1. Introduction

For a directed graph G, a path μ is a directed path with no repeated vertex, and here μ denotes the set of the vertices encountered by μ. Consider a partition $M=\{\mu_1, \mu_2, \ldots, \mu_p\}$ of the vertex-set into paths. Let k be an integer, $k \geq 1, k \leq \max|\mu|$; put:

$$B_k(M) = \sum_{i=1}^{p} \min\{k, |\mu_i|\}.$$

A partition M is k-optimal if M minimizes $B_k(M)$. For instance, if G has a Hamiltonian path μ_0, then $M=\{\mu_0\}$ is a k-optimal partition. So the k-optimal partitions extend in some sense the concept of Hamiltonian paths. The theorem of Greene and Kleitman [10], which extends the Dilworth theorem [5], shows an important property of k-optimal partitions for the graph of a partially ordered set (in [1, 5], the k-optimal partitions are called "k-saturated"). This paper shows that similar properties also hold for several classes of graphs.

2. Strongly Coloured Paths

Let $G=(X, U)$ be a directed graph. For $k \geq 1$, a partial k-colouring is a family of k disjoint stable sets S_1, S_2, \ldots, S_k. If a vertex x belongs to S_μ, we say that x is coloured with μ; some of the vertices may bear no colour.

Clearly, for a partial k-colouring (S_1, S_2, \ldots, S_k), the number of different colours encountered by a path μ is $\leq \min\{k, |\mu|\}$. A path μ is strongly coloured if it meets exactly $\min\{k, |\mu|\}$ different colours. In this case we say also that the colouring is strong for μ.

Conjecture A. Given a graph G and an integer k, $1 \leq k \leq \max|\mu|$, for every k-optimal partition M there exists a partial k-colouring (S_1, S_2, \ldots, S_k) which is strong for every path $\mu \in M$.

Let M be a path partition, let $\mu \in M, x \in \mu$; the vertex x is said to be at level k if the portion of μ which starts from x contains k vertices. So the vertices at level 1 are the terminal ends of paths. Let $L_k(M)$ be the set of vertices at level k. Clearly,

$$B_k(M) = |L_1(M)| + |L_2(M)| + \cdots + |L_k(M)|.$$

Theorem 1. Conjecture A is valid for $k = 1$. Furthermore, if there exists a partition M_0 with $L_1(M_0) = L_1$, then for every partition M with $L_1(M) \subset L_1$ and $|M|$ minimum relative to this condition, there exists a stable set S which meets each path of M exactly once.

Gallai and Milgram [8] proved that if the maximum size of a stable set is α, it is always possible to partition the vertex-set into α paths. By the same argument, one can prove a stronger version which is equivalent to Theorem 1 (Linial, [11]). In [2], we gave a proof for a stronger result which immediately yields Theorem 1.

Gallai [7] and Roy [13] have proved that all the vertices can be coloured with only $\max|\mu|$ colours. A slightly stronger result can be proved by the same argument.
Theorem 2. Conjecture A is valid for \(k = \max |\mu| \); furthermore, every partition is \(k \)-optimal.

Proof. Let \(G \) be a graph of order \(n \) with \(\max |\mu| = k \). Since \(B_k(M) \) is equal to \(n \) for all \(M \), every partition is \(k \)-optimal.

We shall define a partial graph \(H \) of \(G \) by adding successively, to the arcs which belong already to the paths of \(M \), some arcs of \(G \), provided they do not create circuits. When no more arcs can be added, we obtain a partial graph \(H \) which is acyclic. For \(x \in X \), put

\[
t(x) = \max \{|\mu|/\mu \text{ is a path of } H \text{ starting from } x\}.
\]

If \((x, y)\) is an arc of \(H \), then \(t(x) > t(y) \).
If \((x, y)\) is an arc of \(G - H \), then \(t(x) < t(y) \) because \(H + (x, y) \) contains a circuit, so \(H \) contains a path from \(y \) to \(x \).

Thus the function \(t(x) \) is a \(k \)-colouring of \(G \) (i.e. \((x, y) \in U \Rightarrow t(x) \neq t(y) \)). Clearly, this \(k \)-colouring is strong for \(M \).

Now we consider the class of graphs satisfying the following property:

Property B. The maximum number of vertex-disjoint paths of cardinality \(k = \max |\mu| \) is equal to the minimum size of a set \(A \subset X \) which meets every path of cardinality \(k \).

Not all the graphs satisfy this property (see for instance the hypotraceable graph of Thomasen in [3, p. 240]).

Lemma. Every graph without circuits satisfies Property B.

For a vertex \(x \) of \(G \), let \(\lambda(x) \) be the maximum cardinality of a path issuing from \(x \). We construct a transportation network \(R \) as follows: add to the vertices of \(G \) a source \(a \) and a sink \(z \); for every vertex \(x \) with \(\lambda(x) = k \), draw the arc \((a, x)\); for every vertex \(y \) with \(\lambda(y) = 1 \), draw the arc \((y, z)\). Finally, draw every arc \((x', x'')\) of \(G \) which satisfies \(\lambda(x') = \lambda(x'') + 1 \). In \(R \), every path from the source to the sink is a path with \(k \) inner vertices, and, by the Lemma of Menger's Theorem (see [1, p. 161]), the maximum number of disjoint paths from \(a \) to \(z \) is equal to the minimum size of a separating set. The theorem follows.

Remark. For \(k = 2 \), this proposition is equivalent to the Theorem of König for bipartite graphs.

Theorem 3. Let \(G \) be a graph with no circuits—or, more generally, a graph which satisfies Property B. Then Conjecture A is valid for \(k = \max |\mu| - 1 \).

Proof. Let \(M \) be a path-partition which minimizes \(B_k(M) \), i.e. which maximizes \(|L_{k+1}(M)| \). The paths of \(M \) issuing from \(L_{k+1}(M) \) constitute a maximum set of pairwise disjoint maximum paths (otherwise, there exists a partition \(M' \) with \(|L_{k+1}(M')| > |L_{k+1}(M)| \), a contradiction). So, by the Lemma, there exists a set \(A \) with \(|A| = |L_{k+1}(M)| \) such that each path of \(M \) issuing from \(L_{k+1}(M) \) has exactly one point in \(A \). Let \(\tilde{G} \) be the graph obtained from \(G \) by removing the points of \(A \) and by adding, for every \(a \in A \), an arc \((z, z')\) where \(z \) (resp. \(z' \)) is the point which precedes (resp. follows) \(a \) in some \(\mu \in M \). There exists in \(\tilde{G} \) no path \(\tilde{\mu} \) of cardinality \(k + 1 \) (otherwise \(\tilde{\mu} \), containing an arc \((z, z')\)
as defined above, induces in G a path μ of cardinality $k + 1$, which is a contradiction).

By Theorem 2, \tilde{G} has a k-colouring which is strong for the paths $\tilde{\mu}_1, \tilde{\mu}_2, \ldots, \tilde{\mu}_p \in \tilde{M}$. This k-colouring is also a partial k-colouring of G which is strong for the paths $\mu_1, \mu_2, \ldots, \mu_p$.

Corollary. Let G be a graph with $\max |\mu| = 3$. Then Conjecture A is valid for every k.

Proof. If $k = 1$, the result follows from Theorem 1; if $k = 3$, the result follows from Theorem 2; if $k = 2$, we may assume that G has no parallel arcs, because a k-optimal partition M is also a k-optimal partition for a graph G' obtained from G by removing some half of the double edges; if the result is true for G', then there exists a partial k-colouring of G which is strong for M. Also, we may assume that G has no circuit of length 3: if such a circuit exists, it constitutes a connected component of G for which Conjecture A is trivially true. So we may assume that G has no circuits, in which case the result follows from Theorem 3.

Theorem 4. (Greene–Kleitman). Let $G = (X, U)$ be a transitive graph: i.e. $(x, y) \in U$ and $(y, z) \in U$ implies $(x, z) \in U$. Then Conjecture A is valid for all k.

Proof. For the graph of a partially ordered set, Greene and Kleitman [10] proved that if we denote by α_k the maximum number of vertices which can be coloured in a partial k-colouring, then $\min_M B_k(M) = \alpha_k$. This result extends Dilworth's theorem (case $k = 1$). A shorter proof has been given by M. Saks [14], and an extension has also been given by A. Frank [6].

Now, consider a partition $M = \{\mu_1, \mu_2, \ldots\}$ which minimizes $B_k(M)$, and an optimal partial k-colouring (S_1, S_2, \ldots, S_k). Each $\mu_i \in M$ induces a clique and therefore meets at most once each colour. Then

$$\alpha_k = \left| \bigcup_{i=1}^{k} S_i \right| = \sum |\mu_i \cap \bigcup_{i=1}^{k} S_i| \leq \sum_{i} \min \{k, |\mu_i|\} = B_k(M) = \alpha_k$$

(by the theorem of Greene and Kleitman).

Hence the number of coloured vertices encountered by μ_i is exactly $\min \{k, |\mu_i|\}$, and these vertices have different colours.

Corollary. Every transitive graph satisfies Property B.

Proof. Let M be a $(k - 1)$-optimal partition, with $k = \max |\mu|$. By Theorem 4, there exists a partial $(k - 1)$-colouring $(S_1, S_2, \ldots, S_{k-1})$ which is strong for M. So the set $T = X - \bigcup S_i$ meets every maximum clique, and therefore, meets every maximum path.

Also, $|L_k(M)|$ is the maximum number of disjoint maximum paths, and $|T| = L_k(M)$.

Theorem 5. Let $G = (X, U)$ be a graph containing a Hamiltonian path μ_0. Then Conjecture A is valid for all k.

Proof. For $k = \max |\mu|$, Theorem 5 follows from Theorem 2.

For $k < \max |\mu|$, the only partition which minimizes $B_k(M)$ is $M_0 = \{\mu_0\}$ (since $B_k(M_0) = k$, and every other partition M' satisfies $B_k(M') > k$). Clearly, any partial k-colouring (with no empty class) is strong for M_0.
THEOREM 6. Let G be a bipartite graph defined by two vertex-classes X and X'. Then Conjecture A is valid for all k.

Consider first the case $k = 2p$ even. Let $M = (\mu_1, \ldots)$ be any partition. We define a partial $(2p)$-colouring by assigning successively a colour to the vertex of μ_i at level 1, then to the vertex of μ_i at level 2, etc. The colour assigned to $a \in \mu_i$ is the smallest integer (not yet used for μ_i) in $\{1, 2, \ldots, p\}$ if $a \in X$, or in $\{1', 2', \ldots, p'\}$ if $a \in X'$. The vertex a is left uncoloured if all of the colours $1, 2, \ldots, p, 1', 2', \ldots, p'$ have been used for μ_i. Clearly, μ_i will be strongly coloured, and by processing separately each path μ_i of M, a partial $(2p)$-colouring of G is obtained.

Now consider the case $k = 2p + 1$ odd. Let M be a partition which minimizes $B_k(M)$. Let \hat{G} be the subgraph of G induced by $(X \cup X') - L_1(M) - L_2(M) - \cdots - L_{k-1}(M)$. Let \bar{M} be the trace of M on \hat{G}. Then \bar{M} is a partition of \hat{G} with $L_i(\bar{M}) \leq L_i(M)$ which minimizes $|\bar{M}|$; otherwise, we can obtain for G another partition M' with $L_i(M') = L_i(M)$ for $i < k$ and $|L_k(M')| < |L_k(M)|$, which contradicts the minimality of $|L_1(M)| + |L_2(M)| + \cdots + |L_k(M)|$.

By Theorem 1, there exists a stable set S of \hat{G} which meets every path of \bar{M}. Assign the colour 0 to all the vertices in S. Then colour successively the paths of M with the colours $1, 2, \ldots, p, 1', 2', \ldots, p'$ according to the rules defined above (for the case $k = 2p$). Clearly, the colours $0, 1, 2, \ldots, p, 1', 2', \ldots, p'$ define a partial k-colouring of G, and each path of M is strongly coloured.

The problems which remain open are:

PROBLEM 1. Is Conjecture A valid for every k?

PROBLEM 2. Is it true that every graph has a path partition M and a partial k-colouring (S_1, S_2, \ldots, S_k) such that $|\mu \cap \bigcup S_i| = \min\{k, |\mu|\}$ for every $\mu \in M$?

PROBLEM 3. Is it true that for every k, there exists a path partition M such that $B_k(M) \leq \alpha_k$?

In fact, similar properties (weaker than Conjecture A) have been proved for acyclic graphs in [4, 12, 15] (see also some hints in [9]).

REFERENCES

Received 4 February 1982

C. Berge

Centre de Mathématique Sociale, C.N.R.S.,

54 Boulevard Raspail, 75006 Paris, France