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Abstract

We obtain smooth M-theory solutions whose geometry is a warped product ofAdS5 and a compact internal space that can
viewed as anS4 bundle overS2. The bundle can be trivial or twisted, depending on the even or odd values of the two dia
monopole charges. The solution preservesN = 2 supersymmetry and is dual to anN = 1,D = 4 superconformal field theory
providing a concrete framework to study theAdS5/CFT4 correspondence in M-theory. We construct analogous embeddin
AdS4, AdS3 andAdS2 in massive type IIA, type IIB and M-theory, respectively. The internal spaces have generalized hol
and can be viewed asSn bundles overS2 for n = 4, 5 and 7. Surprisingly, the dimensions of spaces with generalized holo
includesD = 9. We also obtain a large class of solutions ofAdS × H2.
 2003 Published by Elsevier B.V.

1. Introduction

AdS5 spacetime arises naturally in type IIB supergravity, which provides a non-trivial and relatively s
framework for examining the holographic principlevia the AdS5/CFT4 correspondence [1–3]. The embedd
of AdS5 spacetime in eleven-dimensional supergravity has also been studied in the past. A smooth b
supersymmetric compactification of eleven-dimensional supergravity toAdS5 was obtained in [4] where th
internal space is a Kähler manifold. More recently, an internal background ofCP

2 × T 2 was found in [5].
Although the compactification is not supersymmetric at the level of supergravity, it was argued in [5] th
fully supersymmetric at the level of M-theory, since it is T-dual to theAdS5 × S5 of type IIB theory. In the above
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two examples, the AdS spacetime and internal manifold are direct products without warp factors. Smo
non-supersymmetric M-theory solutions have been constructed in [6], which are warped and twisted pro
AdS5 × S2 or AdS5 ×H 2 with a squashed four-sphere.

In [7,8], supersymmetric embeddings ofAdS5 in M-theory were found as warped geometries with a comp
internal metric. This construction can be understood from that the fact thatS5 can be expressed as a foliation
S3 andS1. One can then T-dualize theAdS5 × S5 of type IIB theory on theU(1) bundle of theS3 and obtain a
solution in M-theory [9]. However, there is a naked singularity in such a construction, since theU(1) circle of the
S3 can shrink to zero. Supersymmetric and smooth embeddings ofAdS5 in M-theory were obtained in [10]. Th
eleven-dimensional metric is a warped product ofAdS5 with an internal metric that can be viewed as anS4 bundle
overH 2, a hyperbolic 2-plane. The construction can give rise to bothN = 2 and N= 4 supersymmetry.

In this Letter, we report a supersymmetric and smooth compactification of M-theory toAdS5, with the internal
space being anS4 bundle overS2. The construction is only possible forN = 2 supersymmetry, and hence it giv
rise to the minimumAdS5 gauged supergravity coupled to matter. This solution provides a supergravity d
N = 1, D = 4 superconformal field theory. We also obtain supersymmetric and smooth compactifications
theory toAdS2 and type IIB toAdS3. The internal space is anSp bundle overS2, wherep = 7 and 5, respectively
We also construct a supersymmetric compactification of massive IIA toAdS4, which is singular.

2. AdS5 × S2 in M-theory

We begin by considering the sector ofD = 7 gauged supergravity with two diagonalU(1) vector fields. The
relevant Lagrangian is given by

(2.1)ê−1L7 = R̂ − 1

2
(∂φ1)

2 − 1

2
(∂φ2)

2 − V̂ − 1

4

2∑
i=1

X−2
i

(
F̂ i
(2)

)2
,

whereXi = e
1
2 �ai · �φ with

(2.2)�a1 =
(√

2,

√
2

5

)
, �a2 =

(
−√

2,

√
2

5

)
.

The scalar potential̂V is given by [11]

(2.3)V̂ = g2
(

−4X1X2 − 2X0X1 − 2X0X2 + 1

2
X2

0

)
,

whereX0 = (X1X2)
−2. The potential can be expressed in terms of the superpotential

(2.4)Ŵ = g√
2
(X0 + 2X1 + 2X2).

We now consider a 3-brane ansatz

(2.5)ds2 = e2u dxµ dxµ + e2v λ−2 dΩ2
2 + dρ2, F i

(2) = εmiλ
−2Ω(2),

where the constantε takes the values 1,−1 and 0, ifdΩ2
2 is the metric for a unitS2, hyperbolicH 2 or 2-torusT 2.

Ω(2) is the corresponding volume form. The system admits the following first-order equations

d �φ
dρ

= √
2

(
− ε

2
√

2

(
m1�a1X

−1
1 + m2�a2X

−1
2

)
e−2v + dŴ

d �φ
)
,
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dρ
= − 1

5
√

2

(
2
√

2ε
(
m1X

−1
1 + m2X

−1
2

)
e−2v + Ŵ

)
,

(2.6)
du

dρ
= 1

5
√

2

(
ε√
2

(
m1X

−1
1 + m2X

−1
2

)
e−2v − Ŵ

)
,

provided that the constraint

(2.7)λ2 = (m1 + m2)g

is satisfied. This set of first-order equations were derived for the case ofH 2 in [10] by studying the Killing spinor
equations ofD = 7 gauged supergravity. In [12], a different method was used to obtain them forH 2, S2 andT 2.
The equations of (2.6) were analyzed in detail in [12]. Here, we report on only a subclass of solutions wher�φ and
v are constants. In this case, forε = 0, the solution is nothing butAdS7 written in Poincaré coordinates.

For ε = ±1, we find that the solution is given by

e
√

2φ1 =
m2 − m1 ±

√
m2

2 + m2
1 − m1m2

m2
, e−

√
5
2 φ2 = 4

3
cosh(φ1/

√
2),

(2.8)e−2v = − εg e
− 3√

10
φ2

m1 e
− φ1√

2 + m2 e
φ1√

2

, u = −1

2
g e

− 4√
10

φ2
ρ.

This solution is invariant under the simultaneous interchanges ofm1 ↔ m2 andφ1 ↔ −φ1. The reality conditions
of the solution constrain the constantsmi andg, as well as the choice of± in the solution. Let us first conside
the caseε = −1, corresponding todΩ2

2 as the metric of a unit (non-compact) hyperbolic 2-plane. In this case
reality of the solution implies thatm1m2 � 0. This includes the choice ofm1 = 0 (orm2 = 0) andm1 = m2, which
were discussed in [10]. The first case gives rise toN = 4 supersymmetry inD = 5, whilst the second case giv
rise toN = 2 supersymmetry.

We are particularly interested in a compact internal space. Thus, we now turn to the choice ofε = +1,
corresponding todΩ2

2 as the metric ofS2. In this case, the reality conditions for (2.8) imply thatm1m2 < 0.
The condition (2.7) implies further thatm1 �= −m2. Therefore, theAdS5 × S2 solution can only haveN = 2
supersymmetry, but cannot arise from the pureD = 7 minimal gauged supergravity.

If we define a charge parameterq = 2m1/(m1 + m2), then the condition for havingS2 versusH 2 can be
summarized as

(2.9)q ∈ [0,2] �⇒ H 2, q ∈ (−∞,0) or (2,∞) �⇒ S2.

It is straightforward to lift this solution toD = 11 by using the ansatz obtained in [11]. Since the solut
for generalmi are rather complicated to present, we only consider a representative example withm1 = 5g and
m2 = −3g. The M-theory metric is given by

ds2
11 = ∆

1
3

[
ds2

AdS5
+ 1

g2c

{
1

4c

(
dθ2 + sin2 θdϕ2)+ 1

∆

(
1

4
dµ2

0 + 1

5

(
dµ2

1 + µ2
1

(
dφ1 − 5

2
cosθ dϕ

)2)
(2.10)+ dµ2

2 + µ2
2

(
dφ2 + 3

2
cosθ dϕ

)2)}]
,

wherec = 10−2/5 andµi are spherical coordinates which satisfyµ2
0 +µ2

1 +µ2
2 = 1. The warp factor∆ is given by

(2.11)∆ = c
(
4µ2

0 + 5µ2
1 + µ2

2

)
> 0.

TheAdS5 metric is given by

(2.12)ds2
AdS = e− 2ρ

R dxµ dxµ + dρ2,

5
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where theAdS radius is given byR = 1
2cg . The 4-form field strength inD = 11 can also be obtained using t

reduction ansatz in [11]. It is given by

∗F (4) = −(2g)−1(8µ2
0 + 15µ2

1 + 7µ2
2

)
ε(5) ∧ sinθ dθ ∧ dϕ

(2.13)+ g−1
(

1

5
d
(
µ2

1

)∧
(
dφ1 − 5

2
cosθ dϕ

)
− 3d

(
µ2

2

)∧
(
dφ2 + 3

2
cosθ dϕ

))
∧ ε(5),

whereε(5) is the volume form for theAdS5 metric.
Thus, the internal space of theD = 11 metric can be viewed as anS4 bundle overS2, with two diagonalU(1)

bundles. In general, the internal metric can be labeled by(q1, q2) = ( 2m1
m1+m2

, 2m2
m1+m2). In the specific exampl

above,(q1, q2) = (5,−3) and the solution is smooth everywhere. For general(m1,m2), the metric does not hav
a power-law singularity. However, it could have a conical orbifold singularity, which is absent only if(q1, q2) are
integers. Since theqi satisfy the constraintq1+q2 = 2, it follows that they are either both even or both odd integ
In the even case, the bundle is topologically trivial, whilst it is twisted for the odd case.

3. AdS4 × S2 in massive type IIA

The scalar potential in gauged supergravity with twoU(1) isometries was obtained in [13]. From this, we ded
that the relevant Lagrangian involving the twoU(1) vector fields is given by

(3.1)ê−1L6 = R̂ − 1

2
(∂φ1)

2 − 1

2
(∂φ2)

2 − V̂ − 1

4

2∑
i=1

X−2
i

(
F̂ i
(2)

)2
,

whereXi = e
1
2 �ai · �φ with

(3.2)�a1 =
(√

2,
1√
2

)
, �a2 =

(
−√

2,
1√
2

)
.

The scalar potential is given by

(3.3)V̂ = 4

9
g2(X2

0 − 9X1X2 − 6X0X1 − 6X0X2
)
,

where X0 = (X1X2)
−3/2. As in the previous case, the scalar potential can be expressed in terms

superpotential

(3.4)Ŵ = g√
2

(
4

3
X0 + 2X1 + 2X2

)
.

We consider a membrane solution of the type given by (2.5). The system admits the following firs
equations

d �φ
dρ

= √
2

(
− ε

2
√

2

(
m1�a1X

−1
1 + m2�a2X

−1
2

)
e−2v + dŴ

d �φ
)
,

dv

dρ
= − 1

4
√

2

(
3√
2
ε
(
m1X

−1
1 +m2X

−1
2

)
e−2v + Ŵ

)
,

(3.5)
du

dρ
= 1

4
√

2

(
ε√
2

(
m1X

−1
1 + m2X

−1
2

)
e−2v − Ŵ

)
,

provided that the constraintλ2 = (m1 + m2)g is satisfied. The solutions were analyzed in detail in [12]. Here
shall only consider the subset of solutions with constant scalars. Forε = 0, one just reproduces theAdS6 metric in
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Poincaré coordinates. Forε = ±1, we have

e
√

2φ1 = 3

2

m2 − m1 ±
√
(m2 − m1)2 + 4

9m1m2

m2
, e−√

2φ2 = 3

2
cosh

(
φ1√

2

)
,

(3.6)e−2v = − 4εg e
− φ2√

2

m1 e
− φ1√

2 + m2 e
φ1√

2

, u = −g

3
e
− 3√

8
φ2
ρ.

As in theD = 7 result, we can define a charge parameterq = 2m1
m1+m2

. We haveH 2 orS2 depending on the following
condition:

(3.7)q ∈ [0,2] �⇒ H 2, q ∈ (−∞,0) or (2,∞) �⇒ S2.

Whenq = 0 orq = 2, the system hasN = 4 supersymmetry. Otherwise, we haveN = 2 supersymmetry.
Using the reduction ansatz in [13,14], it is straightforward to lift the solution back toD = 10, giving rise to a

solution of massive type IIA supergravity. The metric is given by

ds2
10 = µ

1
12
0 X

1
8
0 (X1X2)

1
4∆

3
8

× [
ds2

6 + g−2∆−1(X−1
0 dµ2

0 + X−1
1

(
dµ2

1 + µ2
1

(
dϕ1 + gA2

(1)

)2)
(3.8)+ X−1

2

(
dµ2

2 + µ2
2

(
dϕ2 + gA1

(2)

)2))]
,

where∆ =∑2
α=0Xαµ

2
α > 0 andµ2

0 +µ2
1 +µ2

2 = 1. Thus, theD = 10 metric is a warped product ofAdS4 with an
internal six-metric, which is anS4 bundle overS2 or H 2, depending on the charge parameterp, according to the
rule (3.7).

As an example of a supersymmetric, though singular, compactification ofAdS4 from massive IIA, we can
takem1 = 7g andm2 = −5g, and a choice of negative sign in (3.6). This givesX0 = 6c, X1 = 7c andX2 = c,
wherec = 6−1/47−3/8. Also, A1

(1) = − 7
2g cosθ dϕ andA2

(1) = 5
2g cosθ dϕ, and the radius ofAdS4 is given by

R = 1/(2cg).

4. AdS3 × S2 in type IIB

Let us now consider theD = 5 minimal gauged supergravity coupled to two vector multiplets. The Lagran
is given by

(4.1)e−1L5 = R̂ − 1

2
(∂φ1)

2 − 1

2
(∂φ2)

2 − 1

4

3∑
i=1

X−2
i

(
F̂ i
(2)

)2 − V̂ + e−11

4
εµνρσλF̂ 1

µνF̂
2
ρσ Â

3
λ,

whereXi = e
1
2 �ai · �φ with

(4.2)�a1 =
(√

2,
2√
6

)
, �a2 =

(
−√

2,
2√
6

)
, �a3 =

(
0,− 4√

6

)
.

The scalar potential is given by

(4.3)V̂ = −4g2
3∑

i=1

X−1
i .
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,
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The scalar potential̂V can also be expressed in terms of the superpotential

(4.4)Ŵ = √
2g
∑
i

Xi .

We find that the string solution of the type given by (2.5) admits the following first-order equations

d �φ
dρ

= √
2

(
− ε

2
√

2

(
m1�a1X

−1
1 + m2�a2X

−1
2 + m3�a3X

−1
3

)
e−2v + dŴ

d �φ
)
,

dv

dρ
= − 1

3
√

2

(√
2ε
(
m1X

−1
1 + m2X

−1
2 + m3X

−1
3

)
e−2v + Ŵ

)
,

(4.5)
du

dρ
= 1

3
√

2

(
ε√
2

(
m1X

−1
1 + m2X

−1
2 + m3X

−1
3

)
e−2v − Ŵ

)
,

provided that the constraintλ2 = (m1 + m2 + m3)g is satisfied. The general solution for this system was anal
in [12]. Here, we consider only the solutions with constant scalar fields. Forε = 0, the solution isAdS5 in Poincaré
coordinates. Forε = ±1, fixed-point solutions exist only for non-vanishingmi . The solution is given by

e
√

2φ1 = m1

m2

(
m3 + m2 − m1

m3 − m2 + m1

)
, e

√
6φ2 = m1m2(m

2
3 − (m1 − m2)

2)

m2
3(m1 + m2 − m3)2

,

e−2v = −εg

(
(m1 + m2 − m3)(m

2
3 − (m1 − m2)

2)

m2
1m

2
2m

2
3

)1/3

,

(4.6)u = −g e
φ2√

6

(
cosh(φ1/

√
2) + 1

2
e−
√

3
2 φ2

)
ρ.

The reality condition of the solution implies that when three vectors with the magnitudes|mi | can form a triangle
dΩ2

2 should be theH 2 metric. On the other hand, when they cannot form a triangle, the metric should b
of S2.4 If any of themi vanish, there is no fixed-point solution, except when one vanishes with the remainin
equal [12].

Using the reduction ansatz obtained in [11], we can easily lift the solution back toD = 10. Since the solution
with generalmi is complicated to present, we consider a simpler case withm2 = m1. TheD = 10 type IIB metric
is

ds2
10 = √

∆

{
ds2

AdS3
+ εg−2

(
m1

m3 − 2m1

)1/3(1

2
q1dΩ

2
2 + dθ2

)
+ g−2∆−1

[
c−1/3 cos2 θ

(
dψ2 + sin2ψ

(
dϕ1 + 1

2
q1A(1)

)2

+ cos2ψ

(
dϕ2 + 1

2
q1A(1)

)2)
(4.7)+ c2/3 sin2 θ

(
dϕ3 + 1

2
q3A(1)

)2]}
,

where

c =
∣∣∣∣ m1

2m1 − m3

∣∣∣∣, ∆ = c1/3 cos2 θ + c−2/3 sin2 θ > 0, dA(1) = Ω(2),

(4.8)ds2
AdS3

= e− 2ρ
R
(−dt2 + dx2)+ dρ2, R =

∣∣∣∣ 2m1

g(4m1 − m3)c1/3

∣∣∣∣.
4 AdS3 × S2 solutions were also recently found in [15] in a different construction.
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We have introduced the charge parametersqi = 2mi/(m1 + m2 + m3), and hence they satisfy the constra
q1 + q2 + q3 = 2. In the above solution, if|m3| < 2|m1|, we should haveε = −1, corresponding toH 2; if
|m3| > 2|m1|, we should haveε = 1, corresponding toS2. In general, the internal metric is anS5 bundle over
S2 or H 2, depending the values of theqi according to the above rules.

5. AdS2 × S2 in M-theory

Let us now consider theU(1)4 gaugedN = 2 supergravity in four dimensions. The Lagrangian is given by

(5.1)e−1L4 = R̂ − 1

2
(∂φ1)

2 − 1

2
(∂φ2)

2 − 1

2
(∂φ3)

2 − 1

4

4∑
i=1

X−2
i

(
F̂ i
(2)

)2 − V̂ ,

whereXi = e
1
2 �ai · �φ with

(5.2)�a1 = (1,1,1), �a2 = (1,−1,−1), �a3 = (−1,1,−1), �a4 = (−1,−1,1).

The scalar potential is given by

(5.3)V̂ = −4g2
∑
i<j

XiXj ,

which can also be expressed in terms of the superpotential

(5.4)Ŵ = √
2g

4∑
i=1

Xi.

The magnetic black hole solution of the type given by (2.5) admits the following first-order equations

d �φ
dρ

= √
2

(
− ε

2
√

2

4∑
i=1

mi �aiX−1
i e−2v + dŴ

d �φ

)
,

dv

dρ
= − 1

2
√

2

(
ε√
2

4∑
i=1

miX
−1
i e−2v + Ŵ

)
,

(5.5)
du

dρ
= 1

2
√

2

(
ε√
2

4∑
i=1

miX
−1
i e−2v − Ŵ

)
,

provided that the constraintλ2 = g
∑4

i=1mi is satisfied. The general solution for this system was analyzed in
Here, we consider only solutions with constant scalar fields. Forε = 0, the solution isAdS4 in Poincaré coordinates
For ε = ±1, we have not obtained the general solution for arbitrarymi , although we have found many examples
specific solutions. We do find a class of special solutions by settingm2 = m3 = m4. This enables us to consisten
setφ1 = φ2 = φ3 ≡ φ. For this truncation, fixed-point solutions forε = ±1 are given by

e2φ = 3m2 − m1 ± √
(m1 − m2)(m1 − 9m2)

2m2
, e−2v = 4gε

sinhφ

m1 e−2φ − m2
,

(5.6)u = −1

2
g

(
2(m1 e− 3

2φ + 3m2 e
1
2φ)

m2 − m1 e−2φ sinhφ + e
3
2φ + 3 e− 1

2φ

)
ρ.

The reality condition of the solution implies that forε = −1, corresponding toH 2, we must have eitherm2 > 0
and 0< m1 � m2 or m2 < 0 andm2 � m1 < −3m2. For ε = 1, corresponding toS2, we must have m2 � 0 and
m1 > −3m2. TheAdS2 × H 2 has also been found in [16].
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Using the reduction ansatz obtained in [11], we can easily lift the solution back toD = 11 with the metric

ds2
11 = ∆2/3

{
ds2

AdS2
+ e2v

(m1 + 3m2)g
dΩ2

2 + 1

g2∆

[
e− 3

2φ

(
dµ2

1 +µ2
1

(
dφ1 + εm1

m1 + 3m2
A(1)

)2)

(5.7)

+ e
1
2φ

4∑
i=2

(
dµ2

i + µ2
i

(
dφi + εm2

m1 + 3m2
A(1)

)2)]}
,

where

∆ = (
e

3
2φ − e− 1

2φ
)
µ2

1 + e− 1
2φ > 0, dA(1) = Ω(2), ds2

AdS2
= −e− 2ρ

R dt2 + dρ2,

(5.8)R = 2

g

[
2(m1 e− 3

2φ + 3m2 e
1
2φ)

m2 − m1 e−2φ sinhφ + e
3
2φ + 3 e− 1

2φ

]−1

.

In general, the internal metric is anS7 bundle overS2 or H 2, depending the values of themi .

6. Conclusions

We have obtained a large class of supersymmetric embeddings of AdS spacetime in M-theory, as wel
IIB and massive type IIA theories. The internal spaces can be viewed asSn bundles overS2 or H 2. Similar
solutions have been discussed in [17–19]. In particular, we have found a smooth embedding ofAdS5 in M-theory,
with a compact internal space of anS4 bundle overS2. The bundle can be trivial or twisted, depending on
two diagonal monopole charges. The solution preservesN = 2 supersymmetry; it is a supergravity dual to
N = 1,D = 4 superconformal field theory on the boundary ofAdS5. This provides a concrete framework to stu
AdS5/CFT4 from the point of view of M-theory.

The internal spaces of these embeddings may be regarded as concrete realizations of spaces with g
holonomy groups advocated in [20], since they are not Ricci flat and involve a form field. An especially inte
example is theS7 bundle overS2 or H 2, which is nine-dimensional. While nine-dimensional Ricci-flat manifo
do not have an irreducible special holonomy group, our aforementioned solutions are explicit examples
dimensional spaces which have generalized special holonomy.

The embeddings of AdS spacetimes in M-theory and string theories discussed in this Letter all involv
factors. We expect that there are many further examples of such solutions. It is of interest to explore the
from the AdS/CFT perspective as well as for a more concrete understanding and classification of spa
generalized special holonomy.
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[11] M. Cvetič, M.J. Duff, P. Hoxha, J.T. Liu, H. Lü, J.X. Lu, R. Martinez-Acosta, C.N. Pope, H. Sati, T.A. Tran, Nucl. Phys. B 558 (199

hep-th/9903214.
[12] S. Cucu, H. Lü, J.F. Vázquez-Poritz, in preparation.
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