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Hundreds of genes are proposed to contribute to nociception and pain perception. Historically, most
studies of pain-related genes have examined them in isolation or alongside a handful of other genes.
More recently the use of systems biology techniques has enabled us to study genes in the context of
the biological pathways and networks in which they operate.

Here we describe a Web-based resource, available at http://www.PainNetworks.org. It integrates interaction
data from various public databases with information on known pain genes taken from several sources (eg, The
Pain Genes Database) and allows the user to examine a gene (or set of genes) of interest alongside known inter-
action partners. This information is displayed by the resource in the form of a network.

The user can enrich these networks by using data from pain-focused gene expression studies to highlight
genes that change expression in a given experiment or pairs of genes showing correlated expression pat-
terns across different experiments. Genes in the networks are annotated in several ways including biolog-
ical function and drug binding.

The Web site can be used to find out more about a gene of interest by looking at the function of its inter-
action partners. It can also be used to interpret the results of a functional genomics experiment by revealing
putative novel pain-related genes that have similar expression patterns to known pain-related genes and by
ranking genes according to their network connections with known pain genes.

We expect this resource to grow over time and become a valuable asset to the pain community.
�  2013 The Authors Published by Elsevier B V on behalf of International Association for  .    . .       the Study of Pain. his is an opeT
es/by/4.0/). 
1. Introduction ies in experimental pain models and patient cohorts [15,56]. Sys-
Persistent pain has a complex pathophysiological basis in which
multiple mechanisms contribute to its initiation and maintenance
[17,23,44,65]. The risk of developing this condition is dependent on
the interaction between environmental and genetic factors. Multi-
ple techniques are currently being employed to investigate the
molecular basis of pain: transcriptional profiling of experimental
models of persistent pain in rodent and human [14,20,33,40], the
study of inbred rodent strains and genetically modified animals
to understand the genetic basis of acute and chronic pain
[1,22,34,66], and, more recently, human genetics, describing both
high impact variants [31,64] and the use of gene association stud-
tems biology (defined as ‘‘the strategy of pursuing integration of
complex data about the interactions in biological systems from di-
verse experimental sources . . .’’ [6]), provides a means to organise,
integrate, and maximise the utility of these large disparate pain-re-
lated data sets [3].

Gene expression profiling experiments using microarray tech-
nology represent one means to study pain in an unbiased, high-
throughput manner [14,29,33,40]. These functional genomics stud-
ies provide a large amount of information on biological systems,
including processes involved in pain. However, they generate large
gene lists. By considering the relationship between these putative
genes and those responsible for pain processes, a biologist can fo-
cus on genes interacting with pain-related genes and therefore
likely to be pain related.

Protein interactions can be detected using a range of technolo-
gies [48], and these data have been collected and made available by
several public resources [4,13,18,27,52,57]. By combining gene
nse 
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expression data with protein networks, built from this interaction/
association data, we can identify parts of the network activated un-
der particular conditions and detect differentially expressed genes
likely to be involved in pain due to connections with known pain
genes.

Network-based approaches have been successfully applied to
many human diseases, including cancer [10,47,59], diabetes [38],
asthma [25], Parkinson’s [45], Alzheimer’s [30,55], and systemic
inflammation [11]. Several resources exist that enable a user to
build networks and examine their gene(s) of interest in the context
of their network associations [35,58,63].

The PainNetworks resource displays pain-specific gene net-
works built by combining publicly available protein interaction
data with microarray-derived gene expression data from a wide
range of pain-related experiments. Users can query with a single
gene or list of genes generated by their own transcriptional profil-
ing experiments. The resulting network shows interactions be-
tween the query genes and other nonquery genes, including
pain-related genes, for example, from the Pain Genes Database
[34]. Clustering of the networks can be performed to detect mod-
ules of related genes; filtering can be used to select genes from a
specific tissue type or anatomical structure of interest. Annotation
can also be obtained for network genes and interactions.

Here we describe the Web site and underlying methodology.
We also demonstrate the power of the networks to reproduce
known associations in some pain-related biological pathways of
interest and we give examples of using the site to find out more
about genes and experiments of interest.

2. Methods

2.1. Network construction

In order to build the networks presented on the site, protein–
protein interaction data were taken from a number of databases,
as described below. These interactions were then combined in an
unweighted manner to build a network, that is, the network will
have an edge between 2 nodes (representing genes/proteins) pro-
vided at least one public resource reports an experimental valida-
tion for this interaction/association. PainNetworks then allows the
user to view a part of this network, using a query gene or set of
genes, and to further filter this network using various data sources.

2.2. Interaction/association data

Protein interactions were taken from 6 public databases (MINT,
IntAct, BioGRID, DIP, HPRD, and Reactome [4,13,18,27,52,57]) and
combined to produce a network.

These resources contain information on interactions that have
been experimentally detected using a variety of experimental tech-
niques (for example, yeast 2-hybrid, tandem affinity purification).
Further details on these techniques are provided in [48]. Only
interactions that have a PubMed ID reference are included in this
resource; the relevant PubMed ID for an interaction and its source
database can be viewed by clicking on an edge in a network.

Proteins were mapped to their genes, allowing the data from
different databases to be combined using a common identifier. This
allowed us to resolve ambiguous mapping between databases. Di-
rect protein–protein interactions (such as interactions curated
from the literature or found using yeast 2-hybrid screens) are dis-
played in the network as solid lines. Indirect associations (such as
associations inferred through co-complex membership) are dis-
played as broken lines.

The focus of PainNetworks is on experimentally defined interac-
tions. However, we also provide the user with the ability to add
predicted interactions from the STRING resource [58], v 9.0. Only
high-confidence predictions (ie, with a STRING score >800) are in-
cluded. More details on the STRING score can be found at the re-
source itself, http://www.string-db.org, and in [43]. We also
provide predicted protein interaction data derived from homol-
ogy-inferred inheritance of interactions between orthologues (HIP-
PO-C, HIPPO-DB; see below for details). As with many features of the
Web site, this option is not enabled by default, but can be selected by
the user and may be valuable for poorly annotated, less-well-studied
genes for which few interactions are known, or for genes that cannot
be assayed easily using experimental methods.

Interaction data are currently available for humans, rats, and
mice. Therefore, the site has 3 potential species-centric views. Each
view constructs the network using the interaction data available for
that species. In addition, direct physical interactions detected in an-
other species are transferred to that network, as described below.

2.3. Transferring annotation between species

The known pain genes deposited in the Pain Genes Database are
from mice [34]. The protein–protein interaction (PPI) and Online
Mendelian Inheritance in Man (OMIM) data are largely from hu-
mans, though some PPI data come from other species. The pain-re-
lated gene expression microarray data are produced using rat
models, and the tissue-specific expression data are from humans.
To integrate the data so they can be viewed together on the Web
site, annotations must be transferred to one of the species, and
therefore it is necessary to map genes between the species. Pain-
Networks currently allow the data to be transferred to mice, rats,
or humans. Thus, there are 3 different possible views of the site:
human-centric, mouse-centric, or rat-centric.

The Ensembl Compara method for identifying orthologues is
used to map genes between species [62]. In order to transfer PPIs
between species, a method similar to the interlogs procedure
[41] is used; we name this procedure, ‘‘Homologous Inheritance
of Protein–Protein Interactions by Orthology – Conservative’’ (HIP-
PO-C). Given an interaction between a pair of genes in one species,
if both of these genes have unambiguous orthologues in another
species, this interaction can be inherited. This method has been
shown to work well in previous studies [51]. Inherited interactions
will be visualised as a green edge in the network, as opposed to
blue for interactions not inherited from other species. For example,
when looking at the mouse interaction network (ie, using the
mouse-centric view), inherited interactions found using human-
based methodology would be coloured green; interactions discov-
ered using mouse-based methodology would be coloured blue.

A second method for protein interaction inheritance is also in-
cluded, named HIPPO-DB (Homologous Inheritance of Protein–Pro-
tein interactions by Orthology – Domain Based). This method uses
a combination of CATH and Pfam domain classifications [19,37,50]
to identify the likely subset of domain interactions underpinning a
given protein interaction. This method provides increased confi-
dence in protein interactions and indicates the domain combina-
tion that may be underpinning the interaction.

Predicted gene associations taken from the STRING database
[58] are available for the human-centric view, and are not trans-
ferred between species. Table 1 shows the total numbers of genes
and interactions in the respective networks.

2.4. Pain-related gene lists

The user can input a set of query genes in order to produce a
network. However, the Web site also contains lists of pain-related
genes obtained from public resources: 1) The OMIM database,
which is an online database of diseases and related genes (contain-
ing traditional ‘‘Mendelian’’ diseases and more complex polygenic
diseases). 2) The Pain Genes Database (PGD), maintained by Jeffrey

http://www.string-db.org


Table 1
Overview of the different types of data contained in PainNetworks.

Direct
interactions

All physical
interactions

PGD
genes

Algynomics
chip v2.0

OMIM
pain

OMIM absence
of pain

Predicted
interactions

Human (genes) 10,297 15,927 360 542 8 10 17,404
Human (interactions) 40,832 230,500 2884 4213 2 9 414,786
Mouse (genes) 2104 5815 195 0 5 4 16,101
Mouse (interactions) 2716 12,190 130 0 0 1 320,625
Rat (genes) 545 1948 118 0 6 4 12,248
Rat (interactions) 438 2530 51 0 1 0 142,034

PGD, Pain Genes Database; OMIM, Online Mendelian Inheritance in Man.
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Mogil’s Pain Genetics Lab. This resource contains genes that,
according to a published study, lead to a change in pain-related
behaviour when knocked out in mice [34]. 3) The Algynomics Pain
Research Panel. This is a custom microarray that allows the user to
assay single nucleotide polymorphisms in a number of genes that
may have some involvement in pain-related processes: http://
www.algynomics.com/pain-research-panel.html. Table 1 shows
the number of pain-related genes present in the various interaction
networks for the different organisms, and the number of interac-
tions between them.

PainNetworks will be updated regularly to capture any new
microarray, RNA-seq experiments, additional genes placed in the
PGD, OMIM, or other published pain-based resources, and for fu-
ture versions of the Algynomics Pain Research Panel. The user
can use genes from these resources to annotate their network, or
to identify clusters in the network with an over-representation of
pain-related genes.

Note that there is not an exact match between the number of
pain-related genes in PainNetworks and PGD or OMIM. This is
due to ambiguities between databases with regard to gene identi-
fiers: a given gene in one resource might not have an equivalent
entry in another, or might have more than one.

Currently, PainNetworks contains, for humans, 10,297 genes
with Ensembl IDs, with 40,832 direct interactions between them.
The respective numbers for mice are 2104 and 2716, and for rats,
545 and 438. Most efforts to map interactions and associations be-
tween genes/proteins focussed on humans; this explains the dis-
crepancy in numbers between the different organisms.

2.5. Expression data and analysis

The current datasets used by the Web site consist of gene
expression data taken from microarray analyses of 4 animal pain
models, performed by researchers in the London Pain Consortium
and their collaborators, using rat as the model organism. Three of
these are published [16,40].

Details on experimental design have either been published or
are provided on the Web site and are summarized in Table 2. Fur-
ther details of all currently available experiments can be viewed by
Table 2
Details of the pain-related microarray datasets currently contained in PainNetworks.

Name Experimental details

HIV Rats received concomitant delivery of ddC (Zalcitabine) and HIV-gp120 to
nerve. Gene expression in L5-DRG at 15 days was compared to vehicle-rec
controls

SNT-L5 Spinal nerve transection (SNT) was performed on the rat L5 spinal nerve. G
expression in the L5-DRG (dorsal root ganglion) at 15 days was compared to
L5-DRG for rats that received sham surgery

NGF Rats received recombinant nerve growth factor (NGF) for seven days throu
placed subcutaneously beneath the scapulae. Gene expression in the L4 an
was compared to vehicle receiving controls

SNI Spared nerved injury (SNI) was performed on tibial and peroneal branches o
nerve of rats. Gene expression in the L4 and L5-DRG was compared to sha
receiving control animals
clicking on the experiments tab. Lists of genes and fold changes can
be downloaded for each experiment in a variety of formats, or
browsed online. More datasets will be added in time, and we invite
members of the pain community to contact us to upload datasets
to the site. Users can also view their own expression datasets
through the site locally (client side), without having to send any
data via the Web. Instructions on how to do this are given on the
site, along with an example file.

All microarray-derived gene expression datasets were produced
using Affymetrix GeneChip technology. The resultant data were
preprocessed using the RMA package [9,26]. Differential gene
expression was calculated using limma (Linear Models for Micro-
array Data) [54], which produced a P-value for each gene probed
by the array. False discovery rate was estimated from these P-val-
ues using the Benjamini–Hochberg method [7]. Fold changes in
gene expression were computed between case samples (ie, animals
in which pain-related behaviour was induced) and control samples
(ie, the corresponding control for the model). A false discovery rate
of 0.1 was used to decide if a gene was differentially expressed be-
tween case and control samples.

2.6. Filtering to obtain context specific networks

Networks can be filtered using various methods to make the
networks more context-specific. For example, a list of Gene Ontol-
ogy [5] (GO) category names can be entered, and only genes anno-
tated with one or more of these terms would be retained in the
network. In this way, networks can be filtered to only display genes
involved in specific biological processes (eg, GO:0006954, inflam-
matory response), molecular functions (eg, GO:0005244, voltage-
gated ion channel activity), or expressed in given cellular compo-
nents (eg, GO:0045202, synapse).

The user can also filter the network to retain genes differentially
expressed in one or more of the gene expression microarray exper-
iments. They may also filter the network so that it retains interac-
tions where both genes show significant differential expression (in
the same direction) in user-specified experiments. Such filtering
can greatly reduce the size of the interaction network, making it
easier to examine and interpret.
Species Platform Contributor Reference

the sciatic
eiving

Rat Affymetrix Rat
Genome 230 2.0
array

Klio Maratou/
Andrew Rice

[40]

ene
that of the

Rat Affymetrix Rat
Genome 230 2.0
array

Klio Maratou/
Andrew Rice

[40]

gh a pump
d L5-DRG

Rat Affymetrix Rat
Genome 230 2.0
array

Stephen McMahon Unpublished

f the sciatic
m surgery

Rat Affymetrix Rat
Genome 230 2.0
array

David Vega-
Avelaira/Maria
Fitzgerald

[61]

http://www.algynomics.com/pain-research-panel.html
http://www.algynomics.com/pain-research-panel.html
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Networks can also be filtered using tissue-specific expression
data, in order to produce networks that only contain genes ex-
pressed in a given tissue/anatomical structure. These data are ta-
ken from the Human Protein Atlas Project [60]. This project
combines Antibody-Based Proteomic and tissue-microarray based
techniques in order to profile protein expression across various
cells and tissues. For example, the user is able to filter the network
so that it only contains genes expressed in a given cell or tissue,
such as peripheral nerve tissue.

2.7. Clustering the network

Since there are large amounts of experimental data available for
many genes, it is very easy to generate large networks (ie, >100
nodes), which are difficult to interpret. Therefore, PainNetworks al-
lows the user to cluster the network in order to break it up into smal-
ler groups of related genes. The advantages of clustering are 2-fold:
to help visualisation and to find modules enriched in specific func-
tions. We use established graph-clustering algorithms to find clus-
ters in the network. The aim of these algorithms is to find groups
in the network with a high number of interactions between group
members, but a small number of interactions between members of
the group and the other genes in the network outside the group.

Two graph-clustering algorithms are implemented: Louvain
clustering [8] and Links clustering [2]. Louvain looks for distinct
clusters of genes in the network, not allowing a given gene to be-
long to more than one network. Links clustering groups the edges
of the network, that is, the interactions. This second approach has
the potential advantage that it allows communities to be found
with overlapping nodes; the same gene can belong to different
clusters in the network. This fits in well with the functional pleiot-
ropy of many genes.

Once clusters have been built, they can be ranked according to
their size or the number of pain-related genes they contain. En-
riched GO categories for each cluster are also displayed. Enrich-
ment is performed using a method similar to that employed by
the DAVID functional enrichment tool [21]: for each GO category,
the proportion of category members in the cluster is compared
to the proportion of category members outside of the cluster using
Table 3
Example usages scenarios for the site.

Use Gene (s)/experiment
(s) involved

Descr

Find out more about a gene of interest NRG1 (Neuregulin 1) Enter
netwo

Use the results of a gene expression microarray
experiment to highlight differentially expressed
genes in a network

ATF3 (Cyclic AMP-
dependent
transcription factor)

Enter
The re
exper
netwo

Look at predicted associations for a given gene for
which no known physical interactions exist

VGF (VGF nerve
growth factor
inducible)

VGF i
using
includ
return

Make a large network from a group of related genes
and cluster in order to look for subsets of highly
connected genes

OPRD1, OPRK1
OPRM1 and ORL1
(opioid receptors)

These
netwo
cluste
genes

Search for experimental interactions between a large
list of genes identified as differentially expressed
from a microarray gene expression experiment

SNT (spinal nerve
transection model):
L5 vs Sham

In thi
(large
differ
The re
these
CLEC7

Look for interaction partners for a given gene that
are druggable using approved drugs

SCN10A (sodium
channel, voltage-
gated, type X, alpha
subunit)

Netw
Annot
drugg
bound
Fisher’s exact test. Categories are deemed significant if they have a
P-value of <0.05 following Bonferroni correction for multiple test-
ing, and if the proportion of category members inside the cluster is
at least 3 times higher than the proportion outside the cluster.

2.8. Additional gene annotation data

Additional functional annotation can be obtained for the genes
in the network by clicking on the relevant node. This will bring up
a box containing details of the GO categories to which the gene be-
longs, drugs that can target the protein encoded by the gene (taken
from DrugBank [28]), and any potential domains the protein con-
tains (InterPro [24], Pfam [50]). Clicking on the network selection
tab allows the user to highlight the genes in the network that have
drug-binding annotations, predicted coiled-coil regions (ncoils),
predicted transmembrane regions (TMHMM [32]), and signal pep-
tide sequence features (SignalP [49]).

2.9. Pain gene enrichment score

The ratio of interactions that a gene has with known pain genes,
compared to all interactors, multiplied by 100, is deemed the Pain
Gene Enrichment (PGE) score. It is viewable in the table of network
genes found in the ‘‘Network Genes’’ tab of the Web site. In order to
contextualise this score, a ‘‘percentile’’ value is given in the same
table. This value represents the percentage of genes in the resource
that have a higher PGE score than a given gene. For example, for a
gene with a PGE score of 90: if there were a total of 10,000 genes in
the resource and 1000 of these genes had a PGE-score higher than
90, the percentile for this gene would be 10.

2.10. Ranking a set of query genes by their probability to be pain
associated

As well as providing a PGE score, we provide a ranking for query
lists of genes, for example, lists of differentially expressed genes
identified by a microarray experiment. This ranking is generated
by the GeneMANIA algorithm, a publicly available method that is
well established and shown to be effective in analysing protein
iption Link

NRG1 into the search bar, examine the resultant
rk

http://
www.youtube.com/
watch?v=5iYnZW-YLag

ATF3 and filter results by direct physical interactions.
sults of a pain-related microarray gene expression

iment can then be used to highlight nodes in the
rk

http://
www.youtube.com/
watch?v=A6e7oyK58CM

s used as a query gene, but no interactions are found
default search parameters. However, the user can
e predicted association in their query – this will
a network of VGF and its predicted associations

http://
www.youtube.com/
watch?v=Z0jx7IuahJg

genes are used to query the site and generate the
rk. This resulting network is then clustered, these
rs are then sorted by the number of pain-related
they contain

http://
www.youtube.com/
watch?v=4RdFMBogeio

s search the top six genes from the SNT experiment
st fold changes amongst the significantly
entially expressed genes) were used as query genes.
sultant network shows the interactions between
genes. Genes are: VIP, ARG1, CSRP3, POSTN, TSLP,
A

http://
www.youtube.com/
watch?v=1Y9a8RaIKEs

ork produced using SCN10A as a query genes.
ation used to show that many of the interactors are
able, and that many are predicted to be membrane

proteins

http://
www.youtube.com/
watch?v=1Mta9QpLO14

http://www.youtube.com/watch?v=5iYnZW-YLag
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Fig. 1. Using PainNetworks to reproduce the NGF-TrkA signalling pathway. (A) The original pathway diagram, adapted from http://pathwaymaps.com/maps/652/. (B) The
pathway as reproduced by PainNetworks, created by querying the resource with the pathway members, restricting the results to only include experimentally validated direct
physical interactions, and only showing interactions occurring between the query genes.

Fig. 2. Using PainNetworks to reproduce the NRG1-ErbB signalling pathway. (A) The pathway as reproduced by PainNetworks, showing the interactions involving NRG1/
ErbB2/ErbB3. The genes from the original pathway are shown in red. In order to create this network, PainNetworks was queried using NRG1, ErbB2, and ErbB3; results were
filtered so that only interactions that include these genes were shown; interactions between the nonquery genes were removed to prevent the number of edges in the
network from obscuring the image. (B) The original pathway, taken from [43]. Note that only a part of the pathway is reproduced, in order to stop the network becoming too
large and difficult to interpret. (C) A second reproduction of the pathway. In this network, only direct interactions between the query genes are shown, and results have been
limited to include only direct physical interactions.
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network topologies to determine the likelihood that a query gene is
functionally associated with a set of genes in the network known
to be involved in a particular biological process. We use the default
GO biological process-weighted default kernel combination, and
apply label affinity propagation as described in [63] to derive
scores for ranking. The ranking can be viewed as an extra column
in the Network Genes tab of the site.

2.11. Implementation

The Web site was implemented using Python and CSS. Cyto-
scape Web [39], a Flash-based plug-in, available from http://cyto-
scapeweb.cytoscape.org/, was used to visualise the networks.

In addition to customising the content of their network, the user
can move the protein components around on the screen interac-
tively, allowing them to focus on whatever part of the network
they wish to examine further.

A detailed reference manual, video tutorials, and several inter-
active search tutorials and are also available from the site.

3. Results

3.1. Overview of the site

Here we present a publicly available resource, PainNetworks.
The resource combines data from various sources in order to allow
the user to view pain-related biological networks. These networks
can be used for various purposes: to learn more about a gene of
interest, to further analyse a group of genes that have a putative
role in pain, and to look for novel drug targets. A further benefit

http://cytoscapeweb.cytoscape.org/
http://cytoscapeweb.cytoscape.org/
http://pathwaymaps.com/maps/652/


Fig. 3. Network degree of all genes in PainNetworks with at least one known interaction. The x-axis shows the number of interactions that each gene is involved in. The y-axis
shows the number of these interactions that are with pain genes. Black points = non-pain-related genes, red points = pain genes. This figure was generated using direct and
indirect physical interaction data but not predicted interactions.
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is the ability to submit gene lists obtained by high-throughput
studies in order to use the networks to identify a more focused
subset of genes likely to be associated with pain-related processes.

Therefore, the purpose of the site ranges from educational
through hypothesis generation to the interpretation of large data-
sets obtained in high-throughput functional genomics studies.

In this section, we will demonstrate the power of the resource
to recognise known pathways implicated in pain and we will de-
scribe some example usage scenarios for the site. We have tried
to make the site as intuitive as possible, however, there is a large
amount of functionality and a number of ways to view the net-
works and export the data. Although we will describe some key
features of the site here, more extensive details are provided in
the reference manual: http://www.PainNetworks.org/tutorials/
RefMan.pdf. This manual describes how to use all of the features
of the site, illustrated with screenshots. There are also video tuto-
rials, available at http://www.youtube.com/channel/UCfl06Zr51-
Sy3BgN9eca_w0A/videos?view=0, which present potential usage
scenarios. It is also possible to search the site using example que-
ries presented on the site itself, easily accessible from the panel to
the left of the network panel on the site’s homepage.

A nonexhaustive summary of potential uses for the site is also
presented in Table 3. Below we demonstrate the performance of
the site in reproducing known pathways. We subsequently show
how the resource could be used to identify novel genes that are
likely to be involved in pain as they have many interactions/asso-
ciations with known pain genes. Finally, we describe some poten-
tial uses of the site, in obtaining more information for putative pain
gene(s).

3.2. Demonstrating the performance of the PainNetworks site in
reproducing known pathways reported in the literature

To demonstrate the value of PainNetworks in providing infor-
mation on genes involved in pain, we show the performance of
the resource in reproducing information on known biological path-
ways reported as pathway figures in the literature. We do this by
reporting the proportion of interactions between the pathway
genes, shown in published pathway figures that are also high-
lighted on the PainNetworks Web site.

Given that the resource uses experimental data on protein inter-
actions (both direct and indirect), the PainNetworks Web site is un-
likely to match these diagrams perfectly. Pathway diagrams taken
from the literature are necessarily reductive models of the real pro-
cessing that occurs within the cell, biased towards the system being
considered. It is therefore possible that some of the proteins in the
pathway are also involved in other processes [36,53]. Furthermore,
with regards to any missing connections in the networks con-
structed by PainNetworks, the site uses protein interaction data
stored in public databases, and these resources do not currently cap-
ture all the protein interactions reported in the literature. However,
they are the most comprehensive public source of such data.

Despite these caveats, we explored how well PainNetworks
could reproduce two such canonical pathway diagrams, shown in
Figs. 1 and 2, taken from http://pathwaymaps.com/maps/652/
and [46]. Fig. 1 shows the TrkA-NGF signalling pathway; PainNet-
works built the network shown in this figure using the pathway
members as query genes, filtering the network to include only
physical interactions and only considering interactions between
the query genes. As we see in Fig. 1, PainNetworks was able to re-
cover 76% of the interactions in the original pathway. Moreover,
PainNetworks displays some additional interactions between the
query genes that are not shown in the canonical pathway figure
(6 interactions, 5 of which involve the same gene, PIK3R1). Since
these interactions are associated with experiments reported in
one of the public databases integrated by PainNetworks, these
links may suggest novel associations between genes in the network
that had not previously been considered.

Fig. 2 shows another example in which PainNetworks was used
to reproduce the NRG1-ErbB signalling pathways, which has been

http://www.PainNetworks.org/tutorials/RefMan.pdf
http://www.PainNetworks.org/tutorials/RefMan.pdf
http://www.youtube.com/channel/UCfl06Zr51Sy3BgN9eca_w0A/videos?view=0
http://www.youtube.com/channel/UCfl06Zr51Sy3BgN9eca_w0A/videos?view=0
http://pathwaymaps.com/maps/652/


Fig. 4. Looking for druggable proteins associated with opioid receptors. Building the network using all 4 opioid receptors and their interactors, as shown in panel (A), results
in a large network. Different ways of reducing the network to make it more interpretable are presented and explained further in the text: (B) and (C) show the results of
clustering the original network to find groups of genes that interact with each other more frequently than they interact with genes outside of the group. (C) Genes highlighted
in red represent genes with known drug targets, according to DrugBank [27]. This annotation is obtained from the ‘‘Network selection’’ tab. (D) Shows the network with
indirect interactions removed, leaving only direct physical interactions.
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implicated in pain [12]. A figure taken from a recent review [46]
was used to make the comparison. PainNetworks was queried
using all the members of the pathway (NRG1, ErbB2 and ErbB3):
the resource is able to find all of the interactions within the



Fig. 5. Finding out more about angiotensin II type 2 receptors and their potential role in pain signalling. (A) Looking at direct and indirect interactors of angiotensin II
receptor, type 2 gene (AGTR2). Note that the shaded circles represent pain-related genes. (B) The direct physical interactions of AGTR1, AGRT2, and AGTRAP. (C) The same
network as shown in (B), but highlighting genes that are differentially expressed according to a gene expression microarray experiment of a model of neuropathic pain (spinal
nerve transection). Red = increased expression following nerve injury; blue = decreased expression.
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canonical pathway diagram (Fig. 2C), plus many more interactions
with other genes from outside the pathway (Fig. 2A). These may be
good targets for putative novel pain genes implicated in this
pathway.

3.3. Using the information in PainNetworks to suggest putative novel
pain genes

Fig. 3 shows the number of interactions for each gene in the re-
source with at least one known interaction (ie, network degree, x-
axis), plotted against the number of these interactions that are pain
related (y-axis).

The red points on the figure represent pain-related genes, taken
from the pain genes database. It can be seen that, as the node de-
gree increases (ie, for genes with higher numbers of interactions),
the known pain genes have many more interactions with other
known pain genes.

This is to be expected – we are showing that many known
pain-related genes interact with other known pain-related genes.
However, we also see that there are several non-pain-related
genes that interact with a large number of pain-related genes.
These genes are likely to be of interest to a pain researcher as
one can hypothesise that they are potentially novel pain genes
and target them for experimental validation. This figure is pro-
duced at the human level, that is, annotations and interactions
have been transferred to humans, using the strategies described
in Methods.

3.4. Using PainNetworks to find out more about genes of interest and
their interactors

3.4.1. Opioid receptors
In Fig. 4, we show some network analyses of the 4 different hu-

man opioid receptors – the d opioid receptor, j opioid receptor, l
opioid receptor, and nociceptin receptor – known to be implicated
in pain. Fig. 4A shows the results of a simple search of the Web site
using the genes that encode these receptors: OPRD1, OPRK1,
OPRM1, and ORL1, in the human-centric view. This query results
in a very large network, too large to interpret visually. Therefore,
only interactions that involve the query genes are shown in the
network; interactions between the interactors of the query genes
are not shown.

The grey nodes show pain-associated genes, taken from the
PGD; the white nodes show the genes not reported in PGD. Three
further analyses that refine the network are shown in the bottom
half of the figure. Fig. 4B shows one of the clusters found by clus-
tering the original network by the Louvain clustering, which par-
titions the genes into separate, nonoverlapping clusters. We see
that three of the opioid receptors are placed into a cluster with
beta-2-adrenergic receptor (ADRB2), pro-opiomelanocortin



Fig. 6. AMP-dependent transcription factor (ATF3) interactors that change in expression in a nerve injury model of pain. (A) The network returned by querying PainNetworks
with ATF3, using default parameters. Pain-related genes, which in this case are obtained from the Pain Genes Database, are highlighted as grey in the network. (B) The genes
that in L5 DRGs in the spinal nerve transection vs sham dataset are highlighted in the network by the addition of red or blue rings, for increased or decreased expression
(respectively) in SNT compared to sham.

J.R. Perkins et al. / PAIN
�

154 (2013) 2586.e1–2586.e12 2586.e9
(POMC), and a number of other genes from the pain genes
database.

Fig. 4B shows this same network cluster, but with druggable
targets highlighted in red, generated using the ‘‘Network selection’’
tab. Fig. 4D shows the results of filtering the original network so
that only direct physical interactions (not indirect interactions
based on co-complex membership) are shown. Because the net-
work produced by this method is small, the interactions between
the nonopioid genes are displayed. Investigation of these networks
can further elucidate pathways in which opioid compounds oper-
ate by revealing novel genes highly connected to these receptors.
Some of these novel genes may be druggable proteins that might
influence opioid receptor activity.

3.4.2. Angiotensin II receptor, type 2 gene analysis
Fig. 5 shows how PainNetworks can be used to find out more

about the angiotensin II receptor, type 2 gene (AGTR2). A recent
phase II clinical trial showed that an inhibitor of this receptor



Fig. 7. Using PainNetworks to analyse the results of a microarray experiment comparing L5-DRG following spinal nerve transection to L5 following sham surgery. (A) Clicking
on the relevant experiment on the PainNetworks homepage returns a table of the differentially expressed genes from the experiment, alongside their log fold changes in
expression. (B) The top 15 genes in terms of increased expression following spinal nerve transection are selected and used as query genes for the site. (C) The resulting
network is displayed on the site, in the network panel. (D) The user can then zoom in on different areas in the network to look for relationships between the query genes and
their interaction partners.
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(EMA 401) is effective in reducing pain reported by patients with
postherpetic neuralgia [42]. Fig. 5A shows AGTR2 and its network
interactions. A large number of the interactors of AGTR2 are pain-
associated genes: 76 of its 284 interactors are in the pain-related
gene list; this would give it a PGE score of 27. A PGE score of 27
is higher than the score associated with 97% of the genes in Pain-
Networks and within the range of PGE-scores obtained by other
known pain genes.

Fig. 5B shows the network formed by considering direct physi-
cal interactions involving AGTR2, along with related proteins
AGTR1 (angiotensin II receptor, type 1) and AGTRAP (angiotensin
II receptor-associated protein).

Genes that change in expression following spinal nerve transec-
tion (quantified using gene expression microarrays) are high-
lighted in Fig. 6. We notice that many of the genes in this
network are differentially expressed, suggesting a potential role
of this network in neuropathic pain. Thus, PainNetworks could be
used as a starting point to further elucidate the mechanisms by
which AGTR2 leads to pain relief.

3.4.3. Cyclic AMP-dependent transcription factor
Cyclic AMP-dependent transcription factor (ATF3) has been

shown to change in expression in a number of microarray experi-
ments profiling gene expression in animal models of pain [33].
Fig. 6 shows ATF3 together with its network associations/interac-
tions (A). Although ATF3 shows differential expression in a number
of different neuropathic pain models, relatively few of its interac-
tion partners are known to be pain associated. We see only 2 genes
from the pain-associated gene list interacting with ATF3, NFKB1,
and HDAC4. However, if we click on the ‘‘Fold Change’’ link for
the spinal nerve transection, transected L5 nerve vs sham experi-
ment, we see that many of ATF3’s network interaction partners
are differentially expressed in this experiment (Fig. 6B). As we
would expect, many of these differentially expressed interaction
partners are also transcription factors. This suggests that spinal
nerve transection may be leading to changes in gene expression
through the actions of a network of transcription factors during
the induction phase of neuropathic pain. This supports the hypoth-
esis that ATF3 is indeed associated with the response to nerve
injury, and these differentially expressed genes could represent
further targets for experimental investigation.
3.5. Using PainNetworks to filter putative pain genes identified by a
microarray experiment

PainNetworks can also be used to analyse the results of a func-
tional genomics experiment. Fig. 7 shows the network returned by
querying the site using the differentially expressed genes with the
largest fold changes from the spinal nerve transection experiment
described above (Fig. 7A). We see that the network returned is
quite large; however, by zooming in and inspecting different parts
of the network, we see that there is a highly connected module that
contains a large number of pain genes (Fig. 7D).
3.6. Conclusions

To conclude, we have developed a resource for the pain com-
munity that allows a pain scientist to view protein networks
based on their gene(s) of interest. PainNetworks combines pub-
licly available data on protein interactions, gene associations,
gene expression data, and protein annotations. The value of the
resource is increased considerably by including information on
known pain genes given in the PGD of Mogil et al. [34], and by
presenting information on putative gene functions reported in
GO [5]. Networks provided by our resource allow a pain research-
er to consider the function of their genes based on the functions
of their interactors.
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Our hope is that this novel view of the data will lead to hypoth-
esis generation and a fuller understanding of the biological pro-
cesses involved in pain. A particularly valuable aspect of the
resource is the ability to interpret large gene datasets returned
from high throughput functional genomics experiments. Users
can obtain information on which genes in their list of putative
novel targets are more likely to be pain associated because they
have more interactions with known pain genes.

The resource will expand over time: we plan to add human gen-
ome-wide association study data, data from more transcriptional
profiling experiments, and to increase the number of species cov-
ered. We expect that PainNetworks will become a valuable asset
to the pain community.
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