,8] for
reference.

Lemma 1.1. Equation (1.1) is oscillatory if and only if the characteristic equation
0
det(—AI + Qo+ / ewdn(e)) =0 (1.5)

has no real root.

Lemma 1.2. Equation (1.2) is oscillatory if and only if the characteristic equation
0
det(—m —Ae )+ Qo+ / e dn(9)> =0 (1.6)

has no real root.

For a matter of completeness, we recall the definitions of the matrix measures and their
main properties. For ang € R"*", we denote by.1(A), the eigenvalue with maximum
real part.



X. Liu, B. Zhang / J. Math. Anal. Appl. 290 (2004) 481-496 483

Definition 1.2 [13,14] For A € R"*", we define the induced norms

lAx|;
|All; = sup
XeR™, x#0 [l I

foreachi=1,2,..., 00,

where

n 1/i
T i .
x=(r,x2,...x) ||x||i=<2|x,;|’> . i<oo,
j=1

and

Ixlloo = max {lx;1}.

\j\
The corresponding matrix measuges R**" — R,fori =1,2, ..., oo, are defined by

Il +eAl; —1

(A) = lim
i (A) e c

It has been proved that;(A), i =1,2,..., 00, exist for anyA € R"*" and can be
explicitly evaluated foi = 1, 2, co as follows:

1
Ml(A)=SlJp{ajj + Z |aij|}’ pu2(A) =)»1(5(A+AT)),
J Li]
Moo (A) =sup{a,-,~ + Y |a,-.,~|}.
! i,j#i
In general, without specification, we denote/bg) any one ofu;(-),i =1,2,..., co.

Independently of the considered norm, a matrix meagurehas the following basic prop-
erties:

() —IIAl € —u(=A) < u(A) < ||All, YA € R

(i) u(@A)=au(A),Va >0,VA € R"*";
(i) max{u(A)—u(=B), —u(=A)+u(B)} < u(A+B) < u(A)+u(B),YA, B € R"*";
(iv) —u(—A) <Rex < u(A), wherea is an eigenvalue o, VA € R"*",

2. Preliminaries

Throughout this paper, we denote BY[a, b] the set ofr x n matrix-valued functions
of bounded variation ofu, b].

Definition 2.1 [1]. Let n € BV[a, b]. We say thatu(dn(®)) < 0 on [a, b], if u(n(d) —
n(c)) <0,Ve,d € [a, b] such that <d.

Lemma 2.1[1]. Let n € BV[a, b] and u(dn(6)) < 0on [a, b]. Then u([” dn(8)) <O.
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Lemma 2.2 [1]. Let f,g € C([a, b], R) and n € BV[a, b] such that f(0) > g(¥) and
u(dn(@)) <0onla,b]. Then
b

b
M(/f(G)dn(9)> <M</g(9)dn(9)).

a

Definition 2.2. Let n € BV[a, b]. We say tha(dn(8)) > 0 on[a, b], if u(n(c) — n(d))
<0,Ve,d € [a, b] such that < d.

Lemma 2.3. Let n € BV[a, b] and u(dn(#)) > 0on [a, b]. Then /,L(fab dn(6)) = 0.

Proof. Since i(dn(0)) > 0 on [a,b] and u((—n(d)) — (=n(c))) = nn(c) — n(d)),
Ve, d € [a, b] such thatc < d, one can easily observe thatd(—n(#))) < 0 on[a, b].
Therefore, from Lemma 2.1, we knqu\(fab d(—n(#))) < 0, which, together with the prop-
erty (i) of matrix measures, shows

b b

M(/dn(G)) > —u(/d(—n(e))) >0. O

a a

Lemma 2.4. Let f,g € C([a,b],R) and n € BV[a, b] such that f(0) > g(#) and
u(dn@@)) >=0o0n[a,b]. Then
b

b
M(/f(O)dn(9)> 2#(/g(9)d77(9))-

a

Proof. It follows from w(dn(6)) > 0 and f(0) > g(@) on [a, b] that u(d(—n(®))) <0
and—g(0) > — f(0) on[a, b]. Therefore, by applying Lemma 2.2, we have that

b b

u( / (—8(9))d(—n(9))) < u( / (—f(@))d(—nw))),

a a

that is,
b

b
M(/f(é’)dn(9)> 2#(/8(9)6177(9)). O

a

3. Thenonoscillation of Eq. (1.1)

Ferreira and Gydri [3] first use the general matrix measures to investigate the oscillation
criteria for Eq. (1.1), but the explicit conditions were only applicable with the particular
matrix measurec>. Kong [1] and Tian et al. [2] use some new techniques to extend their
results by the general matrix measures. The following propositions are adopted from [2],
which improve the results in [1].
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Proposition 3.1. Assume i (dn(0)) <0on[—r,0]. If

0
u(/|9|e“<90>9dn(9)> < —%, (3.1)

then Eq. (1.1) is oscillatory.

Proposition 3.2. Assume u(Q;) <0, j=1,2,...,m.|If

m
1
M(the_M(QO)Tf Qj) < -5, (3.2)

j=1

then Eq. (1.3) is oscillatory.

With respect to the nonoscillation of Eq. (1.1), we will investigate it in two different
casesu(dn(0)) <0, andu(dn(®)) > 0on[—r,0].

Throughout this section, we denaf&i) = —A1 + Qo + ff)r e*dn () and the eigen-
values of F () and—F () by Ar(;) andi_r,), respectively.

Theorem 3.1. Let n be odd, and assume w(dn(@)) < 0on[—r, O]. If
0

1

r u(— / e (= C00 dn(9)> <=, (3.3)
e

then Eq. (1.1) is nonoscillatory. Furthermore, if 1(Qo) < 0, then Eg. (1.1) has at least

one bounded nonoscillatory solution.

Proof. According to Lemma 1.1, it suffices to prove that Eq. (1.5) has at least one real
root, that is, there existsg € R such that def (Ag) = 0. Assume for the sake of contra-
diction that def' (1) £ 0, for all » € R; then we have either dét(A) < O forall A € R, Or
detF (1) > O0forall A € R, since def"(A) is continuous about.

(i) detF(») <Oforallx € R.

It is well known that the determinant of a matrix equals the product of all of its eigen-
values, so we can obtain that for edch R, F (1) has at least one negative real eigenvalue.
Then from the property (iv) of matrix measures, we know

—u(=F0) <Rerrgy < u(FM),
and so
u(=F@) >0,

for eachi € R.
On the other hand, whet(x 4+ 1 (— Qo)) = —1, from the property (iii) of matrix mea-
sures and Lemma 2.2, we have
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0 0
u(=FM) =u(u — Qo- /ewdn@)) <+ pu(=Qo) +u<—/ewdn(9))

—r —r

0
At (= 00) + u(— / (= 00)0 ,—1(~00)0 dn(9))

—r

0
<A+ u(—Qo) + e—r(kﬂt(—Qo))M(_ / e H(=0Q0)0 dn(9))

—r

<A+ u(—Qo) + ie—r(/\-iru(—Qo))
re

1
= (re(k + /L(—Qo)) + eir()‘ﬂ‘(*QO))) =0.

This is a contradiction.

(i) detF(») > Oforall 1 € R.

Sincen is odd, we have détF(1)) = (—=1)"detF(A) <O forallx € R. SO—F(}X)
has at least one negative real eigenvalue for gaehr. It follows from —u(F (1)) <
ReA_ra) < n(—F()) thatu(F (1)) > 0 for eachi € R.

On the other hand, when= 1(Qo),

0 0
w(F) = u(—u + 0o +/e”dn(9>) < A+ 1(Q0) + u( /ewdn(9)>

—r —r

0
< =4+ u(Qo) + min(1, ek’}u(/dn(9)>

—r

0

= min{1, e_”}u( / dn(9)> <0,

-r

which leads to a contradiction.

Therefore, Eq. (1.1) is nonoscillatory.

One can see from [12] that a necessary and sufficient condition for all bounded solu-
tions of Eq. (1.1) to be oscillatory is that the corresponding characteristic equation (1.5)
has no real nonpositive root. Hence in order to prove Eqg. (1.1) has at least one bounded
nonoscillatory solution, it suffices to show that there exists 0, such that deff (Ag) = 0.

To achieve a contradiction we assume Eét) == 0 for all A <O0; then we have either
detF(A) <OforallA <0, ordetF(1) >0 forallA <O0.

From the former proof (i), we know thatwhén= —1/r — u(— Qo) < —1/r+u(Qo) <
—1/r < 0, acontradiction leads to the invality of the assumptiorfdd < 0 forall 1 < 0.

From the former proof (ii), we find that when= u(Qgp) < 0, a contradiction shows
that detF'(1) > 0 for all A < O fails to work.
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Hence we come to the conclusion that Eq. (1.1) has at least one bounded nonoscillatory
solution.
The proofis complete. O

Theorem 3.2. Let n be odd. Assume p(dn(@)) > 0 on [—r,0]. Then Eq. (1.1) has at
least one nonoscillatory solution. Furthermore, if 1(Qo) < —M([Er Q0 41(8)), then
Eg. (1.1) hasat least one bounded nonoscillatory solution.

Proof. From the similar reasoning with Theorem 3.1, it suffices to prove that there ex-
ists A € R (A < 0), such thatu(—F (1)) < 0, and anotheir € R (A < 0), such that
p(F ) <O0.

Whenx + u(— Qo) < 0, from the property (iii) of matrix measures and Lemma 2.4 we
have

0 0
w(=F () =u(u — Qo - fe”dnw)) <A+ u(=Qo) +u<—fe”dn(9))

0
<t u(—00) + u(— / E(A+M(—Qo))0€—u(—Qo)0dn(@))
J
0
<ht n(—Q0) + u(— / o100 dn(9))

—r

0

< u(— f e M= Qo) dn(9>) <0.

Wheni > 11(Qo) + (2, 200 gy (6)), we have

0 0

n(F () = u(—u + 00 +/e”dn(9>) <A+ Qo) + u( /ewdn(9)>

—r —r

0
— 3+ u(00) + u( /e(kfu(Qo))Geu(Qo)G dn(9))

—r

0
< —A+1(Qo) + u( /e’“QO” dn(9)> <0.
Under the assumptign( Qo) < —M([Er e Qo) 4y (9)), itis obvious that if we, respec-

tively, let A1 = —u(— Qo) < 1(Qo) < 0 andiz = 11(Qo) + u(f°, e#C9 dn(6)) < 0;
then we can, respectively, obtai{— F(11)) < 0 andu(F(Ar2)) <O0.
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Then the above discussion shows that Eq. (1.1) is nonoscillatory, and the assumption

11(Q0) < —u(f°, Q0¥ 4 (6)) implies that Eq. (1.1) has at least one bounded nonoscil-
latory solution. O

Corollary 3.1. Letn beodd. If u(Q;)<0,j=1,2,...,m,and

m
_ ) 1
roy,(—zle”( QO)t-’Qj) g;, (3.4)
j=

wherer = max ¢ j<m 7;, then Eq. (1.3) isnonoscillatory. If we further assume 1 (Qo) < 0,
then Eq. (1.3) has at least one bounded nonoscillatory solution.

Corollary 3.2. Let n beodd. If u(Q;) >0, j =1,2,...,m, then Eq. (1.3) is nonoscilla-

tory. Furthermore, if 11(Qo) < —u(X_7_; e~*C0% Q ), then Eq. (1.3) has at least one
bounded nonoscillatory solution.

Remark 3.1. Under the assumption(dn(6)) < 0 on[—r, 0] and thatz is odd, from the
inequality (3.3), we have

0 0

1
2 >r,u<_/eu(Qo)0 dn(9)> 2,,,“(_/6#@0)9 dn(9)>
e

—r —r

0 0
>u<— / |e|eﬂ<Q°>9dn(9)> > —u( / |9|e“(Q°”dn(9>)7
~r —r

that is,

0
1
u( / |9|e“<Q°>9dn(9)> >, (3.5)

which is opposite to inequality (3.1). This reasoning shows that the sufficient condition for
Eqg. (1.1) to be nonoscillatory is contained in the necessary conditions (3.5). Therefore one
can see that our conclusion in Theorem 3.1 is reasonable.

We next give two examples as applications of Corollaries 3.1 and 3.2.

Example 3.1. Consider the equation

x'(t) = Qox(r) + Qx(1 — 1), (3.6)
where
5 0 0 7 1
n=3, Qo=(1 -2 o), o=+ - L | and ==
0 % -3 o I -1
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By easy calculation, we have1(Q) = —1/4 + 1/(2¢) < 0, u1(—Q) = 1/e + 3/10,
n1(Qo) =—-1/2<0, u1(—Qo) =6, and
1 e(1 3 1 e 1
. _  m1(=Qo)T — = .. _ S T I T
T pi(—e 0) 5 ¢ ui(—Q) 6(e+10> 6720 3

Then Eq. (3.6) satisfies all the conditions in Corollary 3.1, and hence Eq. (3.6) has at least
one bounded nonoscillatory solution.

Example 3.2. Consider the equation

x'(t) = Qox (t) + Q1x(t — 11) + Qax(t — 72), (3.7)
where
-4 0 0 -1 1 0
-1 -1 -2 0 -1 -3
1 _1 9
5 8 1
0>=1]0 % 0], l’1=§ and =1
0 0 3

One can easily obtain that; (Qo) = —1, u1(Q1) =0, andu1(Q2) = 1/4, so the con-
ditions . (Q;) > 0, for j =1, 2, are satisfied in Corollary 3.2. In addition,

2
_'ll’l(Z e~ H1(Qo)T; Q]) > _Ml(e—ul(Qo)fl 01) — Ml(e—ul(Qo)fz 0-)
j=1

e
= —pa(e M0y = -7 > 1(Qo)=-1.

From Corollary 3.2, we conclude that Eqg. (3.7) has at least one bounded nonoscillatory
solution.

Remark 3.2. Whenn is even, the following two examples suggest the invality of Theo-
rems 3.1 and 3.2.

Example 3.3. Consider the equation

x'(t) = Qox (1) + Qx(t — 1), (3.8)
where
_1 _Zi 2
Qo=0, Q=<2_1e _%> and T=3
One can easily obtain1(Qo) =0, u1(Q) = —1/(2¢) <0, u1(— Q) = 3/(2¢) and
2 1
Top(=e 0T Q) = S (-0) = .
e

Hence Eg. (3.8) satisfies the conditions in Corollary 3.1 except the one thatd.
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However, since for eache R

A — l.e AT _ie*)\.f 1 2 1

detF (1) = det( L 2 L ) = <x + —e‘“) +-—e 7 >0,

z_eef)nt S Zef)nt e 4e

that is, the characteristic equation of Eq. (3.8) has no real root, it follows from Lemma 1.1
that Eq. (3.8) is oscillatory.

Example 3.4. Consider the equation

x'(t) = Qox(t) + Ox(t — 1), (3.9)

where

2 0 0 -2 1
n=2, QO_(O 1), Q_<2 0) and T_E'

Obviously,u1(Q) = 2 > 0, which satisfies the conditign(Q;) > 0,forj =1,...,m,
in Corollary 3.2.

However, from Lemma 1.1 and
—AF2 —2e

detF (1) =det
et ) e(Ze)‘r —2+1

):(k—l)(k—2)+4ek>0,

for eachi € R, since mingy,2jdetF(A) > —1/4 + 4¢2 > 0, we know that Eqg. (3.9) is
oscillatory.

The two examples imply that whenis even, Theorems 3.1 and 3.2 are invalid, and we
need stronger conditions to guarantee the nonoscillation of Eq. (1.1).

4. The nonoscillation of Eq. (1.2)

There are few papers concerned with the oscillatory problem of Eq. (1.2), and much less
about its nonoscillation. Paper [3] is one of the most recent papers about the oscillation of
its discrete case with several neutral terms. Here, in this section, we will establish the
nonoscillatory criteria of Eq. (1.2).

For a matter of completeness, we first give the oscillatory criteria of Eq. (1.2).

Lemma4.1. Let A € R™" . If u(A) < 0, then detA # 0.

Theorem 4.1. Assume 11(Qo) < 0, u(dn(@)) <0on[—r,0], 0 < —u(—A) < u(A) <1,
and

0
M( / |9|e"(Q°)9dn(9)> < —%. (4.1)

Then Eq. (1.2) is oscillatory.
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Proof. From Lemma 1.2, it suffices to prove that Eq. (1.6) has no real root. Let

0
G\ =—A(I — Ae ™) + Qo +/ewdn(9).

From Lemma 4.1, we only need to shawG (1)) < 0 for all A € R. It follows from in-
equality (4.1) that

0

0
w(Qo)r w(Qolr
M(/dn@)) < - u(/wleﬂ@owdn(e)) < —— <0,

—r

We next shows (G (1)) <O, forall A € R, in three cases.
(1) A =0. Itis obvious that

0

1(GO) = M(Qo +f dn(9)> <o0.

—r
(2) A > 0. Fromu(A) < 1, we have
0

n(Gk) = u(—m —Ae™) + Qo+ / e’ dn(9>)

—r

0

< —h+re T (A) + n(Qo) +u< / ewdn@))

—r
<—A+2re M <O,
(B)A <0. From—u(—A) > 0, we know

0
1(G()) < = —re™ T u(=A) + 1(Qo) + u( / e’ dn(9))

—r

0

< —A+n(Qo) + u( /ewdn(G))-

If —A + u(Qo) <0, then
0

n(Gm) < u( / ewdn@)) <0.

—r

If =1+ n(Qo) > 0, from inequality (4.1) and* > ex, for x € R, we have
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0
w(G) < =+ 1(Qo) + u( / e FT QO it (G0 dn(9)>

—r

0
<—A+u(Qo)+(—x+u(Qo))eu< / |9|e“(Q°)9dn(9)>

0
=(—A+M(Qo))[1+eu( f |9I€“(Q°)9dn(9)>] <0.

The above discussion shows that Eq. (1.2) is oscillatory.

Remark 4.1. One can see that Theorem 4.1 extends the Proposition 3.1 and that Eq. (1.2)
is oscillatory independently on the delayunder the condition & —u(—A) < u(A) < 1.

For convenience, we le@p = 0 in Eq. (1.2), and consider the following functional
differential system of neutral type:
0
(x(r) — Ax(t — 1)) = / dn(@)x(t +6). (4.2)
In addition, we letG(A) = —A + e *TA + ffr e*? dn(6) and denote the eigenvalues of
G(L) by Ag ().

Theorem 4.2. Let n be odd. Assume w(dn(6)) < 0on[—r, 0] and

1 : _ 1 :
(A <maxg = — e’ —/dn(é’) re TS —ep —/dn(H) .
e e r

Then Eq. (4.2) is nonoscillatory and has at least one bounded nonoscillatory solution.

Proof. From Lemma 1.2, it suffices to show there exiggs< 0, such that daf(1g) = 0.
Assume deG (1) # 0 for all A < 0, then either def (1) < 0 forall A <0, or detG(r) >0
forall A <0, since deG (1) is continuous abou.

(i) detG(») < 0O for all A < 0. We know thatG (1) has at least one negative real
eigenvalue for each < 0. Then from—u (-G (1)) < Reigm < u(G(Q)), it follows that
u(—G)) >0,va <0.

On the other hand, when< 0,

0

n(-Gw) = u(m —Ae™hT) - / e+ dn(9)>

—r

0

<A —re M u(A) + e“,u(— / dn(9)>.

—r
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If u(A) < re ™" (1/r —ep(— [° dn(6))), we leth = —1/r, then
0
n(-GW) < —% + %e’/’u(A) +eu (—/dn(9)> <0.
If 1W(A) < 1/e — (t/e)e (= [° dn(6)), we letr = —1/7, then
0
n(=G() < —% + %EM(A) +e’/fu<—/dn(9>) <0,

We get a contradiction.

(i) detG(r) > O for all A < 0. Itis known that dgt-G (1)) < 0, and then-G () has at
least one negative real root for eack: 0. Sou (G (1)) > 0 for all » < 0. However, when
we letA =0,

0 0
n(G) = u(—m — Ae™T) +/e”dn<9)> = u( /dn(9)> <0.

Itis also a contradiction.
Hence Eq. (4.2) is nonoscillatory, and has at least one bounded nonoscillatory solu-

tion. O

Theorem 4.3. Let n be odd. Assume w(dn(0)) = 0 on [—r, 0]. Then Eq. (4.2) is nonoscil-
latory.

Proof. From the similar reasoning with the proof of Theorem 3.2, it suffices to prove that
there exists. € R such thatu(—G (1)) < 0, and anothek € R such thatu (G (1)) < 0.
If we let . =0, then
0 0

n(=Gw)= M(k(l —Ae™'T) — / e dn(9)> = u(— / dn(9>) <0.
It is obvious that ifA > O is large enough, we have
0
n(G) = u(—m — ATy + / e dn(9)>

—r

0

< —)\+Ae“,L(A)+u< /dn(O))

—r

0
<AMe™ -1+ u( /dn(@)) <0.

—r

Therefore, Eq. (4.2) is nonoscillatory
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Corollary 4.1. Assume 1 (Q;) <0,j=0,1,...,m,0< —pu(—A) < u(4) < land

m
_ , 1
“(Zwe 0 Qf) e

j=1
Then Eqg. (1.4) is oscillatory.

Corollary 4.2. Let n beodd, and Qo = 0. Assume u(Q;) <0, j=1,2,...,m,and

1 = “ 1 -
+ Ut B . —-t/r| = _ _ .
M(A)gmax{e ~e u( jE:lQ]),re (r eu( ,E:lQ])),’

where r = maxi¢ j<m{7;}. Then Eq. (1.4) is nonoscillatory, and has at least one bounded
nonoscillatory solution.

Corollary 4.3. Let n be odd, and Qg = 0. Assume u(Q;) =20, j =1,2,...,m. Then
Eqg. (1.4) isnonoscillatory.

The following examples are given as applications of Corollaries 4.1-4.3.

Example 4.1. Consider the equation

2
(x() = Ax(t = 7)) = Qox () + Y Q;x(t — 1), (4.3)
j=1
where
n=3  A=I Qo=0, =1,
1
2 3 1 2 00 2
Q1=<O —4 o), 0= 0 -2 3|, u=z, ©=3
2
2 0 -2 19 1

Obviously,1(Qo) = n1(Q1) = n1(Q2) =0, —pn1(—=A) = n1(A) =1,

2
3
Ml(z 7 e 10T Qj) = Ml(i 01+ 3Q2>

j=1
-3 3 1
3 1
=u1<§-<0 -8 1)):—3<——.
1 0 -4 ¢

Then Corollary 4.1 shows that Eq. (4.3) is oscillatory.

Example 4.2. Consider the equation

2
(x(t) — Ax(t — 1)) = Qox(t) + »_ Qjx(t — 1)), (4.4)

j=1
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where
1
-1 0
3
n=3, Q0=0, A=| % ez 0],
3
0 —je2 -2
1 1 1 1
-3 0 -3 -5 0 —g
o=l 2 -1 1 o= 1 1 1
1=2| = i 12 |- 2= 2| = 8 4 |-
1 1 1 3
0 -3 -8 0 § -3

11=1, =2, T=1
One can easily obtain that (A) = e=%/2/2, u1(01) = u1(Q2) =0,

1 1
2 1 2 6 1
) = ~— |- 3 _1 — —
“’1(_ZQ1>_“1 2 ¢ B 3 =2
j=1 o -1 1
i 2

2
1 = 1 1
———r/t — l=——=-=0

1 m 1 1
re /" (; — em(— Z Qj)) = 2e‘1/2<§ — Z) =e %2 -2)>0.
j=1

Sinceu1(A) = e=3/2/2 < e=3/2(e — 2), we have that Eq. (4.4) has at least one bounded
nonoscillatory solution from Corollary 4.2.

Example 4.3. Consider the equation
(x(1) = Ax(t = 7)) = Qox (1) + Q1x(1 — T0), (4.5)

where

-3 1 0
n=3, Qo =0, A=1, Q1=<l 0 4),
5 2 -2

1
T1=§, T=3.

Obviously,u1(Q1) = 3> 0, then Corollary 4.3 shows that Eq. (4.5) is nonoscillatory.
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