Acyclic 4-choosability of planar graphs

Min Chena,b,*, André Raspaudb, Nicolas Rousselb,c, Xuding Zhuc,d

a Department of Mathematics, Soochow University, Suzhou 215006, China
b LaBRI UMR CNRS 5800, Université Bordeaux 1, 33405 Talence Cedex, France
c National Sun Yat-Sen University, Kaohsiung, Taiwan
d National Center for Theoretical Sciences, Taiwan

\textbf{A B S T R A C T}

A proper vertex coloring of a graph $G = (V, E)$ is acyclic if G contains no bicolored cycle. Given a list assignment $L = \{L(v) \mid v \in V\}$ of G, we say G is acyclically L-list colorable if there exists a proper acyclic coloring π of G such that $\pi(v) \in L(v)$ for all $v \in V$. If G is acyclically L-list colorable for any list assignment with $|L(v)| \geq k$ for all $v \in V$, then G is acyclically k-choosable. In this paper we prove that planar graphs without 4, 7, and 8-cycles are acyclically 4-choosable.

\section{1. Introduction}

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A proper vertex coloring of G is an assignment π of integers (as colors) to the vertices of G such that $\pi(u) \neq \pi(v)$ if the vertices u and v are adjacent in G. A k-coloring is a proper vertex coloring using k colors. A proper vertex coloring of a graph is acyclic if there is no bicolored cycle in G. The acyclic chromatic number of a graph G, denoted by $\chi_a(G)$, is the smallest integer k such that G has an acyclic k-coloring.

Acyclic coloring of graphs was introduced by Grünbaum in [13] and studied by Mitchem [17], Albertson and Berman [1] and Kostochka [15]. In 1979, Borodin [2] proved Grünbaum’s conjecture that every planar graph is acyclically 5-colorable. This bound is best possible. In 1973, Grünbaum [13] gave an example of a 4-regular planar graph which is not acyclically 4-colorable. Furthermore, bipartite planar graphs which are not acyclically 4-colorable were constructed in [16]. The girth of a graph G, denoted by $g(G)$, is the length of a shortest cycle.

In 1999, Borodin et al. [10] considered planar graphs with large girth. More specifically, they proved the following theorem.

\textbf{Theorem 1.} (1) If G is planar with $g(G) \geq 5$, then $\chi_a(G) \leq 4$;
(2) If G is planar with $g(G) \geq 7$, then $\chi_a(G) \leq 3$.

Given a list assignment $L = \{L(v) \mid v \in V\}$ of a graph G, we say G is acyclically L-list colorable if there is an acyclic coloring π of the vertices such that $\pi(v) \in L(v)$ for every vertex v. The coloring π is called an acyclic L-coloring of G. If G is acyclically L-list colorable for any list assignment L with $|L(v)| \geq k$ for all $v \in V$, then G is acyclically k-choosable. The acyclic list chromatic number or acyclic choosability of G, denoted by $\chi'_a(G)$, is the smallest integer k such that G is acyclically k-choosable.

* Corresponding author at: Department of Mathematics, Soochow University, Suzhou 215006, China.
E-mail addresses: min.chen@labri.fr, chenmin820628@yahoo.com.cn (M. Chen).

0012-365X/$-$see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2010.10.003
Borodin et al. [6] first investigated acyclic list coloring of planar graphs. They proved that every planar graph is acyclically 7-choosable. They also put forward the following challenging conjecture:

Conjecture 1. Every planar graph is acyclically 5-choosable.

This conjecture attracted much recent attention. Efforts are made to verify the conjecture for planar graphs with restrictions on the existence of short cycles. Wang and Chen [21] proved that every planar graph without 4-cycles is acyclically 6-choosable. Some sufficient conditions for a planar graph to be acyclically 5-choosable were established in [19,12,7,22]. In particular, in [7], Borodin and Ivanova proved that a planar graph G is acyclically 5-choosable if G does not contain an i-cycle adjacent to a j-cycle where $3 \leq j \leq 5$ if $i = 3$ and $4 \leq j \leq 6$ if $i = 4$. This result absorbs most of the previous work in this direction, including [19].

Let G be a planar graph. Recently, $\chi'_5(G) \leq 3$ was proved if $g(G) \geq 7$ by Borodin et al. [5]; or if G contains no cycles of lengths from 4 to 12 by Hocquard and Montassier [14], which was strengthened to the absence of 4- to 11-cycles by Borodin and Ivanova [8].

It is proved in [3] that $\chi'_5(G) \leq 4$ if G contains neither 4-cycles nor 5-cycles. Moreover, $\chi'_5(G) \leq 4$ was obtained in the following cases: $g(G) \geq 5$ by Montassier [18], which extends the conclusion (2) of Theorem 1; or if G has no $\{4, 5, 6\}$-cycles, or without $\{4, 5, 7\}$-cycles, or without $\{4, 5\}$-cycles and intersecting 3-cycles by Montassier et al. [20]; or neither $\{4, 5\}$-cycles nor 8-cycles having a triangular chord by Chen and Raspaud [11]; or neither 4-cycles nor 6-cycles adjacent to a triangle by Borodin et al. [9].

The purpose of this paper is to give a sufficient condition for planar graphs to be acyclically 4-choosable. More precisely, we prove the following theorem.

Theorem 2. Every planar graph without $\{4, 7, 8\}$-cycles is acyclically 4-choosable.

2. Notation

Only simple graphs are considered in this paper. A planar graph is a particular drawing of a planar graph in the Euclidean plane. For a planar graph G, we denote its face set by $F(G)$. For an integer k, we denote by k^+ (respectively, k^-) any integer which is at least (respectively, at most) k. A k-vertex is a vertex of degree k, and a k^+-vertex and k^--vertex is a vertex of degree at least k and at most k, respectively. Similarly, we define a k-face, k^+-face, k^--face, etc. We say that two cycles (or faces) are adjacent if they have at least one common edge. We say cycles (or faces) C_1 and C_2 are adjacent with crossing edge e if e is a common edge of C_1 and C_2. A triangle is synonymous with a 3-cycle. For $k \in V(G) \cup F(G)$, let $n_k(x)$, and $t(x)$ denote the number of 2-vertices, and 3-faces adjacent or incident to x, respectively. For a vertex $v \in V(G)$, let $m_5(v)$ denote the number of 5-faces incident to v. Let $N(v)$ denote the set of neighbors of a vertex v. For $f \in F(G)$, we use $b(f)$ to denote the boundary walk of f and write $f = [u_1u_2 \cdots u_n]$ if u_1, u_2, \ldots, u_n are the boundary vertices of f in clockwise order. Sometimes, we write simply $V(f) = V(b(f))$. A 3-face $f = \{v_1v_2v_3\}$ is called an (a_1, a_2, a_3)-face if the degree of the vertex v_i is a_i for $i = 1, 2, 3$. An edge uv is a (b_1, b_2)-edge if $d(u) = b_1$ and $d(v) = b_2$. A 3^+-vertex u is called a sponsor of a 3-face f if u is not incident to f but adjacent to a 3-vertex v which is incident to f. Denote by $s(u)$ the number of 3-faces sponsored by u.

Suppose v is a 4-vertex. Let v_1, v_2, v_3, v_4 be the neighbors of v in a cyclic order. Let f_i be the face with vv_i and vv_{i+1} as two boundary edges for $i = 1, 2, 3, 4$, where indices are taken modulo 4. We call v a weak vertex if the following conditions hold:

1. $d(v_1) = 2$;
2. $d(v_2) = 3$;
3. $d(v_3) = d(v_4) = 5$.

Fig. 1 shows a weak vertex v. A 4^+-vertex v is called a strong vertex if it is not weak. For all figures in this paper, a vertex is represented by a solid point when all of its incident edges are drawn (see Fig. 2); otherwise it is represented by a hollow point.

3. Structural properties

In order to complete the proof, we assume that G is a counterexample to Theorem 2 with the least number of vertices. Thus G is connected. We first study the structural properties of G, then use Euler’s formula and discharging technique to derive a contradiction.

First, we have Lemmas 1–3, whose proofs are provided in [20,18,11], respectively.

Lemma 1 ([20]).

1. There are no 1-vertices.
2. No 2-vertex is incident to a 3-face.
3. No 2-vertex is adjacent to a 3$^-$-vertex.
4. A 3-vertex is adjacent to at most one 3-vertex.
5. A 4-vertex is adjacent to at most one 2-vertex.
6. No 3-face is incident to two 3-vertices and one 4-vertex.
Lemma 2 ([18]).

(F1) No 5-vertex is adjacent to three 2-vertices and one 3-vertex.

(F2) No 6-vertex is adjacent to five 2-vertices.

(F3) No 6-vertex is adjacent to four 2-vertices and one 3-vertex.

Lemma 3 ([11]). Let v be a 5-vertex with $t(v) = 2$. If a 3-face incident to v is a $(3, 3, 5)$-face, then $n_2(v) = 0$.

Lemma 4 ([9]). No 3-vertex can be a sponsor.

In what follows, let L be a list assignment of G with $|L(v)| = 4$ for all $v \in V(G)$.

Lemma 5. If $f = [x_1, x_2, \cdots, x_5]$ is a 5-face with $d(x_1) = d(x_4) = 2$ and $d(x_2) = d(x_3) = 4$, then f is not adjacent to any 3-face.

Proof. Since a 2-vertex is not incident to a 3-face, it suffices to show that f is not adjacent to a 3-face with crossing edge x_2x_3. Assume to the contrary that $f^* = [x_2x_3u]$ is a 3-face adjacent to f. Let $N(x_2) = \{x_1, x_3, u, y_1\}$ and $N(x_3) = \{x_2, x_4, u, y_2\}$. By the minimality of $G, G - \{x_1\}$ admits an acyclic L-coloring π. If x_2 and x_3 have different colors, then color x_1 properly, we obtain an acyclic L-coloring of G. Assume $\pi(x_2) = \pi(x_3) = 1$. If there is a color $c \in L(x_1) \setminus \{1, \pi(y_1), \pi(u), \pi(x_3)\}$, then color x_1 with color c, we again obtain an acyclic L-coloring of G. Thus we may assume that $L(x_1) = \{1, 2, 3, 4\}, \pi(x_3) = 2, \pi(y_1) = 3$, and $\pi(u) = 4$. If $\pi(y_2) \neq 1$, then color x_1 with color 2, we obtain an acyclic L-coloring of G. Thus we assume further that $\pi(y_2) = 1$. If $L(x_2) \neq L(x_1)$, we recolor x_2 with a color in $L(x_2) \setminus L(x_1)$ and then color x_1 properly. If $L(x_2) = L(x_1)$, then we recolor x_2 with a color $a \in L(x_1) \setminus \{1, 2, 4\}, x_3$ with a color different from 1, $a, \pi(x_4)$, and finally color x_1 with 3. This completes the proof of the lemma. \qed

4. Proof of Theorem 2

We define a weight function ω on the vertices and faces of G by letting $\omega(v) = 2d(v) - 6$ if $v \in V(G)$ and $\omega(f) = d(f) - 6$ if $f \in F(G)$. It follows from Euler’s formula $|V(G)| - |E(G)| + |F(G)| = 2$ and the relation $\sum_{v \in V(G)}d(v) = \sum_{f \in F(G)}d(f) = 2|E(G)|$ that the total sum of weights of the vertices and faces is equal to

$$\sum_{v \in V(G)}(2d(v) - 6) + \sum_{f \in F(G)}(d(f) - 6) = -12. \tag{1}$$
The following claims follow from the assumption that G has no cycles of lengths 4, 7, 8.

1. There is no 4-face and no 7-face.
2. If f is a non-simple 6-face, then its boundary consists of two edge-disjoint triangles, as shown in Fig. 3.
3. If f is an 8-face then the boundary of f consists of either a 5-cycle and a 3-cycle, or two 3-cycles joined by a cut-edge, as depicted by Fig. 4.
4. No 6-cycle or a non-simple 6-face is adjacent to a 3-cycle.
5. No 5-cycle is adjacent to two 3-cycles.
6. For a vertex $v \in V(G)$, $t(v) \leq \lfloor \frac{d(v)}{2} \rfloor$.
7. A 5-cycle cannot share two consecutive edges with a 6-face.
8. If two 5-cycles are adjacent, then they share exactly two consecutive edges. In particular, if two 5-faces are adjacent, then their boundaries share a 2-vertex.
9. A 5-cycle is adjacent to at most one 5-cycle.
10. If two 5-cycles are adjacent, then none of them is adjacent to a 3-cycle.
11. If a 3-vertex v is incident to a 3-face and a 5-face, then the other face incident to v is a 9$^+$-face.
12. If f is a face with $t(f) \geq 2$, then f is a 9$^+$-face.
13. If v is a weak vertex, then the other face incident to v (the face different from the 3-face and the two 5-faces) is a 9$^+$-face.
14. For any vertex v, $m_5(v) \leq \lfloor 2d(v)/3 \rfloor$.

Our discharging rules are as follows:

R0: Every 4$^+$-vertex sends 1 to each adjacent 2-vertex and $\frac{1}{2}$ to each sponsored 3-face.

R1: Suppose that $f = \{v_1v_2v_3\}$ is a 3-face with $d(v_1) \leq d(v_2) \leq d(v_3)$. We use $(d(v_1), d(v_2), d(v_3)) \rightarrow (c_1, c_2, c_3)$ to denote that the vertex v_i gives f the amount of weight c_i for $i = 1, 2, 3$.

R1a: If $m_8^+(f) = 0$, then $(4^+, 4^+, 4^+) \rightarrow (1, 1, 1)$.

R1b: If $m_8^+(f) = 1$, then
- $(3, 3, 5^+) \rightarrow (0, 0, \frac{5}{2})$;
- $(3, 4^+, 4^+) \rightarrow (0, \frac{13}{12}, \frac{13}{12})$;
- $(4^+, 4^+, 4^+) \rightarrow (\frac{8}{9}, \frac{8}{9}, \frac{8}{9})$.
R1c: If \(m_{d+}(f) = 2 \), then
- \((3, 3, 5^+ \rightarrow (0, 0, \frac{4}{3})\):
- \((3, 4^+, 4^+ \rightarrow (0, \frac{7}{12}, \frac{11}{12})\):
- \((4^+, 4^+, 4^+ \rightarrow \left(\frac{7}{9}, \frac{7}{9}, \frac{7}{9}\right)\).

R1d: If \(m_{d+}(f) = 3 \), then
- \((3, 3, 5^+ \rightarrow (0, 0, 1)\):
- \((3, 4^+, 4^+ \rightarrow (0, \frac{2}{3}, \frac{2}{3})\):
- \((4^+, 4^+, 4^+ \rightarrow \left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)\).

R2: Suppose \(f \) is a 5-face. If \(m_{d+}(f) \leq 2 \), then each strong \(4^+ \)-vertex incident to \(f \) sends \(\frac{1 - m_{d+}(f)/3}{m(f)} \) to \(f \).

R3: Every \(8^+ \)-face sends \(\frac{1}{2} \) to each adjacent 3-face and 5-face.

R4: If a \(9^+ \)-face \(f \) is adjacent to a \(6^+ \)-face \(f' \) by a common \((4, 2)\)-edge \(uv \), then \(\tau(f \rightarrow u) = \frac{1}{2} \).

In the following, we show that \(\omega^*(x) \geq 0 \) for all \(x \in V(G) \cup F(G) \).

Lemma 7. For every face \(f \), \(\omega^*(f) \geq 0 \).

Proof. Depending on the degree of \(f \), we divide the proof into five cases.

Case 1. \(d(f) = 3 \).

The initial charge is \(\omega(f) = -3 \). Let \(f = [v_1v_2v_3] \) such that \(d(v_1) \leq d(v_2) \leq d(v_3) \). By (C2), (C4) and (C6), \(f \) is either a \((3, 3, 5^+)\)-face, or a \((3, 4^+, 4^+)\)-face, or a \((4^+, 4^+, 4^+)\)-face. Let \(f_i \) be the face adjacent to \(f \) with crossing edge \(v_iv_{i+1} \), where \(i \) is taken modulo 3.

If \(m_{d+}(f) = 0 \), then each \(f_i \) is a 5-face for \(i = 1, 2, 3 \). If \(d(v_1) = 3 \), then by (C1), (C3) and Lemma 4, the other neighbor of \(v_1 \) is a \(4^+ \)-vertex. So \(f_1 \) and \(f_2 \) have a common \((3, 4^+)\)-edge, which contradicts (8) of Lemma 6. So \(f \) is a \((4^+, 4^+, 4^+)\)-face and thus \(\omega^*(f) \geq 3 + 3 \times 3 = 0 \) by (R1a).

If \(m_{d+}(f) = 1 \), then \(f \) takes \(\frac{1}{2} \) from its adjacent \(8^+ \)-face by (R3). If \(f \) is a \((3, 3, 5^+)\)-face, then for \(i = 1, 2 \), let \(u_i \) be the other neighbor of \(v_i \). By (C4), \(d(u_i) \geq 4 \) and hence is a sponsor of \(f \). As each sponsor sends \(\frac{1}{2} \) to \(f \), we have \(\omega^*(f) \geq -3 + \frac{1}{2} + \frac{2}{3} + \frac{3}{2} = 0 \) by (R1b). If \(f \) is a \((3, 4^+, 4^+)\)-face, then another neighbor of \(v_1 \) not on \(b(f) \) is a \(4^+ \)-vertex and thus \(\omega^*(f) \geq -3 + \frac{1}{2} + \frac{2}{3} + \frac{3}{2} \times 2 = 0 \) by (R1b). If \(f \) is a \((4^+, 4^+, 4^+)\)-face, then each incident \(4^+ \)-vertex sends \(\frac{2}{3} \) to \(f \). So \(\omega^*(f) \geq -3 + \frac{2}{3} + \frac{2}{3} = 0 \).

If \(m_{d+}(f) = 2 \), then \(f \) takes \(\frac{1}{3} \times 2 = \frac{2}{3} \) from its adjacent two \(8^+ \)-faces by (R3). Similarly as in the previous paragraph, depending on \(f \) is a \((3, 3, 5^+)\)-face, or a \((3, 4^+, 4^+)\)-face, or a \((4^+, 4^+, 4^+)\)-face, by (R1c), we have \(\omega^*(f) \geq 3 + \frac{2}{3} + \frac{1}{2} \times 2 + \frac{3}{2} = 0 \), or \(\omega^*(f) \geq -3 + \frac{2}{3} + \frac{1}{2} + \frac{11}{12} \times 2 = 0 \), or \(\omega^*(f) \geq -3 + \frac{2}{3} + \frac{3}{2} \times 3 = 0 \).

If \(m_{d+}(f) = 3 \), then \(f \) takes \(\frac{1}{3} \times 3 = 1 \) from all its adjacent \(8^+ \)-faces by (R3). Again depending on \(f \) is a \((3, 3, 5^+)\)-face, or a \((3, 4^+, 4^+)\)-face, or a \((4^+, 4^+, 4^+)\)-face, by (R1d), we have \(\omega^*(f) \geq -3 + 1 + \frac{1}{2} \times 2 + \frac{3}{2} = 0 \), or \(\omega^*(f) \geq -3 + 1 + \frac{2}{3} \times 3 = 0 \).

Case 2. \(d(f) = 5 \).

By (R2) and (R3), to show that \(\omega^*(f) \geq 0 \), it suffices to show that \(n^*(f) \geq 1 \). Assume \(f = [v_1v_2v_3v_4v_5] \). Since every 3-vertex is adjacent to at most one 3-vertex (by (C4)) and every 2-vertex is adjacent to no 3-vertex, there exist non-constant indices \(i, j \) (i.e., \(i \neq j \pm 1 \bmod 5 \)) such that \(v_i \) and \(v_j \) are \(4^+ \)-vertices. By definition, if a 4-vertex incident to \(f \) is weak, then it lies on the intersection of a 5-face and a 3-face. Since \(f \) is adjacent to at most one 3-face (by (5) of Lemma 6), one of \(v_i, v_j \) is a strong vertex. Thus \(n^*(f) \geq 1 \) and \(\omega^*(f) \geq 0 \).

Case 3. \(d(f) = 6 \).

The initial charge is 0 and no charge is sent out. So \(\omega^*(f) = \omega(f) = 0 \).

Case 4. \(d(f) = 8 \).

The initial charge is \(\omega(f) = 2 \). By (3) of Lemma 6, the boundary of \(f \) consists of either one 5-cycle and one 3-cycle, or two 3-cycles and a cut-edge.

If the boundary of \(f \) consists of one 5-cycle \(C = [v_1v_2v_3v_4v_5] \) and one 3-cycle \(C' = [v_1v_2v_3v_4] \), then by (5) of Lemma 6, \(f \) is adjacent to at most one 3-face. By (C3), there are at most two 2-vertices in \(V(C) \). Furthermore, (9) of Lemma 6 implies that \(C \) is incident to at most one 5-face which shares two common edges with \(f \). As \(C' \) is incident to at most three 5-faces, we conclude that \(m_3(f) \leq 5 \). Therefore, \(\omega^*(f) \geq 2 - \frac{1}{2} \times 5 - \frac{1}{2} = 0 \) by (R3).

If the boundary of \(f \) consists of two 3-cycles \(C = [v_1v_2v_5v_5] \) and \(C' = [v_2v_5v_5] \) and a cut-edge \(v_2v_3 \), then \(f \) is not adjacent to any 3-faces and is adjacent to at most six 5-faces. Therefore, by (R3), \(\omega^*(f) \geq 2 - \frac{1}{2} \times 6 = 0 \).

Case 5. \(d(f) \geq 9 \).

Let \(m_{d}(f) \) denote the number of \(d \)-faces adjacent to \(f \) by a common \((4, 2)\)-edge. Let \(m_5(f) \) denote the number of 5-faces adjacent to \(f \). Since a 2-vertex is not adjacent to any 3-vertex, \(\tau(f) + m_5(f) + 2m_{d}(f) \leq d(f) \). By (R3) and (R4), we conclude that \(\omega^*(f) \geq d(f) - \frac{1}{2}(\tau(f) + m_5(f) + 2m_{d}(f)) \geq d(f) - \frac{1}{2}d(f) = \frac{1}{2}d(f) \geq 6 \geq 0 \). This completes the proof of Lemma 7. \(\square \)
It remains to show that for each vertex \(v \), \(\omega^*(v) \geq 0 \). Let \(v \in V(G) \). By (C1), \(d(v) \geq 2 \). In the following, let \(v_1, v_2, \ldots, v_{d(v)} \) denote the neighbors of \(v \) in a cyclic order, and let \(f_i \) denote the incident face of \(v \) with \(v_{2i} \) and \(v_{2i+1} \) as two boundary edges for \(i = 1, 2, \ldots, d(v) \), where indices are taken modulo \(d(v) \).

If \(d(v) = 2 \), then the initial charge is \(\omega(v) = -2 \). By (C3), \(v \) is adjacent to two 4\(^+\)-vertices. Therefore, \(\omega^*(v) \geq -2 + 1 \times 2 = 0 \) by (R0). If \(d(v) = 3 \), then the initial charge is 0 and no charge is sent out, since \(v \) cannot be a sponsor by Lemma 4. So the final charge is also 0.

In the following, we consider the charge of 4\(^+\)-vertices. The following observation follows easily from (R1).

Observation 1. Assume \(f \) is a 3-face incident to \(v \).

1. If \(d(v) = 4 \), then \(\tau(v \to f) \leq \frac{12}{17} \).
2. If \(d(v) \geq 5 \), then \(\tau(v \to f) \leq \frac{5}{3} \).

The amount of charge sent from \(v \) to incident 5-faces is more complicated. To estimate the amount of charge sent from \(v \) to a 5-face \(f \), we divide the 5-faces incident to \(v \) into four types.

Suppose \(f = [v v_1 w_1 w_2 v_2] \) is incident to \(v \).

- If \(d(v_1) = d(v_2) = 2 \), then \(f \) is of type 1 with respect to \(v \).
- If \(d(v_1) = 2 \) and \(v_2 \) is incident to a 3-face sponsored by \(v \), then \(f \) is of type 2 with respect to \(v \).
- If \(d(v_1) = 2 \) and \(v_2 \) is adjacent to a 3-face, then \(f \) is of type 3 with respect to \(v \).
- Otherwise, \(f \) is of type 4 with respect to \(v \).

For \(i \in \{1, 2, 3, 4\} \), let \(T_i(v) \) denote the set of 5-faces of type \(i \) with respect to \(v \) and let \(m_5^i(v) = |T_i(v)| \). So \(\sum_{i=1}^{4} m_5^i(v) = m_5(v) \).

Observation 2. If \(f = [v v_1 w_1 w_2 v_2] \) is a 5-face incident to \(v \), then \(\tau(v \to f) \leq \frac{1}{2} \). Moreover,

1. If \(f \in T_1(v) \cup T_2(v) \), then \(\tau(v \to f) \leq \frac{1}{6} \).
2. If \(f \in T_2(v) \), then \(\tau(v \to f) = 0 \).

Proof. If \(v \) is not strong, then \(\tau(v \to f) = 0 \). In the following, we assume that \(v \) is a strong vertex.

Let \(f' \) and \(f'' \) be the faces adjacent to \(f \) with crossing edge \(v v_1 \) and \(v v_2 \), respectively.

If \(f \) is of type 1, then by (C2) and (7) of Lemma 6, each of \(f', f'' \) is either a 5-face or an 8\(^+\)-face. Moreover, by (9) of Lemma 6, at least one of \(f', f'' \) is a 9\(^+\)-face. So \(m_5(f) \geq 2 \). By (C5), \(v \) is a 5\(^+\)-vertex, and \(v_1, w_1, w_2 \) are 4\(^+\)-vertices. If both \(w_1, w_2 \) are 4\(^-\)-vertices, then by Lemma 5, \(f \) is not adjacent to any 3-face and hence both \(w_1, w_2 \) are strong. Otherwise, at least one of \(w_1, w_2 \) is a 5\(^+\)-vertex. In any case, \(n^*(f) \geq 2 \) and hence \(\tau(v \to f) \leq \frac{1-\frac{1}{2}}{4} = \frac{1}{6} \) by (R2).

If \(f \) is of type 3, then \(v_1 \) is a 2-vertex and \(f'' \) is a 3-face. By (1), (7) and (10) of Lemma 6, \(f' \) is a 9\(^+\)-face. By (C3), \(w_1 \) is a 4\(^+\)-vertex. As \(f \) is not adjacent to any other 3-faces (by (5) of Lemma 6), \(w_1 \) is a strong vertex. If \(v_2 \) is a strong vertex, then \(n^*(f) \geq 2 \) and hence \(\tau(v \to f) \leq \frac{1-\frac{1}{2}}{4} = \frac{1}{6} \) by (R2). Otherwise, assume \(v_2 \) is a weak 4-vertex. By (13) of Lemma 6, the face adjacent to \(f \) by crossing edge \(v_2 w_2 \) is a 9\(^+\)-face. It follows immediately that \(m_9^+(f) \geq 3 \) and thus \(v \) sends nothing to \(f \) by (R2).

If \(f \) is of type 2, then by (1), (7), (10) and (11) of Lemma 6, \(f' \) and \(f'' \) are 9\(^+\)-faces. Hence \(m_9^+(f_i) \geq 3 \) and \(\tau(v \to f) = 0 \) by (R2).

Assume \(f \) is of type 4. If \(n^*(f) \geq 2 \), then \(\tau(v \to f) \leq \frac{1}{2} \) by (R2).

Assume \(n^*(f) = 1 \), i.e., \(v \) is the only strong vertex incident to \(f \). As \(f \) is adjacent to at most one 3-face and any weak 4\(^-\)-vertex incident to \(f \) is contained in the intersection of \(f \) and a 3-face, we conclude that, including \(v, f \) is incident to at most three 4\(^+\)-vertices. On the other hand, by (C4), \(f \) is incident to at least two 4\(^+\)-vertices.

If \(f \) is incident to exactly two 4\(^+\)-vertices, then these two 4\(^+\)-vertices are not consecutive. We may assume that \(w_1 \) is a weak 4\(-\)vertex and \(v_1, v_2, w_2 \) are 3\(^-\)-vertices. By definition of a weak vertex, \(w_1 \) is adjacent to a 2-vertex and either \(w_1 v_1 \) or \(w_1 w_2 \) is incident to a 3-face, contrary to (C10).

Assume \(f \) is incident to three 4\(^+\)-vertices, say \(v, x, y, \) and \(x, y \) are weak 4\(-\)vertices, where \(\{x, y\} \subseteq \{v_1, v_2, w_1, w_2\} \). As \(f \) is adjacent to at most one 3-face, by definition of weak vertices, we conclude that \(f \) is adjacent to a 3-face with crossing edge \(xy \). Let \(x' \) and \(y' \) be the other neighbors of \(x, y \), respectively on the boundary of \(f \). By (13) of Lemma 6, the face adjacent to \(f \) with crossing edges \(xx' \) and \(yy' \) are 9\(^+\)-faces. Hence \(m_9^+(f) \geq 2 \) and \(\tau(v \to f) \leq 1 - \frac{2}{3} = \frac{1}{3} \) by (R2).

The calculation of the new charge of 4\(^+\)-vertices is more complicated. We use three lemmas to take care of 4\(-\)vertices, 5\(-\)vertices and 6\(^+\)-vertices separately.

Lemma 8. If \(d(v) = 4 \), then \(\omega^*(v) \geq 0 \).
Lemma 9. If $d(v) = 5$, then $\omega^*(v) \geq 0$.

Proof. The initial charge is $\omega(v) = 4$. By (6) of Lemma 6 and (C7), $t(v) \leq 2$ and $n_2(v) \leq 3$. Depending on the value of $t(v)$, the proof is divided into three cases.

Case 1. $t(v) = 2$.

Without loss of generality, assume $f_1 = [vv_1v_2]$ and $f_4 = [vv_4v_5]$ are 3-faces. It follows easily from (5) of Lemma 6 that $s(v) + m_5(v) \leq 1$, implying that the charge sent from v to incident 5-faces and sponsored 3-faces is at most $1/2$ in total. If v_3 is a 3-vertex, then $\omega^*(v) \geq 4 - \frac{3}{2} \times 2 - \frac{1}{2} = \frac{1}{2}$. If $d(v_1) = 2$, then by Lemma 3, for each $i = 1, 4, f_i$ cannot be a $(3, 3, 5)$-face and thus $t(v \rightarrow f_i) \leq \frac{13}{12}$ by (R1). Hence $\omega^*(v) \geq 4 - \frac{13}{12} \times 2 - 1 - \frac{1}{2} = \frac{2}{3}$.

Case 2. $t(v) = 1$.

Let $f_1 = [vv_1v_2]$ be the 3-face incident to v. In this case, it follows easily from (5) of Lemma 6 that $s(v) + m_5(v) \leq 3$. So the charge sent from v to incident 5-faces and sponsored 3-faces is at most $3/2$ in total. By (C8), $n_2(v) \leq 2$. Depending on the value of $n_2(v)$, we consider three subcases below.
Lemma 6

Observation 1.

By Observation 1.

If \(n_2(v) = 0 \), then \(\omega^*(v) \geq 4 - \frac{5}{3} = \frac{5}{3} \).

If \(n_2(v) = 1 \), then one of the following holds:

1. \(s(v) + m_3(v) \leq 2 \), implying that the charge sent from \(v \) to incident 5-faces and sponsored 3-faces is at most 1 in total and hence \(\omega^*(v) \geq 4 - \frac{3}{2} = \frac{1}{2} \).

2. \(s(v) + m_3(v) = 3 \) and there is a 5-face, say \(f' \), incident to \(v \) which is of type 2 or type 3 with respect to \(v \). By Observation 2, \(\tau(v \to f') \leq \frac{1}{6} \) and hence \(\omega^*(v) \geq 4 - \frac{2}{3} - 1 - \frac{1}{6} = \frac{5}{6} \).

In the following of the proof of Case 2, we assume that \(n_2(v) = 2 \). It is obvious that \(s(v) \leq 1 \). If \(s(v) = 1 \), then by (C12), \(f_1 \) is a \((5, 4^*, 4^*)\)-face. By (R1), \(\tau(v \to f_1) \leq \frac{1}{6} \). Moreover, \(m_3(v) \leq 2 \) and any 5-face incident to \(v \) is of type 1, 2, or 3 with respect to \(v \). By Observation 2, \(\omega^*(v) \geq 4 \). Thus we also assume that \(\omega^*(v) = \frac{5}{6} \).

If \(f_1 \) is not a \((5, 3, 3)\)-face, then by (R1), \(\tau(v \to f_1) \leq \frac{1}{12} \). In this case, one of the following holds:

1. \(m_5(v) \leq 1 \), and hence \(\omega^*(v) \geq 4 - \frac{13}{12} - 2 - \frac{1}{2} = \frac{5}{12} \).

2. \(m_5(v) = 2 \) and one of the 5-facets incident to \(v \) is not of type 4 with respect to \(v \). In this case, by Observation 2, \(v \) sends at most \(\frac{1}{6} + \frac{1}{3} \) to the two 5-faces and hence \(\omega^*(v) \geq 4 - \frac{13}{12} - 2 - \frac{1}{6} = \frac{1}{4} \).

In the following, we assume that \(f_1 \) is a \((5, 3, 3)\)-face. Let \(f' \) be the face adjacent to \(f \) with crossing edge \(v_1v_2 \). Since \(v_1, v_2 \) are 3-vertices, \(f' \) is adjacent to \(f_1, f_2, f_3, f_4 \) as well. If \(f' \) is a 5-face or an 8-face, then by (11) of Lemma 6, \(f_2, f_3, f_4 \) are 9\(^*\)-faces. Hence \(\tau(v \to f_1) \leq \frac{1}{3} \). If \(m_5(v) \leq 1 \), then \(\omega^*(v) \geq 4 - \frac{4}{3} - 2 - \frac{1}{3} = \frac{1}{3} \). Otherwise, \(f_1, f_2, f_3, f_4 \) are both 5-faces and \(d(v_4) = 2 \). This implies that at least one of \(f_1, f_2, f_3, f_4 \) is a 5-face of type 1. Let \(\omega^*(v) \geq 4 - \frac{4}{3} - 2 - \frac{1}{3} = \frac{1}{3} \). Now, assume that \(f' \) is a 9\(^*\)-face. If both \(f_1, f_2, f_3, f_4 \) are 9\(^*\)-faces, then \(\tau(v \to f_1) \leq \frac{1}{3} \) and \(\omega^*(v) \geq 4 - \frac{13}{12} - 2 - \frac{1}{6} = \frac{1}{4} \). Moreover, \(n_2(v) \geq 3 \). It means that \(v \) sends nothing to \(f_2 \) by (R2). On the other hand, we see that \(\omega(v) \geq 4 \) by (C4) and \(v \) is a strong vertex by (5) of Lemma 6. Therefore \(\tau(v \to f_2) \leq \frac{1}{6} \) and hence \(\omega^*(v) \geq 4 - \frac{4}{3} - 2 - \frac{1}{6} = 0 \).

Assume exactly one of \(f_1, f_2, f_3, f_4 \) is a 5-face, say \(f_2, f_3, f_4 \). Then \(f_4 \) is a 9\(^*\)-face. As \(m_5(v) \leq 1 \), we have \(\tau(v \to f_1) = \frac{1}{6} \). If \(v_3 \) is a 2-vertex, then \(f_2 \) is of type 3 with respect to \(v \) and \(\tau(v \to f_2) \leq \frac{1}{6} \). Therefore \(\omega^*(v) \geq 4 - \frac{4}{3} - 2 - \frac{1}{6} = 0 \). Assume \(v_3 \) is a 3-vertex. Then \(v_4 = 2 \)-vertices and \(f_1 \) is a 6\(^*\)-face by (10) of Lemma 6. So, by (R0), \(\tau(v \to f_1) \leq \frac{1}{6} \)

Therefore \(\omega^*(v) \geq 4 - \frac{4}{3} - 2 - \frac{1}{6} = 0 \).

Next we consider the case that \(s(v) = 2 \). In this case, \(\omega^*(v) \geq 4 \). So \(s(v) + m_5(v) \leq 4 \), then \(\omega^*(v) \geq 4 - \frac{1}{2} = 3 \). Therefore \(\omega^*(v) \geq 4 - \frac{1}{2} \times 3 = \frac{5}{2} \).

Finally, we consider the case that \(s(v) = 1 \). It is obvious that \(s(v) + m_3(v) \leq 5 \). So \(\omega^*(v) \geq 4 \). Then \(m_5(v) \leq 1 \) by (10) of Lemma 6. Thus, by (R0), \(\omega^*(v) \geq 4 - \frac{1}{2} \times 4 = \frac{7}{2} \).

This completes the proof of Lemma 9. \(\square \)

It remains to consider 6\(^*\)-vertices. First we have the following observation.

Observation 3. For any vertex \(v \), we have that \(\omega^*(v) \leq \omega^*(v) + 2\tau(v) + m_5(v) \leq d(v) \).

Proof. Suppose that \(v \) is a 6\(^*\)-vertex. Let

\[A = \{ u \in N(v) : d(u) = 2 \}, \]

\[B = \{ u \in N(v) : u \text{ is incident to a 3-face sponsored by } v \}, \]

\[C = \{ u \in N(v) : v \in u \text{ is contained in a triangle} \}. \]

It follows from the definition that \(A, B, C \) are disjoint and \(n_2(v) = |A|, s(v) = |B| \) and \(2\tau(v) = |C| \). Moreover, if \(f_1 = [v_1 v_2 v_3 v_4 v_5] \) is a 5-face of type 4 with respect to \(v \), then it follows from (10) of Lemma 6 that one of \(v_i \) and \(v_{i+1} \), say \(v_i \),
is a 3*-vertex not incident to a 3-face sponsored by v and moreover \(v v_1 \) is not contained in a triangle and \(v_i, i.e., v_i \notin A \cup B \cup C \). This implies that \(m^2(v) \leq d(v) - |A \cup B \cup C| \) and hence \(p_2(v) + s(v) + 2t(v) + m^3(v) \leq d(v). \)

Lemma 10. If \(d(v) \geq 6 \), then \(\omega^*(v) \geq 0. \)

Proof. By Observation 1, each 6*-vertex sends at most \(\frac{5}{3} \) to each incident 3-face. Therefore, by (R0), Lemma 6 and Observations 2 and 3, we obtain

\[
\omega^*(v) \geq 2d(v) - 6 - \frac{5}{3}t(v) - m_2(v) - \frac{1}{2}s(v) - \frac{1}{6}m_3(v) - 0 \cdot m_4(v) - \frac{1}{2} m^2(v) - \frac{1}{6} m^3(v) - \frac{1}{2} m^4(v) \\
\geq 2d(v) - 6 - \frac{5}{3}t(v) - (d(v) - s(v) - 2t(v) - m^4(v)) - \frac{1}{2}s(v) - \frac{1}{6}m_3(v) - \frac{1}{6}m^3(v) - \frac{1}{2}m^4(v) \\
= d(v) - 6 + \frac{1}{3}t(v) + \frac{1}{2}s(v) - \frac{1}{6}m_2(v) - \frac{1}{6}m^3(v) - \frac{1}{6}m^3(v) \\
\geq d(v) - 6 + \frac{1}{3}t(v) + \frac{1}{3}s(v) - \frac{1}{6} (m_2(v) + m^3(v)) \\
\geq d(v) - 6 + \frac{1}{3}t(v) + \frac{1}{3}s(v) - \frac{1}{6} \cdot \left[\frac{2d(v)}{3} \right] \\
\geq d(v) - 6 + \frac{1}{3}t(v) + \frac{1}{3}s(v) - \frac{1}{6} \cdot \frac{2d(v)}{3} \\
= \frac{8}{9}d(v) - 6 + \frac{1}{3}t(v) + \frac{1}{3}s(v).
\]

If \(\frac{8}{9}d(v) - 6 + \frac{1}{3}t(v) + \frac{1}{3}s(v) \geq 0 \), then we are done. Assume \(\frac{8}{9}d(v) - 6 + \frac{1}{3}t(v) + \frac{1}{3}s(v) < 0 \). Then \(d(v) = 6 \) and \(4 > 2t(v) + 3s(v) \), which implies that \(s(v) + t(v) \leq 1 \).

First we consider the case that \(t(v) = 0 \). By (F2), \(n_2(v) \leq 4 \). By (14) of Lemma 6, \(m_2(v) \leq 4 \). If \(m_2(v) = 4 \), then w.l.o.g., we may assume that \(d(f_i) = d(f_j) = d(f_k) = 5 \). By (10) of Lemma 6, \(s(v) = 0 \). Therefore \(\omega^*(v) \geq 6 - 1 \times 4 - \frac{1}{2} \times 4 = 0 \).

Assume \(m_2(v) \leq 3 \). As \(n_2(v) \leq 4 \) and \(s(v) \leq 1 \), we have \(\omega^*(v) \geq 6 - 1 \times 4 - \frac{1}{2} \times 3 = 0 \).

Next we assume \(t(v) = 1 \), say \(f_1 = [v v_1 v_2] \) is a 3-face. Then \(s(v) = 0 \). It is easy to see that \(n_2(v) \leq 4 \) and \(m_2(v) \leq 3 \).

If \(n_2(v) \leq 2 \), then \(\omega^*(v) \geq 6 - \frac{5}{3} - 1 \times 2 - \frac{1}{2} \times 3 = \frac{5}{3} \) by (R0) and Observation 2.

If \(n_2(v) = 3 \), then one of the following holds:

- \(m_2(v) \leq 2 \), and hence \(\omega^*(v) \geq 6 - \frac{5}{3} - 1 \times 3 - \frac{1}{2} \times 2 = \frac{1}{3} \).
- \(m_2(v) = 3 \) and at least two of the 5-faces incident to \(v \) are of type 1 or 3 with respect to \(v \). Hence \(\omega^*(v) \geq 6 - \frac{5}{3} - 1 \times 3 - \frac{1}{2} \times 2 = \frac{5}{3} \).

If \(n_2(v) = 4 \), then by (F3), \([v v_1 v_2] \) is \((6, 4^+, 4^+) \)-face. It follows from (R1) that \(v \) sends at most 1 to \(f_i \). As \(m_2(v) \leq 3 \) and each incident 5-face is adjacent to at least two 9*-faces by (5) and (7) of Lemma 6, we conclude that \(\omega^*(v) \geq 6 - 1 \times 4 - \frac{1}{2} \times 3 = 0 \). \(\Box \)

Acknowledgements

The authors would like to thank the referee for his valuable suggestions that helped to improve this work. The second author also would like to thank the grant CNRS/NSC with Taiwan.

X. Zhu's research is supported by NSC97-2115-M-110-008-MY3.

References