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Abstract

Sphingolipids function as bioactive mediators of different cellular processes, mostly proliferation, survival, differentiation and apoptosis,
besides being structural components of cellular membranes. Involvement of sphingolipid metabolism in cancerogenesis was demonstrated in solid
tumors as well as in hematological malignancies. Herein, we describe the main biological and clinical aspects of leukemias and summarize data
regarding sphingolipids as mediators of apoptosis triggered in response to anti-leukemic agents and synthetic analogs as inducers of cell death as
well. We also report the contribution of molecules that modulate sphingolipid metabolism to development of encouraging strategies for leukemia
treatment. Finally we address how deregulation of sphingolipid metabolism is associated to occurrence of therapy resistance both in vitro and in
vivo. Sphingolipids can be considered promising therapeutic tools alone or in combination with other compounds, as well as valid targets in the
attempt to eradicate leukemia and overcome drug resistance.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decades, many studies have demonstrated that
sphingolipids (SPLs) are biologically active molecules that play
pivotal roles in different cellular processes. Ceramide (Cer)
triggers differentiation and apoptosis, whereas its metabolite
sphingosine-1-phosphate (S1P) exerts an anti-apoptotic effect
and enhances cell growth and survival [1,2] (Figs. 1 and 2). The
balance between pro-apoptotic and pro-survival stimuli deter-
mines cell fate, according to the model of a sphingolipid
rheostat [3]. Using in vitro models of solid and hematological
tumors, it is possible to establish a link between SPLs and
cancer formation and progression [4–8]. The involvement of
Cer metabolism in cellular responses to various stimuli, like
serum deprivation, cytokines (e.g. TNF-α), ionizing radiation
(IR), heat shock and chemotherapeutic agents was reported [9].
This review focuses on the implications of the dual role of SPLs,
as pro-apoptotic as well as anti-apoptotic effectors, on the
treatment of leukemias. SPLs mediate chemotherapeutics-
induced apoptosis but synthetic analogs display the capacity
to trigger cell death as well. However, when SPL metabolism is
altered, ability of leukemic cells to undergo apoptosis is
impaired, leading to enhanced growth and survival and reduced
sensitivity to treatment. Strategies that cause accumulation of
Fig. 1. Anti-leukemic agents that cause Cer increase by targeting different enzymes
hydrolysis. Different compounds have been found to augment endogenous Cer ac
triggering apoptotic cell death.
endogenous Cer either by increasing its production via de novo
synthesis and sphingomyelin (SM) hydrolysis, or by decreasing
its metabolism are emerging, thus opening new therapeutic
perspectives in the treatment of leukemias. Modulation of SPL
metabolism through the use of SPL analogs alone or in
combination with other agents as well as inhibition of key
enzymes represent a promising therapeutic option to effectively
block the growth of leukemic cells and redirect them towards
apoptosis, contributing also to overcome drug resistance. Thus,
SPLs can be considered valid tools and targets at the same time
for the treatment of leukemias.

2. The multiple facets of leukemias

Organization of hematopoietic system follows a hierarchical
pattern: from the pool of pluripotent stem cells (hematopoietic
stem cells, HSC), characterized by self-renewal and multi-
lineage differentiation potential, committed lymphoid and
myeloid progenitors derive. The hallmark of stem cells is self-
renewal, that is the ability to generate daughter cells with the
same stem cell characteristics. Through this capacity, the
continuous repopulation of the hematopoietic system is ensured.
Under normal physiological conditions, HSC divide by
asymmetric duplication, producing an identical stem cell and
of SPL metabolism. Cer production occurs through de novo synthesis or SM
cumulation by activating SPT, Cer synthase and nSMase and/or aSMase, thus



Fig. 2. Inhibition of crucial enzymes controlling different steps of SPL metabolism leads to endogenous Cer accumulation and consequent cell death of leukemia cells.
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a committed progenitor that will further undergo differentiation
and proliferation. However, in particular situations (e.g. bone
marrow transplantation), HSC may divide symmetrically,
generating preferentially daughter stem cells, in order to restore
and maintain the pool [10]. Therefore, hematopoiesis depends
on the balance between self-renewal and differentiation.

Acquired genetic aberrations altering mechanisms control-
ling self-renewal, cell survival and differentiation can lead to
abnormal expansion and defective maturation of hematopoietic
progenitors that distinguish leukemias [11,12].

Leukemias are a heterogeneous group of hematological
malignancies that are classified as acute or chronic based upon
the natural history of the disease. Furthermore, according to
the cell types primarily involved, leukemias are classified as
lymphoid or myeloid. In acute leukemias block of differentia-
tion occurs at very early stages (stem cell level) and disease
rapidly progresses, resulting in death of patients not
effectively treated within a short period of time. In the
chronic varieties of leukemias, aberrant cell maturation occurs
with consequent production of partially functional elements,
which over time become numerically predominant on normal
differentiated ones. Chronic leukemias are generally charac-
terized by a slower clinical course and a more prolonged
natural history.

Recently, the World Health Organization proposed a new
classification of myeloid and lymphoid neoplasms based on
revised criteria previously established by other systems [13–
18].

As far as pathogenesis is concerned, many subtypes of acute
leukemias are characterized by genetic mutations that activate
signal transduction pathways, conferring a proliferative and/or
survival advantage to hematopoietic progenitors, as well as by
mutations that alter transcriptional pathways involved in
differentiation of hematopoietic progenitors. These latter path-
ways are critical for generation of leukemic stem cells (LSC)
that are ultimately responsible for the maintenance of the
malignant phenotype [19].

In the last decade, increasing evidences supported the model
of myeloid leukemia as a stem cell disease (reviewed in [20–
26]). According to this model, leukemia is composed by a
heterogeneous cell population made of a small fraction of LSC
and a bulk of blasts originating from partial differentiation of
precursors and biologically distinct from LSC, as shown by the
inability of blasts to self-renew and by the presence of quiescent
cells in the LSC population [20,27,28]. The exact origin of LSC
is still unknown.

The longer lifespan of stem cells increases the probability to
acquire further mutations necessary for leukemic transforma-
tion. Lesions enhancing self-renewal over differentiation but
also proliferation and survival over apoptosis may lead to
formation of LSC. Among molecules involved in the control of
these cellular functions are the Notch and Hox families and
Bmi-1 for self-renewal; transcription factors like CBF and
RARα for differentiation; receptor tyrosine kinases like Flt-3
and c-kit and the Ras pathway for proliferation; NF-κB, the
PI3K pathways and Bcl-2 for cell survival [21–24,26].

3. Present and future in the treatment of leukemias

In most patients with acute leukemia, intensive induction
chemotherapy is required to achieve hematological remission
generally with combination of cytotoxic drugs (e.g. Ara-C and
anthracyclines). When successful, the induction phase is
followed by consolidation and maintenance regimens of
variable duration. Under some circumstances, treatment
strategies may include autologous or allogeneic transplantation
of HSC. In chronic leukemias abnormal cellular proliferation is
usually antagonized with chemotherapy. In acute as well as in
chronic leukemias the normal hematopoietic compartment
might be stimulated by the administration of growth factors
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like the granulocyte-colony stimulating factor and erythropoie-
tin (Epo). In some cases, when known pathogenetic molecular
abnormalities are involved, treatment may include targeted
drugs, i.e. agents that have been developed to specifically
inhibit the pathogenetic event at molecular level, with the
endpoint to achieve either differentiation or apoptosis of
leukemic cells.

Best examples of targeted therapeutics currently available
are all-trans retinoic acid (ATRA) for treatment of acute
promyelocytic leukemia (APL) and Imatinib Mesylate (IM)
for treatment of chronic myelogenous leukemia (CML). APL is
characterized by the chromosomal translocation t(15;17)(q22;
q12) associated with the formation of the PML–RARα fusion
gene. Through the aberrant recruitment of the nuclear co-
repressor complex, the fusion protein leads to the block of
myeloid cell differentiation at the promyelocytic stage. ATRA, a
ligand for RARα, has proved to be an effective therapy for APL
in relation to its ability to bind to the fusion protein, causing
dissociation of the nuclear co-repressor complex. Promyelo-
cytes are then able to undergo normal differentiation finally
resulting in apoptotic cell death [19].

CML represents the form of clonal myeloproliferative
disease which is best characterized at the molecular level. The
natural history of the disease is characterized by a chronic phase
of variable duration (3 to 5 years) followed by progression into
an acute blastic phase, generally passing through a brief
accelerated phase. Eighty-five percent of patients are diagnosed
in the chronic phase. This disorder is associated with the
acquired karyotypic aberration known as Philadelphia Chromo-
some (Ph), which originates from the reciprocal translocation t
(9;22)(q34;q11). The result is generation of the BCR/ABL
fusion gene that encodes for a chimeric protein with deregulated
tyrosine kinase activity, which leads to increased proliferation
and survival of transformed cells [29]. IM is a small molecule
that competitively inhibits the interaction of ATP with Bcr/Abl
tyrosine kinase, blocking its ability to phosphorylate and
activate downstream pathways. The use of IM dramatically
increased the rate of remission of patients in chronic phase (up
to 97%) and demonstrated efficacy also in accelerated and
blastic phases [30–32].

Another class of targeted therapeutic agents is represented by
the small molecules acting as inhibitors of the Flt-3 tyrosine
kinase receptor. Mutations of FLT-3 either as internal tandem
duplications within the juxtamembrane domain of the receptor
or as point mutations within the activation loop of the kinase
domain, represent the most frequent known genetic abnormality
in acute myeloid leukemia (AML) blast cells (30–35% of
patients). Both types of mutation result in constitutive receptor
activation and consequent proliferative advantage for leukemic
cells [33,34]. Pharmacologic inhibition of Flt-3 blocks its
tyrosine kinase activity and results in a significant antileukemic
effect. In recent clinical trials, this approach has shown evidence
of activity in refractory or relapsed AML patients [35–37].

It has been clearly documented that impaired cell capacity to
undergo apoptosis represents one of the central mechanisms
involved in leukemogenesis, due to alterations of crucial
components of the apoptotic cascade like the Bcl-2 family
members [38,39]. Thus, targeting specific molecules involved
in these alterations represents an alternative approach to restore
apoptotic pathways and redirect cells towards physiologic
death. For example small antagonists and antisense oligonu-
cleotides against Bcl-2, FLIP and XIAP, respectively, part of the
mitochondrial, death receptor and common pathways, proved
effective in a variety of hematological malignancies [40].

Differentiation rather than malignant cell toxicity is the goal
of therapeutic epigenetics, that targets DNA methylation and
histone modifications to restore expression and function of
genes abnormally silenced (e.g. p15INK4B). Demethylating
agents like 5-aza-2′-deoxycytidine and decitabine and histone
deacetylases inhibitors (HDACIs) like valproic acid proved
effective in treatment of hematological malignancies in recent
clinical trials [41].

Finally, emerging data indicate SPLs as a new class of
molecules involved in the apoptotic cascade in different in vitro
models, providing favorable targets for anti-cancer therapy.

4. To tackle drug resistance

The occurrence of multi-drug resistance, namely resistance
to multiple, structurally unrelated chemotherapeutic agents
remains a major issue in the treatment of leukemias. Different
mechanisms are implicated in this phenomenon, which may be
developed by cancer cells to escape the selective drug pressure.
Among these, expression of transmembrane drug-efflux pumps
encoded by the ATP-Binding Cassette transporter superfamily
like the P-glycoprotein (Pgp), has been investigated in
leukemia [42]. Moreover, attempts to overcome drug resistance
and promote apoptosis of leukemic cells unvealed an
association between Pgp and SPLs, whose altered metabolism
has been shown to contribute to resistant phenotype of leu-
kemic cells.

Drug resistance represents an important issue also with the
more recently developed targeted therapies. A good example is
resistance to IM, which has been shown to be likely
multifactorial (reviewed in [43–45]): in the majority of relapsed
patients, gene point mutations are detected (predominantly in
the kinase domain) and interfere with the binding of IM to Bcr/
Abl. However, gene amplification and protein overexpression,
activation of alternative pathways, extracellular sequestration of
the drug by α1 acid glycoprotein in the plasma and expression
of drug efflux-pumps were also reported to contribute to
resistant phenotype.

Another element that may contribute to treatment failure and
relapse of disease is the biology of LSC. In myeloid leukemias
LSC are emerging as the crucial target to eradicate leukemia,
therefore elucidation of the mechanisms involved in malignant
transformation into leukemic stem cells may have therapeutic
consequences. For example, LSC have been shown to be
resistant to the anthracycline daunorubicin (DNR) [46] and to
IM, the latter exerting a cytostatic rather than cytotoxic effect on
this cell population [47]. In addition, since unlimited self-
renewal is a prerequisite for tumor growth, inhibition of this
property may have marked effects on cancer progression, and
could lead to blockade of LSC besides the blast populations,
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thus increasing the incidence of remission and reducing that of
relapse.

Importantly, identification of molecules differentially
expressed between HSC and LSC would contribute to design
therapeutic regimens that specifically target cancer cells while
sparing normal HSC [26,33,48].

Clearly, development of alternative strategies implying the
use of combination therapies for leukemia treatment are
warranted and a better understanding of the biology of LSC
would provide a useful tool for this purpose.

5. Cell lines are a model to investigate the role of
sphingolipids in leukemogenesis

Metabolism of SPLs and their role in cellular growth,
differentiation, apoptosis and resistance to therapy were largely
investigated by means of in vitro models of myeloid and
lymphoid leukemias (cell lines are summarized in Table 1).
Leukemic cell lines are obtained by selection of the most
undifferentiated tumor cells through in vitro culture of bone
Table 1
List of cell lines used to study the role of SPLs in leukemias

Cell lines Morphological and molecular
characteristics

References

KG1a AML Pgp+, TNF-α-resistant [115,116,121]
HL-60 APL PML-RARα−,

c-myc amplicons
[2,52,54,62,63,65,66,
69,70,72,73,75,76,80,
82,85,87–89,92,98,
99,103,107,121,122]

JVM-2 B-CLL (transformed with EBV)
t(11;14)(q13;q32) associated
with Cyclin D1 activation

[58]

TF-1 Erythroleukemia
(AML FAB M6) Pgp+

[51,117,121]

U937 Histiocytic lymphoma, expressing
markers and properties of monocytes
(AML FAB M5; hystomonocytoid
morphology) Pgp−, TNF-α-sensitive

[2,53,54,56,57,65–67,
70,72,73,76,79,81,82,
85,87,90,97,106,111,
112,115,121]

JFP1 Ph+ CML in blast crisis
derived from a patient refractory
to different combination of
chemotherapy regimens

[107]

K562 Ph+ CML in blast crisis [107]
ALL-697 pre-B ALL [59]
CCRF-CEM T-ALL [49,60,84,91]
HPB-ALL T-ALL [87]
Jurkat T-ALL [2,49,55,66,71,81,

105,112,120]
Molt-4 T-ALL; p53 is not expressed [50,59,61,64,74,

83,94,96,123]
HS1 Non-tumorigenic

pro-erythroblasts from
Sp-1-transgenic mice
arrested in differentiation,
Epo-dependent growth
and survival

[104]

HS2 Tumorigenic pro-erythroblasts
from Sp-1-transgenic mice
malignant, Epo-independent
growth and survival

[104]

NB4 APL PML-RARα+ [68]
marrow or peripheral blood (in the case of acute leukemias with
high percentages of circulating blasts) samples. However, while
these models well represent the undifferentiated blast popula-
tion typical of acute leukemias, in the context of chronic
leukemias they represent only the tumor cell population arisen
after progression into acute phase. In fact chronic leukemias are
characterized by the presence of cells that still retain the ability
to partially differentiate and undergo cell death (since the
pathways involved in these processes are not fully compromised
and impaired yet) and thus they would last shortly when
cultured in vitro.

6. Sphingolipids are mediators of apoptosis induced by
chemotherapeutics

An increasing body of evidence supports the hypothesis that
exposure of leukemic cells to IR and many chemotherapeutics
results in the onset of apoptosis via alterations of SPL
metabolism (Fig. 1). In this regard, accumulation of Cer
produced by SM hydrolysis, as well as de novo synthesis, was
shown to play a major role as mediator of leukemic cell death.
Apoptosis triggered in response to IR was associated to increase
of endogenous Cer in lymphoid cell lines [49,50] and in
erythromyeloblastic cells, these last undergoing apoptosis only
if the SM/Cer pathway was intact, and this was associated to
activation of neutral sphingomyelinase (nSMase) [51].

Induction chemotherapy may include anthracyclines like
doxorubicin (doxo) and DNR and nucleoside analogs like
cytosine-arabinoside (Ara-c) and fludarabine. Anthracyclines
are capable to induce apoptosis not only by intercalating to
DNA and targeting topoisomerase II, but also by stimulating
Cer production. Doxo-induced apoptosis was shown to be
mediated by Cer increase in acute T-lymphoblastic leukemia (T-
ALL), where Cer activated the CD95 (APO-1/Fas) death
pathway [49] and in HL-60 cells via inhibition of sphingosine
kinase 1 (SK1) [52]. Cytotoxic effect of DNR was mediated by
Cer accumulation in myeloid leukemia cell lines through
activation of Cer synthase and nSMase [53,54] but was
independent of Cer accumulation in Jurkat E6.1 cells [55]. In
addition, Ara-c and fludarabine were reported to exert their pro-
apoptotic effect through increased level of Cer, respectively, in
myeloid cells via nSMase activation [54,56,57] and in lymphoid
leukemia cell lines through SM hydrolysis as well as de novo
Cer synthesis [58].

Another chemotherapeutic agent that was shown to induce
Cer-mediated apoptosis of lymphoblastic cells is the vinca
alcaloid vincristine (VCR) [59,60], that exerts cytotoxicity by
interfering with tubulin, thus blocking mitosis.

Cer generation was involved also in apoptosis triggered by
etoposide, another topoisomerase II inhibitor, through activation
of serine-palmitoyl transferase (SPT) inMolt-4 cells [61] and via
SK1 inhibition in HL-60 cells [52]. However, in HL-60 cells the
early increase of endogenous Cer associated to apoptosis
resulting from exposure to the synthetic retinoid fenretinide
(4-HPR) was due to stimulation of de novo synthesis [62,63].

Activation of both acid and neutral SMase that led to Cer
accumulation in a caspase-independent fashion, was instead
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implicated in apoptosis induced in Molt-4 cells by the folate
analog thymidylate synthase inhibitor GW1843 [64].

A strategy to effectively target the leukemic blast population
in AML, which express the granulocyte-macrophage colony-
stimulating factor (GM-CSF) receptor, is designed on the use of
the fusion toxin DT388-GM-CSF, constructed by conjugating the
catalytic and translocation domains of diphtheria toxin (DT) with
the ligand of GM-CSF receptor. When tested on different
myeloid leukemia cell lines, DT388-GM-CSF triggered apoptosis
associated to strong increase of Cer level via SM hydrolysis [65].

HDACIs have been recently shown to induce apoptosis by
increasing Cer production. Growth inhibition and apoptosis
occurred in leukemic cells following exposure to combination
of different HDACIs (sodium butyrate, suberoylanilide hydro-
ximic acid SAHA or trichostatin) and perifosine, in a synergistic
manner. Molecular mechanism involved inactivation of ERK1/
2 and Akt that caused activation of aSMase and consequent Cer
increase [66]. Moreover, the novel HDACI LAQ-824 induced
either G0/G1 arrest and differentiation or G2/M arrest and
apoptosis in U937 cells according to the dose, leading to Cer
generation through SM hydrolysis [67].

Finally, ATRA was shown to induce myeloid differentiation
of NB4 cells (PML-RARα+) via up-regulation of aSMase and
subsequent increase of endogenous Cer [68].

Altogether, the studies reviewed here demonstrate a crucial
role for Cer metabolism in mediating anti-leukemic effects of
many agents. Importantly, the observation that stimuli including
ionizing radiations and bioactive compounds, having different
molecular targets, can all act by modulating the SPLs
metabolism, highlights the high versatility of SPLs pathway.
Moreover, it suggests the use of combination regimens to
enhance the increase of endogenous Cer level with the endpoint
of triggering apoptotic cascade in leukemic cells.

The discrepancies observed may be due at least in part to
different in vitro models and experimental conditions used.

7. Sphingolipid analogs are pro-apoptotic agents in
leukemias

Commonly, to investigate the role of SPLs in cellular processes
and particularly Cer-mediated apoptotic cell death, analogs of SPLs
have been used. Many of these molecules have been reported to
exert anti-tumor activity in different leukemic cell lines, confirming
that they behave like endogenous SPLs and suggesting their use as
pro-apoptotic therapeutics in leukemia treatment. Although some
compounds have a natural origin (e.g. bacterial SPLs extracted
from the Sphingobacterium genus, capable of triggering apoptosis
inHL-60 cells [69]),most are chemically synthesized. The reason is
that mammalian SPLs are difficult to dissolve in water and are
poorly permeable in cell membrane. Thus, short-chain, cell-
permeable analogs have been employed (e.g. C2-, C6-, C8-Cer) and
correlation between structure and biological activity of Cers has
been demonstrated [70].

Treatment of leukemia cells with short chain Cer analogs
resulted in growth arrest, differentiation, apoptosis induction,
restored sensitivity to IR [51] and chemotherapeutics and
potentiated the activity of anti-leukemic agents (e.g. paclitaxel
[71]). Synthetic C2-Cer, chiral C2-Cer, C6-Cer and C8-Cer were
shown to induce cell cycle arrest in G0/G1 phase, DNA breakage
and cell death in myeloid [70,72,73] and lymphoid [74]
leukemia cell lines. Moreover, sphingoid bases like trans-4-
sphinganine (Sph) and 4,5-dihydrosphingosine (Sphinganine)
induced PMA-driven differentiation of HL-60 into macrophages
and apoptosis in undifferentiated HL-60 and U937 cells [75,76].

Moreover, the use of analogs helped to define involvement
of different molecules in SPLs-mediated signaling. Reactive
oxygen species (ROS) production (e.g. superoxide anion radical
H2O2) takes place at the mitochondrial electron transport chain
and is part of the normal cellular metabolism but may also be
induced by various stimuli. Data are available about the
involvement of ROS in Cer-induced cell death in leukemia
[77,78]. For example, in U937 cells exposure to C6-Cer
triggered apoptosis and DNA fragmentation mediated by
significant H2O2 production which, in turn, activated the
transcription factors NF-κB and AP-1 [79]. In HL-60 cells
C2-Cer-mediated apoptosis led to increased oxidative damage
by caspase-3 dependent inactivation of the ROS-scavenger
catalase, as shown by in vitro proteolytic cleavage of the
enzyme [80]. Moreover, C2- and C6-Cer triggered different
responses in U937 and Jurkat cells, respectively growth arrest
accompanied by transient loss of glutathione (GSH) and
apoptosis associated with complete depletion of the ROS-
scavenger GSH. Since total cellular GSH concentration in U937
was 3-fold higher than in Jurkat cells and inhibition of
mitochondrial respiration restored apoptosis in U937, authors
suggested that the balance between mitochondrial peroxide
production and the intrinsic anti-oxidant capacity of cells
determine the response to Cer [81].

The Bcl-2 family comprises proteins with both pro- and anti-
apoptotic activity. In particular, involvement of Bcl-2 in Cer-
mediated cell death in leukemic models has been investigated.
In this context, down regulation of Bcl-2 was observed in
association to C2 Cer-induced apoptosis in myeloid leukemia
cells [82], while in ALL-697 Bcl-2 acted downstream of Cer but
did not affect Rb dephosphorylation caused by Cer-induced cell
cycle arrest in Molt-4 cells, suggesting that these Cer-effectors
function independently [59]. Experiments on lymphoblastic
leukemia showed that Bcl-2 over expression antagonized
apoptosis induced by Cer analogs: however, in Molt-4 cells
Bcl-2 prevented prICE activation and thus PARP cleavage [83],
while in CCRF-CEM the anti-apoptotic protein had no effect on
CrmA-inhibitable proteases like ICE or ICE-related proteases
[84]. In contrast, cell-permeant Cers were able to induce
apoptosis in different myeloid leukemia cells through nSMase
activation, SM hydrolysis and endogenous Cer generation
independently of Bcl-2 [85].

Protein kinases C (PKC) are a family of serine/threonine
kinases involved in different cellular processes [86]. There are
different isoenzymes classified according to the stimuli that can
activate them, like Ca2+, diacylglycerol and phorbol esters.
However, the precise role of PKC in the apoptotic cascade is
controversial and is probably due to the presence of different
combination of isoforms in different cell systems. A role for
these kinases in SPL-mediated apoptosis emerged. Following
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exposure to sphingoid bases, an apoptotic response was
observed in myeloid leukemia cells, enhanced by inhibition of
total PKC activity [76]. Sawai H. and coworkers demonstrated
that Cer-induced cell death in HL-60, U937 and HPB-ALL is
associated with translocation of PKC-δ and -ε from the
membrane to the cytosol, whose inhibition had a cytoprotective
effect [87], with overexpression of c-jun through PKC activation
in HL-60 [88] and with activation of the transcription factor AP-
1, as shown by prevention of growth inhibition and DNA
fragmentation in HL-60 after inhibition of AP-1 and c-jun [89].

Activation of the transcription factors AP-1 and NF-κB was
induced also by ROS generation in U937 cells following
treatment with C6-Cer [79]. In the same cell line, Cer analogs
induced apoptosis through strong stimulation of p46-JNK1/
p54-JNK2 activity, increased c-Jun mRNA and protein
expression and weak inhibition of p42-ERK1/p44-ERK2
activity. In contrast, Sph analogs led to apoptosis via moderate
stimulation of p46-JNK1/p54-JNK2 activity and no change in
c-Jun expression and immediate and complete inhibition of p42-
ERK1/p44-ERK2 activity [90].

Finally, in some cases SPLs were chemically modified and
the biological effects of new compounds were tested on
leukemia cells. Growth inhibition or apoptosis was induced in
leukemia cells by several synthetic SPL analogs including: (i)
conformationally restrained analogs of Cer where the polar
portion of the molecule was replaced by a thiouracil uracyl ring
[91], (ii) non-natural stereoisomers of C2-Cer [92], (iii) cis- and
acetylene type derivatives of Cer [93], (thus suggesting that the
trans configuration is not a prerequisite for Cer-induced
apoptosis), (iv) analogs having a para-substituted phenyl ring
in the sphingoid moiety or an allylic fluoride [94], (v) N-
acylphenylaminoalcohol Cer analogs [95], (vi) N-acetylthio-
sphingosine and 4-dodecanoylamino-decan-5-ol [96], (vii) C8-
ceramine, a derivative where the Cer carbonyl group is replaced
by a methylene group [97], (viii) N-lactylsphingosine and N-
lactyldihydrosphingosine [98], (ix) aminophenyl Cer analogs
[99], (x) phenetylisothiocyanate derivatives of sphingosine and
sphinganine [100].

All the efforts in the design of novel Cer analogs with potent
apoptotic properties helped in clarifying the function–structure
relationship of the natural Cer effects, but additionally led to the
discovery of innovative drugs with potential antileukemic
efficacy.

8. Sphingolipids are targets for novel therapy of leukemias

Intracellular levels of Cer decrease following activation of
specific, compartmentalized enzymes that convert it into
different metabolites (Fig. 2). Discovery and availability of
inhibitors for enzymes of SPL metabolism helped to clarify their
role in cellular processes and to develop alternative therapeutic
strategies to augment Cer-mediated apoptosis in cancer cells
[5,7,101,102].

Data regarding the effect of ceramidases inhibition in
leukemic cells are poor. The Cer analog (1S,2R)-d-erythro-2-
(N-myristoylamino)-1-phenyl-1-propanol (d–e-MAPP) but not
its enantiomer l-e-MAPP (that is metabolized inside cells)
inhibited alkaline ceramidase, inducing G0/G1 growth arrest of
HL-60 cells and increasing Cer level [103].

One of the most studied enzyme of SPL metabolism in
leukemic models is SK1, which has been implicated in leukemia
cells transformation, growth and survival [104,105]. The most
used SK1 inhibitor is N,N-Dimethylsphingosine (DMS), whose
specificity was reported to be restricted to SK1 in a model of
myeloid leukemia [106]. Anti-leukemic action of DMS was
demonstrated on cell lines as well as blasts from patients with
acute and chronic myeloid leukemia in blast crisis [75,107].
Intriguingly, the cytotoxic effect of DMS was more evident in
drug-resistant than in drug-sensitive cell lines, suggesting a new
therapeutic option to overcome drug-resistance [108]. DMS
also enhanced the pro-apoptotic effect of TNF-α and Fas
monoclonal antibody in lymphoid and myeloid leukemia
suggesting its use in combination with other agents [2].
Recently, other non-competitive inhibitors of SK1 were
developed, that showed in vitro and in vivo anti-cancer activity
against a panel of solid tumors [108]. Preliminary data from our
lab (Ricci C., et al, unpublished data) showed that one of these
compounds [2-(p-Hydroxyanilino)-4-(p-chlorophenyl) thia-
zole] exerts a time- and dose-dependent cytotoxic effect on
different myeloid leukemia cell lines. Moreover, inhibition of
SK1 by F-12509a (a sesquiterpene quinone isolated from a
culture broth of a discomycete [109,110] led to apoptosis of
both parental and chemoresistant sublines of HL-60 [52]. In
particular, in drug-resistant cells S1P level decreased while Cer
level increased, and this effect was reverted by addition of S1P.
Thus, inhibition of SK1 associated to alterations of the balance
between Cer and S1P, namely Cer increase and S1P decrease,
may overcome drug resistance in AML.

Inhibitors were also developed for GlucosylCeramide
Synthase (GCS), whose association to drug resistance has
been largely documented (see below).

Another possible strategy to restore high intracellular level of
Cer is based on inhibition of Sphingomyelin Synthase (SMS). In
particular, tricyclodecan-9-yl-xanthogenate (D609), a tumor
cytotoxic xanthate, was shown to induce apoptosis in U937
through dose-dependent inhibition of SM synthase and
subsequent increase of intracellular Cer level and decrease of
SM content [111]. However, despite anti-cancer activity in vitro,
D609 displayed poor in vivo efficacy, probably due to oxidative
instability. Thus S-(alkoxyacyl) D609 prodrugs were generated:
in particular, the prodrug methyleneoxybutyryl D609 exhibited
higher chemical stability and higher cytotoxicity versus parental
D609 in U937 and Jurkat cells, where a significant increase of
different species of Cer was observed [112].

Overall, inhibition of key enzymes of SPL metabolism
leading to accumulation of intracellular Cer, may be used as an
alternative strategy to induce cell death of leukemia cells, with
positive consequences on treatment design.

9. Sphingolipids are involved in resistance of leukemia cells
to therapy

Deficiency in the SM/Cer pathway, disruption of lipid
composition of cellular membranes by Pgp and increased
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activity of key enzymes of SPLs metabolism, in particular GCS,
SMS and SK1, proved evidence for new mechanisms of multi-
drug resistance in leukemia (Fig. 2).

Van Helvoort and coworkers proposed that Pgp, besides its
drug-efflux pump activity, may function as a lipid translocase of
broad specificity, by translocating phospholipids across cell
membranes [113,114]. Moreover, it was suggested that Pgp may
alter membrane composition of lipids like SM, thus interfering
with the apoptotic cascade induced by stimuli that activate
SMase to produce Cer. In most cells, SM is concentrated in the
outer leaflet of plasma membrane and following exposure to
stimuli like TNF-α, it is hydrolyzed within the inner leaflet by
activation of SMase. In this regard, it was demonstrated that the
Pgp+ cell line KG1a, that is inherently resistant to TNF-α
because does not produce Cer via SM hydrolysis in response to
the cytokine, carried a pool of SM in the inner leaflet of the
membrane that was 7-fold lower in size compared to the Pgp−,
TNF-α sensitive U937 cell line [115]. Exposure of KG1a cells
to the Pgp inhibitor PSC833 restored apoptosis through increase
of Cer by activation of nSMase. PSC833 alone led to increase of
membrane-bound nSMase activity and of SM content on the
inner leaflet of plasma membrane, without affecting total SM
content. Thus, by modifying SM distribution across plasma
membrane, inhibition of Pgp rendered the substrate SM
available for TNF-α-activated nSMase. This converted SM
into Cer and triggered apoptotic cascade [116]. The existence of
a drug-efflux pump-independent activity of Pgp was confirmed
by the observation that inhibition of Pgp augmented cell death
induced by growth factors and serum deprivation in Pgp+ as
well as in Pgp− AML samples. Moreover, inhibition of Pgp led
to SM accumulation in association to apoptotic cell death,
indicating that Pgp alters SM distribution by decreasing the SM
pool available for Cer generation [117]. In addition, a functional
link between Pgp and GCS has been demonstrated, suggesting
at least the partial involvement of Pgp in resistance of AML
cells to drugs. Pgp, that localizes also on the Golgi membrane
where GCS is located, can transport GlucosylCeramide
(GlcCer) into the luminal side of the Golgi, thus increasing
GCS activity [118–121].

It is now evident that modulation of the activity of different
enzymes of Cer metabolism may revert resistance of leukemic
cells to chemotherapeutic agents. For example, co-exposure of
lymphoblastic cells to VCR and to the GCS inhibitor dl-threo-
phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP)
resulted in cell cycle arrest, cytotoxicity and higher Cer levels
than upon VCR alone. In addition, chemosensitizing activity of
PPPP was more pronounced in VCR-resistant sublines: taken
together these results suggested that inhibition of GCS may be
used to overcome drug-resistance [60]. Lower basal levels of
Cer due to activation of GCS and SMS were found in a drug-
resistant subline of HL-60 compared to parental cells, the first
being resistant to doxo-induced apoptosis until exposed to C2-
Cer. Moreover, in samples from chemoresistant and chemo-
sensitive AML patients, lower Cer levels and higher activity of
GCS and SMS were detected, indicating the role of deregulated
GCS and SMS activity in development of chemoresistance in
vitro as well as in vivo [122]. Finally, overexpression of SK1
has been recently implicated in multi-drug resistance of myeloid
leukemia cells to anti-neoplastic agents. Inhibition of the kinase
caused apoptosis of both chemosensitive and chemoresistant
cells, increasing Cer level concomitantly to S1P decrease [52].

10. Perspectives

Involvement of SPL metabolism in the processes of
leukemogenesis and disease progression emerged. Therefore,
by exploiting SPL pro-apoptotic effect as well as by blocking
their anti-apoptotic, pro-survival capacities, it would be possible
to contribute to leukemia eradication and overcome resistance
to treatment, which still represents a major hurdle in the field of
hematological malignancies. SPLs represent powerful tools to
induce cell death of leukemia cells, suggesting the employment
of SPL analogs as single agents or in combination regimens to
potentiate the anti-leukemic action of chemotherapeutic drugs
that increase Cer level. In addition, by targeting specific
enzymes crucial for SPL metabolism, it would be possible to
kill neoplastic cells as well as sensitizing them to anti-leukemic
therapeutics. A new function of the Pgp protein as a lipid
translocase has been identified and links it to deregulation of
SM distribution across the plasma membrane, GlcCer transport
inside the Golgi apparatus and modulation of GCS activity,
which contribute to resistant phenotype. Moreover, increased
activity of GCS, SMS and SK1 leads to resistance of leukemic
cells to drug-induced apoptosis, by impairing the level of Cer
and its metabolites. In the present review we have outlined the
potential role of SPL biology in leukemia. The extensive
number of publications testifies the interest in this exciting and
innovative field. Hopefully, the design of novel SPL-based
drugs, as well as of chemotherapeutic agents that specifically
target SPL metabolism by inducing Cer accumulation, inhibit-
ing its clearance and S1P generation, may help worldwide
researchers to overcome some of the hurdles, still present in the
therapy of most resistant leukemias.
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