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a b s t r a c t

In this paper we explore the connection between Seshadri constants and the generation
of jets. It is well known that one way to view Seshadri constants is to consider them
as measuring the rate of growth of the number of jets that multiples of a line bundle
generate. Here we ask, conversely, what we can say about the number of jets once the
Seshadri constant is known. As an application of our results, we prove a characterization of
projective space among all Fano varieties in terms of Seshadri constants.
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0. Introduction

Consider a smooth projective variety X and an ample line bundle L on X . The Seshadri constant of L at a given point x ∈ X
is the real number

ε(L, x) def= inf
C

L · C
multxC

,

where the infimum is taken over all irreducible curves C passing through x. It is well known that ε(L, x) encodes asymptotic
information about the linear series |kL| for k � 0. Specifically, denote for k > 1 by s(kL, x) the maximal integer s such that
the linear series |kL| generates s-jets at x, i.e., the maximal integer s such that the evaluation map

H0(X, kL) −→ H0(X, kL⊗ OX/I
s+1
x )

is onto. Then one has

ε(L, x) = lim
k→∞

s(kL, x)
k

(see [5, 6.3]). So if the numbers s(kL, x)were known for k� 0, then one could compute the Seshadri constant as a limit of a
sequence of rational numbers. In all situations that we know of, however, Seshadri constants have not been determined in
this way, but rather by finding suitably singular curves. It is therefore interesting to ask:

When the value ε(L, x) is known, what can be said about the numbers s(kL, x) for k > 1 ?

It seems to us that this question is close in spirit to Demailly’s original purpose when defining Seshadri constants in [5].
Our first result shows that under certain non-positivity assumptions on the canonical divisor of X the range for the

numbers s(kL, x) is quite restrictive.

Theorem 1. Let X be a smooth projective variety of dimension n.
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(a) If X is Fano, then for any integer k > 1

b(k+ 1) ε(−KX , x)c − (n+ 1) 6 s(k(−KX ), x) 6 bk ε(−KX , x)c .

(b) If KX = OX , then for any ample line bundle L on X, any point x ∈ X, and any integer k > 1 we have

bk ε(L, x)c − (n+ 1) 6 s(kL, x) 6 bk ε(L, x)c .

Note that the upper bound –which in fact holds in both parts without any assumptions on X – is well known and is stated
here merely for the sake of completeness. We will show in Proposition 2.3 that s(kL, x) can attain this upper bound only if
ε(L, x) is either computed by a smooth curve or if it is not computed by a curve at all. As for the lower bounds, we will prove
somewhat stronger statements in Propositions 1.1 and 2.1 respectively.
The above bounds on the numbers s(kL, x) lead in particular to the following new characterization of projective spaces.

Theorem 2. Let X be a smooth Fano variety of dimension n such that there exists a point x ∈ X with

ε(−KX , x) = n+ 1.

Then X is the projective space Pn.

We will in fact show that on Fano varieties different from Pn one has ε(−KX , x) 6 n for all points x (Theorem 1.7).

1. Fano varieties

We begin by considering jets of the anticanonical bundle on Fano varieties.

Proposition 1.1. Let X be a smooth Fano variety of dimension n, and let x ∈ X. Let ε = ε(−KX , x).
If ε < n

√
(−KX )n or if n

√
(−KX )n is not an integer, then

b(k+ 1) εc − n 6 s(k(−KX ), x) 6 bk εc .

In the alternative case, one has

(k+ 1)ε − (n+ 1) 6 s(k(−KX ), x) 6 kε.

Proof. The upper bound – which in fact holds without any assumption on KX – follows from the fact that ε(L, x) is not only
the limit, but also the supremum of the numbers 1k s(kL, x), see [5, (6.3)].
The lower bound is proven via vanishing as in [10, Proposition 5.1.19(i)]: One considers the blow-up f : X ′ → X of X at

x with exceptional divisor E over x. For |k(−KX )| to generate s-jets at x it is enough to have H1(kf ∗(−KX )− (s+ 1)E) = 0.
As KX ′ = f ∗(KX ) + (n − 1)E, this vanishing will follow if the line bundle (k + 1)f ∗(−KX ) − (s + n)E is nef and big. Let us
write ε = ε(−KX , x), and suppose first that ε < n

√
(−KX )n. In that case (k+ 1)f ∗(−KX )− (s+ n)E is nef and big as long as

s+n
k+1 6 ε. Therefore

s(k(−KX ), x) > b(k+ 1)εc − n. (1)

Suppose then that ε = n
√
(−KX )n. In that case the line bundle in question is ample if s+nk+1 < ε, i.e, if s < (k+ 1)ε− n. Now, if

ε is not an integer, then this inequality is equivalent to s 6 b(k+ 1)εc− n, so that we get again (1). Finally, if ε = n
√
(−KX )n

is an integer, then we get

s(k(−KX ), x) > b(k+ 1)εc − (n+ 1) = (k+ 1)ε − (n+ 1),

as claimed. �

Example 1.2 (Projective Space). For X = Pn and L = OPn(1) one has ε(L, x) = 1 for all x ∈ X and s(kL, x) = k for all k. So
here the value

s(k(−KX ), x) = k(n+ 1)

lies at the upper bound given by Proposition 1.1. We will show that projective spaces are the only Fano varieties where this
happens (Theorem 1.7).

The proposition leads immediately to a surprising upper bound on Seshadri constants:

Corollary 1.3. For any smooth Fano variety X, one has

ε(−KX , x) 6 n+ 1

for all x ∈ X. If ε(−KX , x) < n
√
(−KX )n or if n

√
(−KX )n is not an integer, then the stronger inequality

ε(−KX , x) 6 n

holds.
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Proof of the Corollary. This follows from the inequalities in the proposition. In fact, it is enough to show that if ε is a positive
real number and b is an integer such that

b(k+ 1) εc − b 6 bk εc (2)

holds for all k > 1, then ε 6 b. This latter assertion is obvious when ε is an integer. If ε = e + δ with an integer e and
0 < δ < 1, then there is an integer k > 1 such that kδ < 1 and (k+ 1)δ > 1. We then have

b(k+ 1)εc − b = (k+ 1)e+ 1− b and bkεc = ke

so that (2) implies ε 6 b, as claimed. �

Remark 1.4. The upper bound of n + 1 in Corollary 1.3 follows also from the fact that for every point x on a smooth Fano
variety X of dimension n there is a rational curve C passing through x and such that −KX · C 6 n + 1. This is a deep fact
proved by Mori and Kollár (see [9, Theorem V.1.6]). By contrast, our argument is fairly elementary.

As a further consequence of Proposition 1.1, we obtain the following characterization of Pn via Seshadri constants. Its
statement will be strengthened considerably in Theorem 1.7.

Corollary 1.5. Let X be a smooth Fano variety such that

ε(−KX , x) = n+ 1

for all x ∈ X. Then X ∼= Pn.

Proof. According to the previous result it is enough to show that the condition ε(−KX , x) = n
√
(−KX )n = n+ 1 implies that

X = Pn. This can be seen as follows. From the assumption and Proposition 1.1 we get

s(k(−KX ), x) = k ε(−KX , x) = k(n+ 1).

Putting s = s(k(−KX ), x) a result of Beltrametti and Sommese [3, Theorem 3.1] implies then that

(k(−KX ))n > sn + sn−1 (3)

unless X ∼= Pn. Bearing in mind that

(k(−KX ))n = kn(n+ 1)n

we get a contradiction with (3), unless X ∼= Pn. (Note that the cited result in [3] assumes the line bundle in question to be
s-jet ample, whereas in our situation we only know that the bundle generates s-jets at all points. The proof in [3] works,
however, under this weaker assumption.) �

Remark 1.6. For the proof of Corollary 1.5 one could also invoke the following characterization of the projective space
conjectured in [9, Conjecture V.1.7] and proved by Kebekus in [8]:

A smooth projective variety X of dimension n is isomorphic to the projective space Pn if and only if it is Fano and
−KX · C > n+ 1 for every rational curve C ⊂ X .

The assumptions of the previous corollary imply that −KX generates n + 1 jets at every point x ∈ X so that the inequality
−KX · C > n+ 1 is fulfilled for an arbitrary curve C on X .

Now we show a considerably stronger version of Corollary 1.5. Of course this result implies Theorem 2 stated in the
introduction.

Theorem 1.7. Let X be a Fano variety such that X � Pn, then the inequality

ε(−KX , x) 6 n

holds for all points x ∈ X.

In view of Corollary 1.3 we need to show the following statement:

If (−KX )n = (n+ 1)n and if ε(−KX , x) = n+ 1 for some point x ∈ X , then X ∼= Pn.

In the surface case it is easy to verify the above statement because we know exactly all Fano surfaces.

Example 1.8 (Del Pezzo Surfaces). Let X be a Del Pezzo surface, i.e., a smooth Fano variety of dimension two. Then

ε(−KX , x) 6 2 (4)

for all x ∈ X , unless X ∼= P2. In fact, X is either
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(i) P1 × P1, or
(ii) the blow-up of P2 in r points, with 0 6 r 6 8.

In Case (i) we have KX = O(−2,−2) so that ε(−KX , x) = 2 for all x ∈ X . In Case (ii) we have (−KX )2 = 9 − r , and
therefore the number

√
(−KX )2 is an integer only if r = 0, r = 5, or r = 8. If r = 0 then X = P2, and if r = 5 or r = 8

then
√
(−KX )2 = 2 or

√
(−KX )2 = 1 respectively. So we get the inequality (4) by applying Corollary 1.3. Broustet [4] has

recently determined the precise values of ε(−KX , x) for 0 6 r 6 8.

Now we give a proof of Theorem 1.7 valid in arbitrary dimension. This proof is motivated by the methods of [6].

Proof of Theorem 1.7. As in the proof of 1.5 we get

s((−KX ), x) = ε(−KX , x) = n+ 1

in the fixed point x. Looking at the exact sequences defining bundles of k jets of−KX

0→ SymkΩX ⊗ (−KX )→ Jk(−KX )→ Jk−1(−KX )→ 0

for k = 1, . . . , n+ 1 and computing inductively we obtain

c1(Jn+1(−KX )) = OX .

Since by assumption the vector bundle Jn+1(−KX ) is globally generated at the point x and its determinant is trivial, it follows
that the bundle itself is trivial. (This is because the determinant of global sections generating at x does not vanish anywhere.)
Now, let f : P1 → X be a rational curve on X (i.e., the map f is non-constant). Let

f ∗(TX ) =
n⊕
i=1

O(ai) and f ∗(−KX ) = O(b).

Note that b > 0 since−KX is ample. Dualizing the defining exact sequence for (n+ 1)th jets we have

0→ Jn(−KX )∗ → Jn+1(−KX )∗ → Symn+1TX ⊗ KX → 0.

The bundle in the middle is trivial, it is in particular globally generated, hence the same is true for its quotient on the right.
We write

f ∗(Symn+1TX ) =

(
n⊕
i=1

O((n+ 1)ai)

)
⊕ P,

where P abbreviates the remaining summands. Thus

f ∗(Symn+1TX ⊗ KX ) =

(
n⊕
i=1

O((n+ 1)ai − b)

)
⊕ P(−b).

It follows that

(n+ 1)ai − b > 0,

which in view of b > 0 implies ai > 0 for all i = 1, . . . , n and we conclude by the Mori characterization of projective
space [9, Theorem V.3.2]. �

2. Varieties with trivial canonical bundle

We consider now varieties whose canonical bundle is trivial. A straightforward modification of the proof of
Proposition 1.1 yields the following statement:

Proposition 2.1. Let X be a smooth projective variety of dimension n such that KX = OX , let L be an ample line bundle on X and
x ∈ X a point.
If ε(L, x) < n√Ln or if n√Ln is not an integer, then one has for every integer k > 1 the inequalities

bk ε(L, x)c − n 6 s(kL, x) 6 bk ε(L, x)c .

In the alternative case (where ε(L, x) = n√Ln is an integer) one has

k n
√
Ln − (n+ 1) 6 s(kL, x) 6 k n

√
Ln.

So there are only n + 1 potential values of s(kL, x) in the first case, and n + 2 potential values in the second case. This
means that there is surprisingly little room for the numbers s(kL, x).
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Example 2.2. Consider a smooth quartic surface X ⊂ P3 containing a line `. Then for L = OX (1) and x ∈ ` one has
ε(L, x) = 1, and

s(kL, x) = k = k ε(L, x).

So in this case s(kL, x) has its maximal possible value for all k > 1.

The following proposition gives interesting constraints onmaximal (in the sense of Proposition 2.1) values of the numbers
s(kL, x).

Proposition 2.3. Let X be a smooth projective variety, let L be an ample line bundle on X, and let x ∈ X be any point. If ε(L, x)
is computed by a curve, i.e., if there is a curve C ⊂ X such that

ε(L, x) =
L · C

multx(C)
,

then

(i) s(kL, x) < k ε(L, x) for all k > 1, or
(ii) C is smooth at x.

If dim(X) = 2, then in Case (ii) one has C2 6 1. If in addition ε(L, x) <
√
L2, then C2 6 0.

In other words, if one has s(kL, x) = k ε(L, x) for some k, then the Seshadri constant ε(L, x) cannot be computed by a
curve that is singular at x.
Let us point out the following sample application of Proposition 2.3.

Corollary 2.4. Let X be an abelian surface of Picard number one. Then for any ample line bundle L on X, any x ∈ X, and any
integer k > 1, one has

s(kL, x) < k ε(L, x).

This follows from the fact that in the situation of the corollary one knows from [1, Sect. 6] that ε(L, x) is computed by a
singular curve.

Proof of Proposition 2.3. Let k > 1, and write s = s(kL, x), ε = ε(L, x), andm = multx(C). As kL generates s-jets at x, there
is a divisor D ∈ |kL| with multx(D) = s and with prescribed tangent cone at the point x. So if C is not smooth at x, then we
can arrange that the projective tangent cones

PTCx(D) and PTCx(C)

intersect, while still C 6⊂ D. Then by the intersection inequality [7, Corollary 12.4] we have

D · C > s ·m+ 1,

and hence

ε =
L · C
m
=
1
k
D · C
m

>
s
k
+
1
km
,

which implies

s 6 εk−
1
m
< εk.

This proves the first assertion.
Suppose now that dim(X) = 2, and that we are in Case (ii). Then by the index theorem

L2C2 6 (L · C)2 = ε2 6 L2 ,

and hence C2 6 1. If ε <
√
L2, then the last inequality is strict, and we get C2 6 0. �

While the upper bound in Proposition 2.1 holds without any assumptions, the following example shows that one cannot
expect a lower bound valid for all k > 1 without additional assumptions on the underlying variety.

Example 2.5. Let k0 be a positive integer. We show that there exist a smooth projective surface X and an ample line bundle
L on X such that for all k = 1, . . . , k0 we have s(kL, x) = −1 for every point x ∈ X , whereas ε(L, x) = 1.
To this end let C be a curve of genus g > k0 and let D be a general divisor of degree 1 on C . Then h0(C,D) = h0(C, 2D) =

· · · = h0(C, k0D) = 0. Now let X = C × C be the product with projections π1 and π2. We set L = π∗1 (D) ⊗ π
∗

2 (D). The
line bundle L is ample and ε(L, x) = 1. By the Künneth formula we see that h0(X, L) = · · · = h0(X, k0L) = 0 and hence
s(kL, x) = −1 for k 6 k0, as claimed.
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The next example shows that even in the surface case one cannot expect lower bounds on s(kL, x) as in Proposition 2.1
without assumptions on KX : The numbers s(kL, x) may in fact be smaller than the lower bound of Proposition 2.1 for all
values of k.

Example 2.6. Let X be a smooth surface of degree 9 in P3 with ρ(X) = 1. For the line bundle L = OX (1) one has
ε(L, x) =

⌊√
L2
⌋
= 3 for very general x ∈ X , by Steffens result [11]. We assert that

s(kL, x) < kε(L, x)− 4.

for k� 0. In fact, if a line bundle generates s-jets at some point, then itmust have at least
(
s+2
2

)
independent global sections.

But by Riemann–Roch we have

h0(kL) = χ(OX )+
9
2
k(k− 5),

and this is for k � 0 not enough in order to generate jets of order 3k − 1 = k ε(L, x) − 4. Note that the same argument
works for any smooth surface X ⊂ P3 with ρ(X) = 1, whose degree is a square number > 9.

We now consider concrete applications of Proposition 2.1.

Example 2.7 (Jets of Theta Functions). Consider an irreducible principally polarized abelian surface (X,Θ). One knows that
ε(Θ, x) = 4

3 for every point x ∈ X (see [11] and [1, Sect. 6]), hence Proposition 2.1 tells us that⌊
4
3
k
⌋
− 2 6 s(kΘ, x) 6

⌊
4
3
k
⌋

for every k > 1. So there are for each k only three possible values that s(kΘ, x) can have. Here the possibilities are tabulated
for small values of k:

k 1 2 3 4 5 6 7 8 9 10
s(kL, x) 1 2 4 5 6 8 9 10 12 13

0 1 3 4 5 7 8 9 11 12
−1 0 2 3 4 6 7 8 10 11

Of course it is very hard to determine what the exact values are – especially as, contrary to the value of ε(Θ, x), they might
and do depend on the point x. Specifically, as |Θ| = {Θ}, one has s(Θ, x) = 0 if x 6∈ Θ , and s(Θ, x) = −1 if x ∈ Θ . As
for s(2Θ, x), one knows that the linear series |2Θ| defines a map X → P3 of degree 2 onto the Kummer surface, hence
s(2Θ, x) > 1 for generic x, but s(2Θ, x) = 0 for points mapped onto double points of the Kummer quartic in P3.
Counting sections carefully we can in fact rule out several values in the above table. Below we present the remaining

possibilities. Values marked in bold are actually taken on.

k 1 2 3 4 5 6 7 8 9 10
s(kL, x) 0 1 4 5 7 8 9 11 12

-1 0 2 3 4 6 7 8 10 11

There are (at least) two things that would be interesting to know in this context:

• Is s(kΘ, x) independent of xwhen k� 0 ?
• Is the sequence of numbers s(kΘ, x) (for large k) the same for every principally polarized abelian surface (X,Θ) or does
it depend on the moduli?

In the following two examples, yet more precise statement about the numbers s(kL, x) can be obtained.

Example 2.8 (Abelian Surfaces of Type (1, 2)). It can happen for certain line bundles that s(kL, x) is not only below k ε(L, x),
as predicted by Proposition 2.3, but even below k ε(L, x)− 1 for all values of k. Consider for instance an abelian surface X of
Picard number 1 carrying a polarization L of type (1, 2). Then L2 = 4 and, by [1, Sect. 6], ε(L) = 2. A line bundle that generates
s-jets at some point must have at least

(
s+2
2

)
independent global sections. As we have by Riemann–Roch h0(kL) = 2k2, this

implies that kL cannot generate 2k-jets or (2k− 1)-jets at any point. So

s(kL, x) = 2k− 3 or s(kL, x) = 2k− 2

for every x ∈ X .



2140 Th. Bauer, T. Szemberg / Journal of Pure and Applied Algebra 213 (2009) 2134–2140

Example 2.9 (Quartic Surfaces). Let X be a smooth quartic surface in P3 and L = OX (1). For general x ∈ X one has ε(L, x) = 2
by [2, Theorem]. As h0(kL) = 2+ 2k2, the dimension argument of the previous example gives the same conclusion as there:

s(kL, x) = 2k− 3 or s(kL, x) = 2k− 2.

The two previous examples are special cases of:

Proposition 2.10. Let X be a smooth projective surface with KX = OX , and let L be an ample line bundle on X. Suppose that
ε(L, x) =

√
L2 at a fixed point x ∈ X.

If
√
L2 is an integer, then we have for k� 0

s(kL, x) = k
√

L2 − 3 or s(kL, x) = k
√

L2 − 2.

and in the alternative case we have

s(kL, x) =
⌊
k
√

L2
⌋
− 2,

for infinitely many values of k.

Proof. For the linear series |kL| to generate s-jets at x, the line bundle kL needs to have at least
(
s+2
2

)
independent global

sections. By the Riemann–Roch theorem we have for k� 0

h0(kL) = χ(OX )+
1
2
L2k2.

If ε(L, x) = n√Ln is an integer, then one finds with elementary calculations that the inequality h0(kL) >
(
s+2
2

)
cannot hold

for k� 0 when s > bk ε(L, x)c − 1. The assertion follows then from Proposition 2.1. In the remaining case one has to work
with the rounddown and therefore the assertion is somewhat weaker. �

Acknowledgements

Wewould like to thank JarosławWiśniewski for helpful discussions and for bringing [6] to our attention. This paper was
written while the second author was visiting professor at the University of Duisburg-Essen. It is a pleasure to thank Hélène
Esnault and Eckart Viehweg for their invitation and hospitality. The second author was partially supported by MNiSW grant
N N201 388834.

References

[1] Th. Bauer, Seshadri constants on algebraic surfaces, Math. Ann. 313 (1999) 547–583.
[2] Th. Bauer, Seshadri constants of quartic surfaces, Math. Ann. 309 (1997) 475–481.
[3] M.C. Beltrametti, A.J. Sommese, On k-jet ampleness, in: Ancona, Vincenzo (Eds.), Complex Analysis and Geometry, Plenum Press, New York, 1993,
pp. 355–376.

[4] A. Broustet, Constantes de Seshadri du diviseur anticanonique des surfaces de del Pezzo, L’Enseignement Math. 52 (2006) 231–238.
[5] J.-P. Demailly, Singular hermitian metrics on positive line bundles, in: Complex Algebraic Varieties (Bayreuth, 1990), in: Lect. Notes Math., vol. 1507,
Springer-Verlag, 1992, pp. 87–104.

[6] S. Di Rocco, A.J. Sommese, Line bundles for which a projectivized jet bundle is a product, Proc. Amer. math. Soc. 129 (2000) 1659–1663.
[7] W. Fulton, Intersection theory, in: Ergeb. Math. Grenzgeb. (3) 2, Springer-Verlag, 1984.
[8] S. Kebekus, Characterizing the projective space after Cho,Miyaoka and Shepherd–Barron, in: In Complex Geometry (Gottingen, 2000), Springer, Berlin,
2002, pp. 147–155.

[9] J. Kollár, Rational curves on algebraic varieties, in: Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 32, Springer-Verlag, Berlin, 1996.
[10] R. Lazarsfeld, Positivity in Algebraic Geometry I, Springer-Verlag, 2004.
[11] A. Steffens, Remarks on Seshadri constants, Math. Z. 227 (1998) 505–510.


	Seshadri constants and the generation of jets
	Introduction
	Fano varieties
	Varieties with trivial canonical bundle
	Acknowledgements
	References


