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Abstract

This paper is concerned with the nonoscillatory problems of odd-dimensional systems of
retarded functional differential equations. Based upon the corresponding characteristic equat
get some criteria for nonoscillations by utilizing the matrix measures.
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1. Introduction

Recently there have been several papers concerning the study of the oscillations
ear functional differential systems; see, for example, [1–11] and references therein
explicit conditions for oscillation are investigated by exploiting the characteristic equa
or by some other methods, such as the matrix measures (some authors also use
logarithmic derivatives, or Lozinskii measures); see [1–4,6,9]. However, there are fe
sults about the corresponding nonoscillation problems. Our purpose in this paper is to
some explicit nonoscillation criteria for certain linear functional differential systems.

Consider the linear system

x ′(t) =Q0x(t)+
0∫

−r

dη(θ)x(t + θ) (1.1)
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and the system of neutral type

(
x(t)−Ax(t − τ )

)′ =Q0x(t)+
0∫

−r

dη(θ)x(t + θ), (1.2)

wherex(t) ∈ Rn, r > 0, τ > 0, Q0,A ∈ Rn×n, η(θ) is a left-continuous matrix-value
function of bounded variation on[−r,0] and vanishes atθ = 0.

Obviously, if we assumeη(θ) = ∑m
j=1H(θ + τj )Qj , τj ∈ (0, r], whereH(θ) is the

Heaviside function andQj ∈Rn×n, j = 1,2, . . . ,m, then Eq. (1.1) becomes

x ′(t) =Q0x(t)+
m∑

j=1

Qjx(t − τj ), (1.3)

and Eq. (1.2) becomes

(
x(t)−Ax(t − τ )

)′ =Q0x(t)+
m∑

j=1

Qjx(t − τj ). (1.4)

We first give the definitions of oscillation and nonoscillation of Eq. (1.1). The co
sponding definitions of the system (1.2) of neutral type are similar.

Definition 1.1. A nontrivial vector solutionx(t) = (x1(t), x2(t), . . . , xn(t)) : [−r,∞) →
Rn of Eq. (1.1) is oscillatory if at least one of its nontrivial componentsxi(t), 1� i � n,
has arbitrarily large zeros. We say Eq. (1.1) is oscillatory if all its nontrivial solutions
oscillatory. Otherwise, Eq. (1.1) is said to be nonoscillatory.

The following Lemmas 1.1 and 1.2 are due to Krisztin [12]. One also can see [4,5,
reference.

Lemma 1.1. Equation (1.1) is oscillatory if and only if the characteristic equation

det

(
−λI +Q0 +

0∫
−r

eλθ dη(θ)

)
= 0 (1.5)

has no real root.

Lemma 1.2. Equation (1.2) is oscillatory if and only if the characteristic equation

det

(
−λ(I −Ae−λτ )+Q0 +

0∫
−r

eλθ dη(θ)

)
= 0 (1.6)

has no real root.

For a matter of completeness, we recall the definitions of the matrix measures an
main properties. For anyA ∈ Rn×n, we denote byλ1(A), the eigenvalue with maximum
real part.
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Definition 1.2 [13,14]. ForA ∈Rn×n, we define the induced norms

‖A‖i = sup
x∈Rn, x 
=0

‖Ax‖i
‖x‖i for eachi = 1,2, . . . ,∞,

where

x = (x1, x2, . . . , xn)
T , ‖x‖i =

(
n∑

j=1

|xj |i
)1/i

, i <∞,

and

‖x‖∞ = max
1�j�n

{|xj |}.
The corresponding matrix measuresµi :Rn×n → R, for i = 1,2, . . . ,∞, are defined by

µi(A)= lim
ε→0+

‖I + εA‖i − 1

ε
.

It has been proved thatµi(A), i = 1,2, . . . ,∞, exist for anyA ∈ Rn×n and can be
explicitly evaluated fori = 1,2,∞ as follows:

µ1(A)= sup
j

{
ajj +

∑
i,i 
=j

|aij |
}
, µ2(A)= λ1

(
1

2
(A+AT )

)
,

µ∞(A)= sup
i

{
aii +

∑
i,j 
=i

|aij |
}
.

In general, without specification, we denote byµ(·) any one ofµi(·), i = 1,2, . . . ,∞.
Independently of the considered norm, a matrix measureµ(·) has the following basic prop
erties:

(i) −‖A‖ � −µ(−A)� µ(A)� ‖A‖, ∀A ∈Rn×n;
(ii) µ(αA)= αµ(A), ∀α > 0, ∀A ∈Rn×n;
(iii) max{µ(A)−µ(−B),−µ(−A)+µ(B)}� µ(A+B)� µ(A)+µ(B), ∀A,B ∈ Rn×n;
(iv) −µ(−A)� Reλ � µ(A), whereλ is an eigenvalue ofA, ∀A ∈Rn×n.

2. Preliminaries

Throughout this paper, we denote byBV[a, b] the set ofn× n matrix-valued functions
of bounded variation on[a, b].

Definition 2.1 [1]. Let η ∈ BV[a, b]. We say thatµ(dη(θ)) � 0 on [a, b], if µ(η(d) −
η(c))� 0, ∀c, d ∈ [a, b] such thatc � d .

Lemma 2.1 [1]. Let η ∈ BV[a, b] and µ(dη(θ))� 0 on [a, b]. Then µ(
∫ b
a
dη(θ))� 0.
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ular
their
m [2],
Lemma 2.2 [1]. Let f,g ∈ C([a, b],R) and η ∈ BV[a, b] such that f (θ) � g(θ) and
µ(dη(θ))� 0 on [a, b]. Then

µ

( b∫
a

f (θ) dη(θ)

)
� µ

( b∫
a

g(θ) dη(θ)

)
.

Definition 2.2. Let η ∈ BV[a, b]. We say thatµ(dη(θ)) � 0 on [a, b], if µ(η(c) − η(d))

� 0, ∀c, d ∈ [a, b] such thatc � d .

Lemma 2.3. Let η ∈ BV[a, b] and µ(dη(θ))� 0 on [a, b]. Then µ(
∫ b

a dη(θ))� 0.

Proof. Since µ(dη(θ)) � 0 on [a, b] and µ((−η(d)) − (−η(c))) = µ(η(c) − η(d)),
∀c, d ∈ [a, b] such thatc � d , one can easily observe thatµ(d(−η(θ))) � 0 on [a, b].
Therefore, from Lemma 2.1, we knowµ(

∫ b

a d(−η(θ)))� 0, which, together with the prop
erty (i) of matrix measures, shows

µ

( b∫
a

dη(θ)

)
� −µ

( b∫
a

d
(−η(θ)

))
� 0. ✷

Lemma 2.4. Let f,g ∈ C([a, b],R) and η ∈ BV[a, b] such that f (θ) � g(θ) and
µ(dη(θ))� 0 on [a, b]. Then

µ

( b∫
a

f (θ) dη(θ)

)
� µ

( b∫
a

g(θ) dη(θ)

)
.

Proof. It follows from µ(dη(θ)) � 0 andf (θ) � g(θ) on [a, b] thatµ(d(−η(θ))) � 0
and−g(θ) � −f (θ) on [a, b]. Therefore, by applying Lemma 2.2, we have that

µ

( b∫
a

(−g(θ)
)
d
(−η(θ)

))
� µ

( b∫
a

(−f (θ)
)
d
(−η(θ)

))
,

that is,

µ

( b∫
a

f (θ) dη(θ)

)
� µ

( b∫
a

g(θ) dη(θ)

)
. ✷

3. The nonoscillation of Eq. (1.1)

Ferreira and Györi [3] first use the general matrix measures to investigate the osci
criteria for Eq. (1.1), but the explicit conditions were only applicable with the partic
matrix measureµ2. Kong [1] and Tian et al. [2] use some new techniques to extend
results by the general matrix measures. The following propositions are adopted fro
which improve the results in [1].
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Proposition 3.1. Assume µ(dη(θ))� 0 on [−r,0]. If

µ

( 0∫
−r

|θ |eµ(Q0)θ dη(θ)

)
<−1

e
, (3.1)

then Eq. (1.1) is oscillatory.

Proposition 3.2. Assume µ(Qj) � 0, j = 1,2, . . . ,m. If

µ

(
m∑

j=1

τj e
−µ(Q0)τjQj

)
<−1

e
, (3.2)

then Eq. (1.3) is oscillatory.

With respect to the nonoscillation of Eq. (1.1), we will investigate it in two differ
cases:µ(dη(θ))� 0, andµ(dη(θ))� 0 on[−r,0].

Throughout this section, we denoteF(λ) = −λI + Q0 + ∫ 0
−r

eλθdη(θ) and the eigen
values ofF(λ) and−F(λ) by λ̄F (λ) andλ̄−F(λ), respectively.

Theorem 3.1. Let n be odd, and assume µ(dη(θ))� 0 on [−r,0]. If

r ·µ
(

−
0∫

−r

e−µ(−Q0)θ dη(θ)

)
� 1

e
, (3.3)

then Eq. (1.1) is nonoscillatory. Furthermore, if µ(Q0) � 0, then Eq. (1.1) has at least
one bounded nonoscillatory solution.

Proof. According to Lemma 1.1, it suffices to prove that Eq. (1.5) has at least one
root, that is, there existsλ0 ∈ R such that detF(λ0) = 0. Assume for the sake of contr
diction that detF(λ) 
= 0, for all λ ∈ R; then we have either detF(λ) < 0 for all λ ∈R, or
detF(λ) > 0 for all λ ∈R, since detF(λ) is continuous aboutλ.

(i) detF(λ) < 0 for all λ ∈ R.

It is well known that the determinant of a matrix equals the product of all of its ei
values, so we can obtain that for eachλ ∈R, F(λ) has at least one negative real eigenva
Then from the property (iv) of matrix measures, we know

−µ
(−F(λ)

)
� Reλ̄F (λ) � µ

(
F(λ)

)
,

and so

µ
(−F(λ)

)
> 0,

for eachλ ∈R.
On the other hand, whenr(λ+ µ(−Q0)) = −1, from the property (iii) of matrix mea

sures and Lemma 2.2, we have
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solu-
(1.5)
unded

r

s

µ
(−F(λ)

)= µ

(
λI −Q0 −

0∫
−r

eλθ dη(θ)

)
� λ+µ(−Q0)+µ

(
−

0∫
−r

eλθ dη(θ)

)

= λ+µ(−Q0)+µ

(
−

0∫
−r

e(λ+µ(−Q0))θ e−µ(−Q0)θ dη(θ)

)

� λ+µ(−Q0)+ e−r(λ+µ(−Q0))µ

(
−

0∫
−r

e−µ(−Q0)θ dη(θ)

)

� λ+µ(−Q0)+ 1

re
e−r(λ+µ(−Q0))

= 1

re

(
re
(
λ+µ(−Q0)

)+ e−r(λ+µ(−Q0))
)= 0.

This is a contradiction.
(ii) detF(λ) > 0 for all λ ∈ R.

Sincen is odd, we have det(−F(λ)) = (−1)n detF(λ) < 0 for all λ ∈ R. So −F(λ)

has at least one negative real eigenvalue for eachλ ∈ R. It follows from −µ(F(λ)) �
Reλ̄−F(λ) � µ(−F(λ)) thatµ(F(λ)) > 0 for eachλ ∈R.

On the other hand, whenλ= µ(Q0),

µ
(
F(λ)

)= µ

(
−λI +Q0 +

0∫
−r

eλθ dη(θ)

)
� −λ+µ(Q0)+µ

( 0∫
−r

eλθ dη(θ)

)

� −λ+µ(Q0)+ min{1, e−λr}µ
( 0∫

−r

dη(θ)

)

= min{1, e−λr}µ
( 0∫

−r

dη(θ)

)
� 0,

which leads to a contradiction.
Therefore, Eq. (1.1) is nonoscillatory.
One can see from [12] that a necessary and sufficient condition for all bounded

tions of Eq. (1.1) to be oscillatory is that the corresponding characteristic equation
has no real nonpositive root. Hence in order to prove Eq. (1.1) has at least one bo
nonoscillatory solution, it suffices to show that there existsλ0 � 0, such that detF(λ0) = 0.
To achieve a contradiction we assume detF(λ) 
= 0 for all λ� 0; then we have eithe
detF(λ) < 0 for all λ � 0, or detF(λ) > 0 for all λ � 0.

From the former proof (i), we know that whenλ = −1/r−µ(−Q0)� −1/r+µ(Q0)�
−1/r < 0, a contradiction leads to the invality of the assumption detF(λ) < 0 for allλ � 0.

From the former proof (ii), we find that whenλ = µ(Q0) � 0, a contradiction show
that detF(λ) > 0 for all λ � 0 fails to work.
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Hence we come to the conclusion that Eq. (1.1) has at least one bounded nonosc
solution.

The proof is complete. ✷
Theorem 3.2. Let n be odd. Assume µ(dη(θ)) � 0 on [−r,0]. Then Eq. (1.1) has at
least one nonoscillatory solution. Furthermore, if µ(Q0) � −µ(

∫ 0
−r e

µ(Q0)θ dη(θ)), then
Eq. (1.1) has at least one bounded nonoscillatory solution.

Proof. From the similar reasoning with Theorem 3.1, it suffices to prove that ther
ists λ ∈ R (λ � 0), such thatµ(−F(λ)) � 0, and anotherλ ∈ R (λ � 0), such that
µ(F(λ))� 0.

Whenλ+µ(−Q0) � 0, from the property (iii) of matrix measures and Lemma 2.4
have

µ
(−F(λ)

)= µ

(
λI −Q0 −

0∫
−r

eλθ dη(θ)

)
� λ+µ(−Q0)+µ

(
−

0∫
−r

eλθ dη(θ)

)

� λ+µ(−Q0)+µ

(
−

0∫
−r

e(λ+µ(−Q0))θ e−µ(−Q0)θ dη(θ)

)

� λ+µ(−Q0)+µ

(
−

0∫
−r

e−µ(−Q0)θ dη(θ)

)

� µ

(
−

0∫
−r

e−µ(−Q0)θ dη(θ)

)
� 0.

Whenλ � µ(Q0)+µ(
∫ 0
−r e

µ(Q0)θ dη(θ)), we have

µ
(
F(λ)

)= µ

(
−λI +Q0 +

0∫
−r

eλθ dη(θ)

)
� −λ+µ(Q0)+µ

( 0∫
−r

eλθ dη(θ)

)

= −λ+µ(Q0)+µ

( 0∫
−r

e(λ−µ(Q0))θeµ(Q0)θ dη(θ)

)

� −λ+µ(Q0)+µ

( 0∫
−r

eµ(Q0)θ dη(θ)

)
� 0.

Under the assumptionµ(Q0)� −µ(
∫ 0
−r

eµ(Q0)θ dη(θ)), it is obvious that if we, respec

tively, let λ1 = −µ(−Q0) � µ(Q0) � 0 andλ2 = µ(Q0) + µ(
∫ 0
−r

eµ(Q0)θ dη(θ)) � 0;
then we can, respectively, obtainµ(−F(λ1)) � 0 andµ(F(λ2))� 0.
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Then the above discussion shows that Eq. (1.1) is nonoscillatory, and the assu
µ(Q0)� −µ(

∫ 0
−r e

µ(Q0)θ dη(θ)) implies that Eq. (1.1) has at least one bounded nono
latory solution. ✷
Corollary 3.1. Let n be odd. If µ(Qj) � 0, j = 1,2, . . . ,m, and

r ·µ
(

−
m∑

j=1

eµ(−Q0)τjQj

)
� 1

e
, (3.4)

where r = max1�j�m τj , then Eq. (1.3) is nonoscillatory. If we further assume µ(Q0) � 0,
then Eq. (1.3) has at least one bounded nonoscillatory solution.

Corollary 3.2. Let n be odd. If µ(Qj) � 0, j = 1,2, . . . ,m, then Eq. (1.3) is nonoscilla-
tory. Furthermore, if µ(Q0) � −µ(

∑m
j=1 e

−µ(Q0)τjQj ), then Eq. (1.3) has at least one
bounded nonoscillatory solution.

Remark 3.1. Under the assumptionµ(dη(θ)) � 0 on [−r,0] and thatn is odd, from the
inequality (3.3), we have

1

e
� r ·µ

(
−

0∫
−r

e−µ(−Q0)θ dη(θ)

)
� r ·µ

(
−

0∫
−r

eµ(Q0)θ dη(θ)

)

� µ

(
−

0∫
−r

|θ |eµ(Q0)θ dη(θ)

)
� −µ

( 0∫
−r

|θ |eµ(Q0)θ dη(θ)

)
,

that is,

µ

( 0∫
−r

|θ |eµ(Q0)θ dη(θ)

)
� −1

e
, (3.5)

which is opposite to inequality (3.1). This reasoning shows that the sufficient conditio
Eq. (1.1) to be nonoscillatory is contained in the necessary conditions (3.5). Therefo
can see that our conclusion in Theorem 3.1 is reasonable.

We next give two examples as applications of Corollaries 3.1 and 3.2.

Example 3.1. Consider the equation

x ′(t) =Q0x(t)+Qx(t − τ ), (3.6)

where

n = 3, Q0 =

−5 0 0

1 −2 0

0 1 −1


 , Q =




−1
4

1
10

1
4e

1
2e −1

e
1
4e

1 1


 and τ = 1

6
.

2e 2 0 5 −4
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t least

illatory

eo-
By easy calculation, we haveµ1(Q) = −1/4 + 1/(2e) < 0, µ1(−Q) = 1/e + 3/10,
µ1(Q0)= −1/2< 0,µ1(−Q0) = 6, and

τ ·µ1(−eµ1(−Q0)τQ)= 1

6
· e ·µ1(−Q)= e

6

(
1

e
+ 3

10

)
= 1

6
+ e

20
<

1

e
.

Then Eq. (3.6) satisfies all the conditions in Corollary 3.1, and hence Eq. (3.6) has a
one bounded nonoscillatory solution.

Example 3.2. Consider the equation

x ′(t) =Q0x(t)+Q1x(t − τ1)+Q2x(t − τ2), (3.7)

where

n = 3, Q0 =

−4 0 0

1 −3 −1

−1 −1
2 −2


 , Q1 =


−1 1 0

0 −2 1

0 −1 −3


 ,

Q2 =



1
5 −1

8 0

0 1
8 0

0 0 1
4


 , τ1 = 1

2
and τ2 = 1.

One can easily obtain thatµ1(Q0) = −1,µ1(Q1) = 0, andµ1(Q2) = 1/4, so the con-
ditionsµ(Qj)� 0, for j = 1,2, are satisfied in Corollary 3.2. In addition,

−µ1

(
2∑

j=1

e−µ1(Q0)τjQj

)
� −µ1(e

−µ1(Q0)τ1Q1)−µ1(e
−µ1(Q0)τ2Q2)

= −µ1(e
−µ1(Q0)τ2Q2)= − e

4
>µ1(Q0)= −1.

From Corollary 3.2, we conclude that Eq. (3.7) has at least one bounded nonosc
solution.

Remark 3.2. Whenn is even, the following two examples suggest the invality of Th
rems 3.1 and 3.2.

Example 3.3. Consider the equation

x ′(t) =Q0x(t)+Qx(t − τ ), (3.8)

where

Q0 = 0, Q =
(−1

e
− 1

2e
1
2e −1

e

)
and τ = 2

3
.

One can easily obtainµ1(Q0)= 0,µ1(Q)= −1/(2e) < 0,µ1(−Q) = 3/(2e) and

τ ·µ1(−eµ1(−Q0)τQ)= 2

3
µ1(−Q) = 1

e
.

Hence Eq. (3.8) satisfies the conditions in Corollary 3.1 except the one thatn is odd.
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However, since for eachλ ∈R

detF(λ) = det

(−λ− 1
e
e−λτ − 1

2e e
−λτ

1
2e e

−λτ −λ− 1
e
e−λτ

)
=
(
λ+ 1

e
e−λτ

)2

+ 1

4e2e
−2λτ > 0,

that is, the characteristic equation of Eq. (3.8) has no real root, it follows from Lemm
that Eq. (3.8) is oscillatory.

Example 3.4. Consider the equation

x ′(t) =Q0x(t)+Qx(t − τ ), (3.9)

where

n = 2, Q0 =
(

2 0
0 1

)
, Q=

(
0 −2
2 0

)
and τ = 1

2
.

Obviously,µ1(Q) = 2> 0, which satisfies the conditionµ(Qj) � 0, for j = 1, . . . ,m,
in Corollary 3.2.

However, from Lemma 1.1 and

detF(λ) = det

(−λ+ 2 −2e−λτ

2e−λτ −λ+ 1

)
= (λ− 1)(λ− 2)+ 4eλ > 0,

for eachλ ∈ R, since minλ∈[1,2] detF(λ) > −1/4 + 4e2 > 0, we know that Eq. (3.9) i
oscillatory.

The two examples imply that whenn is even, Theorems 3.1 and 3.2 are invalid, and
need stronger conditions to guarantee the nonoscillation of Eq. (1.1).

4. The nonoscillation of Eq. (1.2)

There are few papers concerned with the oscillatory problem of Eq. (1.2), and muc
about its nonoscillation. Paper [3] is one of the most recent papers about the oscilla
its discrete case with several neutral terms. Here, in this section, we will establis
nonoscillatory criteria of Eq. (1.2).

For a matter of completeness, we first give the oscillatory criteria of Eq. (1.2).

Lemma 4.1. Let A ∈Rn×n . If µ(A) < 0, then detA 
= 0.

Theorem 4.1. Assume µ(Q0) � 0, µ(dη(θ)) � 0 on [−r,0], 0 � −µ(−A) � µ(A) � 1,
and

µ

( 0∫
−r

|θ |eµ(Q0)θ dη(θ)

)
<−1

e
. (4.1)

Then Eq. (1.2) is oscillatory.
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Proof. From Lemma 1.2, it suffices to prove that Eq. (1.6) has no real root. Let

G(λ) = −λ(I −Ae−λτ )+Q0 +
0∫

−r

eλθ dη(θ).

From Lemma 4.1, we only need to showµ(G(λ)) < 0 for all λ ∈ R. It follows from in-
equality (4.1) that

µ

( 0∫
−r

dη(θ)

)
� eµ(Q0)r

r
µ

( 0∫
−r

|θ |eµ(Q0)θ dη(θ)

)
<−eµ(Q0)r

re
< 0.

We next showµ(G(λ)) < 0, for all λ ∈ R, in three cases.
(1) λ = 0. It is obvious that

µ
(
G(0)

)= µ

(
Q0 +

0∫
−r

dη(θ)

)
< 0.

(2) λ > 0. Fromµ(A)� 1, we have

µ
(
G(λ)

)= µ

(
−λ(I −Ae−λτ )+Q0 +

0∫
−r

eλθ dη(θ)

)

� −λ+ λe−λτµ(A)+µ(Q0)+µ

( 0∫
−r

eλθ dη(θ)

)

� −λ+ λe−λτ < 0.

(3) λ < 0. From−µ(−A)� 0, we know

µ
(
G(λ)

)
� −λ− λe−λτµ(−A)+µ(Q0)+µ

( 0∫
−r

eλθ dη(θ)

)

� −λ+µ(Q0)+µ

( 0∫
−r

eλθ dη(θ)

)
.

If −λ+µ(Q0)� 0, then

µ
(
G(λ)

)
�µ

( 0∫
−r

eλθ dη(θ)

)
< 0.

If −λ+µ(Q0) > 0, from inequality (4.1) andex � ex, for x ∈R, we have
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. (1.2)

al

of

al
µ
(
G(λ)

)
� −λ+µ(Q0)+µ

( 0∫
−r

e(λ−µ(Q0))θeµ(Q0)θ dη(θ)

)

� −λ+µ(Q0)+ (−λ+µ(Q0)
)
eµ

( 0∫
−r

|θ |eµ(Q0)θ dη(θ)

)

= (−λ+µ(Q0)
)[

1+ eµ

( 0∫
−r

|θ |eµ(Q0)θ dη(θ)

)]
< 0.

The above discussion shows that Eq. (1.2) is oscillatory.✷
Remark 4.1. One can see that Theorem 4.1 extends the Proposition 3.1 and that Eq
is oscillatory independently on the delayτ under the condition 0� −µ(−A)�µ(A)� 1.

For convenience, we letQ0 = 0 in Eq. (1.2), and consider the following function
differential system of neutral type:

(
x(t)−Ax(t − τ )

)′ =
0∫

−r

dη(θ)x(t + θ). (4.2)

In addition, we letG(λ) = −λI + λe−λτA+ ∫ 0
−r

eλθ dη(θ) and denote the eigenvalues
G(λ) by λ̄G(λ).

Theorem 4.2. Let n be odd. Assume µ(dη(θ))� 0 on [−r,0] and

µ(A)� max

{
1

e
− τ

e
er/τµ

(
−

0∫
−r

dη(θ)

)
, re−τ/r

(
1

r
− eµ

(
−

0∫
−r

dη(θ)

))}
.

Then Eq. (4.2) is nonoscillatory and has at least one bounded nonoscillatory solution.

Proof. From Lemma 1.2, it suffices to show there existsλ0 � 0, such that detG(λ0) = 0.
Assume detG(λ) 
= 0 for all λ� 0, then either detG(λ) < 0 for all λ � 0, or detG(λ) > 0
for all λ � 0, since detG(λ) is continuous aboutλ.

(i) detG(λ) < 0 for all λ � 0. We know thatG(λ) has at least one negative re
eigenvalue for eachλ� 0. Then from−µ(−G(λ)) � Reλ̄G(λ) � µ(G(λ)), it follows that
µ(−G(λ)) > 0, ∀λ � 0.

On the other hand, whenλ� 0,

µ
(−G(λ)

)= µ

(
λ(I −Ae−λτ )−

0∫
−r

eλθ dη(θ)

)

� λ− λe−λτµ(A)+ e−λrµ

(
−

0∫
dη(θ)

)
.

−r
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solu-

that
If µ(A)� re−τ/r (1/r − eµ(− ∫ 0
−r dη(θ))), we letλ= −1/r, then

µ
(−G(λ)

)
� −1

r
+ 1

r
eτ/rµ(A)+ eµ

(
−

0∫
−r

dη(θ)

)
� 0.

If µ(A)� 1/e− (τ/e)er/τµ(− ∫ 0
−r dη(θ)), we letλ = −1/τ , then

µ
(−G(λ)

)
� −1

τ
+ 1

τ
eµ(A)+ er/τµ

(
−

0∫
−r

dη(θ)

)
� 0.

We get a contradiction.
(ii) detG(λ) > 0 for all λ � 0. It is known that det(−G(λ)) < 0, and then−G(λ) has at

least one negative real root for eachλ� 0. Soµ(G(λ)) > 0 for all λ � 0. However, when
we letλ = 0,

µ
(
G(λ)

)= µ

(
−λ(I −Ae−λτ )+

0∫
−r

eλθ dη(θ)

)
= µ

( 0∫
−r

dη(θ)

)
� 0.

It is also a contradiction.
Hence Eq. (4.2) is nonoscillatory, and has at least one bounded nonoscillatory

tion. ✷
Theorem 4.3. Let n be odd. Assume µ(dη(θ))� 0 on [−r,0]. Then Eq. (4.2) is nonoscil-
latory.

Proof. From the similar reasoning with the proof of Theorem 3.2, it suffices to prove
there existsλ ∈R such thatµ(−G(λ))� 0, and anotherλ ∈R such thatµ(G(λ))� 0.

If we let λ= 0, then

µ
(−G(λ)

)= µ

(
λ(I −Ae−λτ )−

0∫
−r

eλθ dη(θ)

)
= µ

(
−

0∫
−r

dη(θ)

)
� 0.

It is obvious that ifλ > 0 is large enough, we have

µ
(
G(λ)

)= µ

(
−λ(I −Ae−λτ )+

0∫
−r

eλθ dη(θ)

)

� −λ+ λeλτµ(A)+µ

( 0∫
−r

dη(θ)

)

� λ(e−λτ − 1)+µ

( 0∫
−r

dη(θ)

)
� 0.

Therefore, Eq. (4.2) is nonoscillatory.✷
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Corollary 4.1. Assume µ(Qj)� 0, j = 0,1, . . . ,m, 0 � −µ(−A)� µ(A)� 1 and

µ

(
m∑

j=1

τj e
−µ(Q0)τjQj

)
<−1

e
.

Then Eq. (1.4) is oscillatory.

Corollary 4.2. Let n be odd, and Q0 = 0. Assume µ(Qj)� 0, j = 1,2, . . . ,m, and

µ(A)� max

{
1

e
− τ

e
er/τµ

(
−

m∑
j=1

Qj

)
, re−τ/r

(
1

r
− eµ

(
−

m∑
j=1

Qj

))}
,

where r = max1�j�m{τj }. Then Eq. (1.4) is nonoscillatory, and has at least one bounded
nonoscillatory solution.

Corollary 4.3. Let n be odd, and Q0 = 0. Assume µ(Qj) � 0, j = 1,2, . . . ,m. Then
Eq. (1.4) is nonoscillatory.

The following examples are given as applications of Corollaries 4.1–4.3.

Example 4.1. Consider the equation

(
x(t)−Ax(t − τ )

)′ =Q0x(t)+
2∑

j=1

Qjx(t − τj ), (4.3)

where

n = 3, A = I, Q0 = 0, τ = 1,

Q1 =
(−2 3 1

0 −4 0
2 0 −2

)
, Q2 =




−1
2 0 0

0 −2 1
2

−1
2 0 −1


 , τ1 = 3

2
, τ2 = 3.

Obviously,µ1(Q0)= µ1(Q1)= µ1(Q2)= 0, −µ1(−A)= µ1(A)= 1,

µ1

(
2∑

j=1

τj e
−µ1(Q0)τjQj

)
= µ1

(
3

2
Q1 + 3Q2

)

= µ1

(
3

2
·
(−3 3 1

0 −8 1
1 0 −4

))
= −3<−1

e
.

Then Corollary 4.1 shows that Eq. (4.3) is oscillatory.

Example 4.2. Consider the equation

(
x(t)−Ax(t − τ )

)′ =Q0x(t)+
2∑

Qjx(t − τj ), (4.4)

j=1
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ded

608–

ynam.
where

n = 3, Q0 = 0, A =




−1
e

0 −1

1
e2

1
4e

− 3
2 0

0 −1
4e

− 3
2 −2


 ,

Q1 = 1

e2




−1
3 0 − 1

24
2
3e −1

4
1
12

0 −1
8 −1

8


 , Q2 = 1

e2




−1
6 0 −1

8
1
3e −1

8
1
4

0 1
8 −3

8


 ,

τ1 = 1, τ2 = 2, τ = 1.

One can easily obtain thatµ1(A)= e−3/2/2,µ1(Q1)= µ1(Q2)= 0,

µ1

(
−

2∑
j=1

Qj

)
= µ1


 1

e2




1
2 0 1

6

−1
e

3
8 −1

3

0 −1
4

1
2




= 1

e2
,

1

e
− τ

e
er/τµ1

(
−

2∑
j=1

Qj

)
= 1

e
− 1

e
= 0,

re−τ/r

(
1

r
− eµ1

(
−

m∑
j=1

Qj

))
= 2e−1/2

(
1

2
− 1

e

)
= e−3/2(e− 2) > 0.

Sinceµ1(A) = e−3/2/2< e−3/2(e − 2), we have that Eq. (4.4) has at least one boun
nonoscillatory solution from Corollary 4.2.

Example 4.3. Consider the equation(
x(t)−Ax(t − τ )

)′ =Q0x(t)+Q1x(t − τ1), (4.5)

where

n = 3, Q0 = 0, A = I, Q1 =
(−3 1 0

1 0 4
5 2 −2

)
,

τ1 = 1

2
, τ = 3.

Obviously,µ1(Q1) = 3> 0, then Corollary 4.3 shows that Eq. (4.5) is nonoscillatory.
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