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We examine the complexity of testing different program constructs.
We do this by defining a measure of testing complexity known as VCP-
dimension, which is similar to the Vapnik—Chervonenkis dimension,
and applying it to classes of programs, where all programs in a class
share the same syntactic structure. VCP-dimension gives bounds on the
number of test points needed to determine that a program is
approximately correct, so by studying it for a class of programs we gain
insight into the difficulty of testing the program construct represented
by the class. We investigate the VCP-dimension of straight line code,
if-then—else statements, and for loops. We also compare the VCP-
dimension of nested and sequential if-then—else statements as well as
that of two types of for loops with embedded if-then—else statements.
Finally, we perform an empirical study to estimate the expected com-
plexity of straight line code.  © 1996 Academic Press, Inc.

1. INTRODUCTION

Program testing is an important subfield of the field of
software engineering. Much work has been done in finding
methods for selecting test data [ GG75, MHS81, DMMPS87]
and in evaluating different testing methodologies [ BudS§1,
DN84, BS87, Ham89]. A related area of software engi-
neering is the study of software complexity. Considerable
research has been done in this area as well to devise software
complexity measures [ Hal77, McC76, WHH79] and to
compare various measures for their effectiveness [ Wey88,
Tia92, TZ92].

* This paper is a significantly revised version of a preliminary report that
appeared under the title “Using Computational Learning Theory to
Analyze the Testing Complexity of Program Segments” in the IEEE
Computer Society’s Seventeenth Annual International Computer Software
and Applications conference.

T Part of this research was done while the first author was a graduate
student at the University of Maryland at College Park and part was done
while she was a postdoctoral fellow at McGill University in Montreal. The
research was supported in part by NSF Grant CCR-9112976, ONR Grant
N00014-92-J-1254, NSERC, and IRIS National Network of Centres of
Excellence.

¥ Supported in part by NSF Grant CCR-9007851.

Our work combines these two areas by looking at the
“testing complexity” of different classes of programs. The
reason that we study classes of programs is that by exam-
ining the complexity of a class of programs, where each
program in the class has the same syntactic structure, we
gain insight into the testing complexity of the syntactic
structure that these programs share. Therefore, given a class
of programs, each with the same syntactic structure, we
investigate how difficult it is to distinguish one program in
the class from the others using only input/output test pairs.
Usually this is impossible to do with 100 % accuracy. In
other words, for most classes of programs it is impossible to
distinguish one program in the class from all other
programs that compute a different function when only a
finite number of input/output test pairs is used to test the
program.

For this reason we introduce another measure of testing
complexity. In the field of computational learning theory
[VC71, BEHWS89] Vapnik—Chervonenkis dimension (or
VC-dimension) characterizes the complexity of a class of
objects to be learned. We define a similar notion of dimen-
sion for program classes, called VCP-dimension, that gives
an indication of the testing complexity of these classes.
Given a class P of programs computing functions from the
reals to the reals, the VCP-dimension of P is the VC-dimen-
sion of the class obtained by identifying each program in P
with the subset of the real line for which it evaluates to a
positive number.

Using VCP-dimension we examine the testing complexity
of different classes of programs to gain insight into how dif-
ficult it is to test various program constructs. In particular,
we derive upper and lower bounds on the VCP-dimension
of straight line code, if-then—else constructs, and for loops.

We also compare the VCP-dimension of different classes
of programs to determine how the complexity increases
when program constructs are combined in different ways.
For example, we compare nested and sequential if-then—
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else statements, and we compare for loops with and without
upper bounds on the number of iterations. This insight into
testing complexity is important because it tells the pro-
grammer which types of program structures lead to more
easily testable programs, and it shows the tester where more
concentrated testing efforts should be applied.

VCP-dimension is similar to pseudo dimension [ Pol84,
Hau92], which was used by Haussler [ Hau92 ] in proving
results about the learnability of real valued functions. As in
Haussler’s work, we define the error of a tested program
with respect to a specification to be the expected difference
in value between its output and the specification for a ran-
domly drawn input, where there is a probability measure
defined over the set of inputs to the program. A program is
said to be approximately correct with respect to a specifica-
tion for error bound ¢ if this error is bounded by ¢. We then
define a class of programs to be randomly approximately
testable if given a specification in the class, a confidence
parameter, and an error bound, a finite number of random
test points can be selected, and with high probability these
test points will ensure that any program that tests correctly
on these points will be approximately correct. These notions
are defined formally in Section 3.

Haussler [ Hau92 ] used pseudo dimension to get a bound
on the number of random examples needed to PAC! learn
a function from a class of functions. We use his results to
find a bound on the number of random test points needed
to approximately test a program from a class of programs.
This can be done because a random sample of input/output
pairs for a function that gives sufficient information to infer
the rest of the function is also sufficient to determine that a
program correct on the sample has small overall error.

Since the VCP-dimension of a class of functions is always
less than the pseudo dimension of the class, our lower
bounds on the VCP-dimension of various classes of
program segments are also lower bounds on the pseudo
dimension of these classes. Although in general pseudo
dimension can be arbitrarily greater than VCP-dimension,
we use an observation by Macintyre and Sontag [ MS93] to
show that our upper bounds on the VCP-dimension of
different classes of program segments also hold for pseudo
dimension.

Thus by combining our bounds on the VCP-dimension of
various classes of programs with Haussler’s bounds on the
number of random examples needed to learn (or test) a
function, we can derive results about which types of
program classes are randomly approximately testable. For
example, our results show that straight line programs with
n lines of code are randomly approximately testable using
O(n*log n) test points for a given error bound and con-
fidence parameter. We also can show that for loops con-
taining one embedded if-then—else statement and no other

! PAC stands for probably almost correct.

embedded constructs can be randomly approximately
tested with a number of test points that is polynomial in
both the number of lines of code inside the loop and the
number of times that the loop is iterated. This means that if
there is no upper bound on the number of times that the
loop is executed (for example, when the input x is used as
the upper bound on the loop index variable), then the con-
struct is not randomly approximately testable.

Our work also bears some similarity to the work by
Anthony et al. [ ABIST94, ABIST95] on valid generalization
from approximate interpolation. They say that a set of func-
tions # (a hypothesis space) validly generalizes a set of func-
tions % (a concept space) from approximate interpolation if for
any proximity parameter, confidence parameter, and error
bound, a finite number of random sample points of a target
concept €% can be selected, and with high probability any
hypothesis /1 € # that approximates ¢ to within the proximity
parameter on the sample points will also approximate ¢ to
within the proximity parameter on most inputs in the domain,
where there is a probability measure defined over the domain.
A hypothesis /1 approximates a target concept ¢ to within the
proximity parameter # on point x; if |4(x,) — #(x;)| <#. They
prove that a set # of functions from a set X into [0, 1]
validly generalizes the set of all functions from X into R if and
only if the pseudo dimension of /# is finite.

Random approximate testability is similar to valid
generalization from approximate interpolation where the
proximity parameter used is zero. The difference is that in
the work of Anthony et al. [ ABIST94, ABIST95 ], the error
of a hypothesis is the probability that a randomly drawn
input is not within the proximity parameter, rather than
being the expected difference in value between the hypo-
thesis and the target for a randomly drawn input.

2. MEASURING TESTING COMPLEXITY

When we examine the testing complexity of classes of
programs, we consider only a subset of programs that com-
pute total recursive functions from the rationals (Q) to the
rationals. However, we feel that this subset is sufficient to
provide insight into the relative testing complexity of dif-
ferent program constructs.

DEFINITION. A program p computes a functionf,: Q — Q,
where a probability measure M is defined over the set of
inputs. A program class is a set P of programs.

We will use p to denote both the program and the func-
tion f, that it computes when it is clear from the context
which meaning is being used. Programs are defined to com-
pute functions with domain @ because the finite representa-
tion of numbers in the computer only allows rationals.
However, sometimes it is necessary to consider an extension
of such a function to the reals, and in this case we will use
the natural extension.
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The probability measure M is usually taken to be either
the operational distribution on the inputs to the program,
or a uniform distribution. In the former case, the error of a
program (that is, the probability that an input chosen at
random according to M will produce an incorrect output) is
a measure of its unreliability; in the latter case, the error
measures the fraction of the input domain for which the
program computes an incorrect answer. The probability
measure M can either be a discrete probability measure on
Q@ or a continuous probability measure on the reals R.

When defining a measure of testing complexity for a class
of programs, we would ideally like a measure that can tell us
how many test points (that is, input/output pairs) are
needed to distinguish one program from all other programs
in the class. We can define this notion formally as follows:

DEerFINITION.  Given a program class P and a program
p € P, a test set for p with respect to Pis a set of inputs 7<= Q
such that for all other programs ¢ € P, if p(x) = g(x) for all
x € T, then p(x) = ¢(x) for all x € Q (that is, p and g compute
the same function). The testing complexity of the class P is
the smallest integer & such that any program p € P has a test
set of cardinality k.

The following results about testing complexity can be
proven easily.

ProposITION 2.1.  The testing complexity of a program
class containing n programs is less than or equal to n — 1.

Proof. Let P be a class of n programs, and let p e P be
given. For each ge P that computes a different function
than p, choose an input x for the test set of p such that
p(x) # q(x). There will be at most n— 1 such test points. ||

ProposITION 2.2.  The class of all programs computing
polynomials of degree no greater than n has testing com-
plexity n+ 1.

Proof. Since n+ 1 points completely determine an n
degree polynomial, any program in this class has a test set
ofsizen+1. ||

Although this definition of testing complexity yields some
results, it does not allow us to compare different program
constructs. This is because when more complicated program
constructs are used, even very simple programs become
impossible to “test,” as the following example illustrates.

ExAMPLE 2.1.
following schema:

Let the program class P be defined by the

P:={p| p(x):=ifa, o, b, then
output(a, o, b,)
else

output(as s b3)},

where o ef{=, #,<,>,<,>} and o,,0;e{+, —,
x, +}and a;, b;e {x} UQ.

Now, consider the problem of selecting a test set for the
program ¢q € P defined as follows:

q(x) :=1f 0 < 3 then
output(x +2)
else

output(x — 3).

Since the boolean expression in the if-then—else statement
is always true, program ¢ simply computes the linear
function x + 2. Although this may seem like a contrived
program since the boolean expression is obviously always
true and one branch is never executed, real programs with
more complicated branching structures can contain
unexecutable paths that are not easily detected. Barzdin,
et al. [BBK77] proved that the problem of determining
which branches of a program are realizable (a branch is
realizable if some input causes the branch to be taken
during execution of the program) is undecidable.

ProPoOSITION 2.3.  The program q has no finite test set
with respect to the class P.

Proof. Suppose a finite test set T for ¢ existed. Let
m :=max{x | xe T}. Define

q'(x) :=if x <m then
output(x +2)
else

output(x —2).

Program ¢’ is in P since it has the syntax specified by the
class. It computes the same output as ¢ for all inputs in 7.
However, it computes an incorrect value for all x >m, so T
is not a test set for ¢. ||

The program ¢ has no test set with respect to P because
it does not make use of both branches of the if-then—else
statement. Thus, the unused branch can be used by another
program in P to “trick” any supposed test set. Such a
program looks like ¢ on all inputs in the test set, but it
diverges from ¢ on inputs greater than those in the test set.

The example above demonstrates that it is impossible to
test most programs to within 100 % accuracy, even when
they are tested with respect to simple program classes. Since
absolute testing is an impossible task, we propose in the
next section a less absolute but more meaningful measure
of testing complexity. This measure indicates when it is
possible to use a small number of randomly selected test
points to determine whether any program in a given class is
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approximately correct with high probability. A program is
approximately correct if on the average it computes a value
“close to” the value of a program that is absolutely correct.
These ideas will be made more formal in the next section.

We emphasize that we are not proposing random testing
as an effective testing methodology, but rather we are using
it as a basis for comparing the testing complexity of different
program constructs and combinations of constructs.
However, other work has been done recently [ BKS89,
BLR90, Lip91, GLR *91] to make random testing a viable
approach to testing software. The problem that is addressed
in this other work is how to convert a program that has
been shown through random testing to be correct for most
inputs into a program that is correct with high probability
on all inputs. The following simple example illustrates this
idea.

ExaMPLE 2.2. Suppose we are given a deterministic
black box program p that computes the function f(x) = x.
Suppose that we have performed a sufficient number of ran-
dom tests on p to ensure that it is correct for a large fraction
of the possible inputs. The following probabilistic program
g calls p as a subroutine and uses a random number gener-
ator to compute the function f. If p is correct for a large frac-
tion of the possible inputs, then the probabilistic program ¢
computes f correctly with high probability on any input.
It is assumed that ¢ has access to fault-free addition and
subtraction operators:

g(x) :=begin
y =random;
z=px+y)=p(y);
output(z)

end

3. RANDOM APPROXIMATE TESTING

In order to define a meaningful measure of testing com-
plexity, we define a model for random approximate testing
of programs and relate a measure to this model. First we
define the notion of error for a program.

DEerFINITION.  Given a program class P and a program
p € P, the error of a program g € P with respect to p and the
probability measure M is defined by

Evlg.p)= | lg(x)=p(x)| dM(x).

In this definition p represents a specification, and ¢
represents a program to be tested against the specification.
The error of a program is the expected difference in value

between its output and the specification for a randomly
drawn input. If this error is bounded by &, then ¢ is
approximately correct with respect to p for error bound e.
Note that the error function E,, is a pseudo-metric? on P.
When the probability measure M is clear from context, we
just use E for the error function.

Now we define what it means for a class of programs to
be randomly approximately testable. Let 7 denote the open
interval of rationals (0, 1), and let m: IxI—>Z" be a
positive integer valued function defined on 7 x I. Let P be a
class of programs computing functions from Q to @, and let
M be a probability measure on Q.

DEFINITION. P is randomly approximately testable (w.r.t.
M) with test set size m(e, d) if foralle, d e I and for all p e P,
if a set T of m(e, J) inputs is selected at random from Q
according to M, then with probability at least 1 — ¢ for all
qe P, if p(x)=¢q(x) for all xe T (that is, if ¢ is consistent
with p on T), then E,,(¢q, p) <e.

If the class P is randomly approximately testable, then
given a specification p € P, a confidence parameter ¢ € I, and
an error bound ¢ € /, a finite number of random test points
can be selected, and with high probability these test points
will ensure that any program that tests correctly on these
points will be approximately correct. If the function m is a
polynomial in 1/¢ and 1/4, then the class P is polynomially
randomly approximately testable or just polynomially
testable.

3.1. A Complexity Measure for Random Approximate Testing

Now that we have defined a model for random approx-
imate testing of programs, we define a complexity measure
that relates to this model. In computational learning theory
[VC71, BEHWS89] Vapnik—Chervonenkis dimension (or
VC-dimension) characterizes the complexity of a class of
objects to be PAC learned. If this dimension is finite, then
any object in the class can be learned with high probability.
This means that if a small number of random examples are
selected and labeled according to a chosen object, then with
high probability any other object in the class that is con-
sistent with the chosen object on the examples will be
approximately equal to that object.

Since our model for random approximate testing is
similar to the model of [ BEHWS89] for PAC learning, we
introduce a notion of dimension similar to VC-dimension
for program classes that gives an indication of the testing
complexity of these classes. This dimension allows us to
determine when a small number of test points can be used
to demonstrate that a program is approximately correct. In

2 A pseudo-metric on a set P is a function E: P x P — R™ such that for all
X, ), z€ P the following three properties hold: (1) x=y= E(x,y)=0,
(2) E(x, y) = E(p, x), (3) E(x, y) + E(p, 2) 2 E(x, 2).
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order to define this dimension we first identify a program
with the set of intervals for which it evaluates to a positive
number. These notions are formalized below.

DEerFINITION.  Given a program class P, a finite set of
inputs T < Q is shattered by P if for all S< T, there exists
p e P such that p(x)>0 for all xeS and p(x) <0 for all
x e T—S. The Vapnik—Chervonenkis program dimension of
P (or simply VCP-dimension(P)) is the largest integer k
such that there exists a subset 7 of Q of cardinality k that is
shattered by P. If no such k exists, the VCP-dimension of P
is infinite.

If we identify each program in a class P with the subset of
Q@ for which it evaluates to a positive number, then VCP-
dimension(P) is simply the Vapnik—Chervonenkis dimen-
sion of this class of subsets of Q.

3.2. VCP versus Pseudo Dimension

A similar measure to VCP-dimension, called pseudo
dimension, has been defined by Haussler [ Hau92]. He has
shown that if this dimension is “small” for a set of functions,
then the set of functions can be PAC learned. We define this
measure now and compare it to VCP-dimension.

DEerINITION [ Hau92]. For a family of functions F from
a set S into R the pseudo dimension of F (or dim(F)) is the
largest k such that there exist two sequences of length £,
X=(x,..,x,)€Sand i = (¢, ..., t;) € R*, and for any sub-
sequence y = (x;, ..., x;) of X, there exists f'e F such that
f(x;)+¢t,>0for all x;eyand f(x,)+¢;,<0for all x,ex—y
(that is, elements of the sequence X that are not in the sub-
sequence ). If no such k exists, then dim(F) is infinite.

The pseudo dimension of a class of functions is the size of
the largest set of inputs that can be shattered by the class
using a vector (f) of translation values. Pseudo dimension
differs from VCP-dimension because it allows for the
possibility of translating a set of functions by a vector of
constants before shattering a set of points.

It is easy to see that for any class of functions F, VCP-
dimension(F) < dim(F') since a set of inputs that is shattered
by F is still shattered if the vector of outputs produced by
these inputs is translated by the vector 0F. If arbitrary
classes of functions are considered, then an inverse bound
does not exist. That is, there are classes of functions with
finite VCP-dimension and infinite pseudo dimension. For
example, the class of all positive functions has VCP-dimen-
sion 0, but it has infinite pseudo dimension.

Although pseudo dimension can be arbitrarily greater
than VCP-dimension, Macintyre and Sontag [MS93]
have observed that given a class of functions F: S—> R, a
new class of functions F': S xR — R can be created with
the property that dim(F)< VCP-dimension(F"’) (in fact,

equality holds). This new class of functions F' is created
from F by replacing each feF with the new function
f(x) —y, which takes two inputs xe S and y e R.

Using the above observation of Macintyre and Sontag,
the upper bounds that we obtain in this paper for the VCP-
dimension of various classes of programs are the same as
those that can be obtained for the pseudo dimension of
these classes. This is because the upper bounds on the VCP-
dimension still hold if we convert each program class P into
a program class P’, where each p’ € P’ takes two inputs x
and y and computes p(x) — y for some p € P. Therefore, the
results of Haussler using pseudo dimension that we employ
next to bound the number of test points needed to randomly
approximately test a program are valid for the classes we
consider.

Haussler [ Hau92 ] has used the notion of pseudo dimen-
sion to get a bound on the number of random examples
needed to PAC learn a function from a class of functions.
These results can also be used to find a bound on the
number of random test points needed to approximately test
a program from a class of programs. This is because a
random sample of input/output pairs for a function that
gives sufficient information to infer the rest of the function
is also sufficient to determine that a program correct on the
sample has small overall error.

We now illustrate this relationship between PAC learning
and random approximate testing in more detail. First we
define several notions used in Haussler’s result.

DEerINITION [ Hau92]. Let F be a family of functions
from S=R x Rinto [0, K]. Let M be a probability measure
on S. For any feF the expected value E(f) of f on an
example chosen at random from S according to M is
| s f(x) dM(x). The empirical estimate of this expected value
on a random sample x€S” is E.(f):=(1/m) X7, f(x,).
The “closeness” of these two values is given by the metric d,,
where v>0, defined by d,(x,y):=|x—y|/(v+x+y) for
any non-negative reals x and y.

Haussler gives the following result relating finite pseudo
dimension to PAC learning of functions. This theorem
states that for a family of functions F with codomain [0, K]
and with finite pseudo dimension, to ensure that with high
probability the empirical estimate of the expected value of
any function in F on a random sample is “close to” its actual
expected value, it is only necessary to choose a random
sample whose size is a polynomial in the pseudo dimension
of F, the bound K on the codomain of F, and several
approximation parameters. The notion of a permissible
family of functions used in the theorem is a measurability
assumption that must be made when the family F is un-
countable. Since the programs we examine use only rational
constants, they compute countable classes of functions, so
we do not need to be concerned with this notion.



92

TaEOREM 3.1 [Hau92]. Let F be a permissible family of
functions from S=R xR into [0, K] with dim(F)=d < o0.
Let M be a probability measure on S. If a random sample x
of length m is drawn from S according to M, and if

m>8K<2dl SLK—H >
oy oy 0

for 0<a, 0 <1 and for 0 <v < 8K, then the probability that
there exists fe F such that d (E.(f), E(f)) >« is at most 9.

This theorem applies to PAC learning when the class F'is
defined to be the class of loss functions associated with a
class & of functions from R to R used to estimate or “learn”
an unknown distribution of input/output examples. A loss
function L, for a function f measures, for each input to f, the
error or “loss” of f on that input. In this case the loss func-
tion is defined by L,(x, y) =|f(x)—y|; that is, it measures
how much the value given by f differs from a given y for a
given input x. If the class of loss functions associated with
has finite pseudo dimension, then it is possible to use a small
random sample to choose a function in & that has a small
loss (that is, its error is close to the infimum of errors over
all functions in % ) with respect to the unknown distribution
of examples. This function will give a good representation of
the unknown distribution of examples.

We can also apply Haussler’s result to the problem of
testing. When testing programs we would like to use a small
set of test points to detect programs that vary greatly from
a given specification. In particular, we would like to be able
to say that any program that is correct on a small set of test
points computes a function that is approximately correct
with respect to the specification.

In order to apply Haussler’s result to testing programs,
we must use a class of functions with codomain [0, K]. We
do this by choosing a maximum loss value K and defining
a class of loss functions corresponding to the class of
programs P. Since we test with respect to a specification
function p € P, we can define the loss function L;f , for a
tested program ¢ (w.r.t. p) by

1K (x)_:{lp(x)—q(x)l if [p(x)—q(x)| <K
paTl K otherwise

When we define the loss function in this way, the error of a
tested program corresponds to the expected value of its loss
function, assuming that the error of a program on a par-
ticular input is bounded above by K.

Haussler’s work differs from our approach since he uses
probability measures defined on R x R, rather than just on
the domain R of the class of functions %. However, our
work can be put into his framework by deﬁnmg the fol-
lowing probability measure M, on R x R corresponding to
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the probability measure M defined on @ and the specifica-
tion program p:

_[M(x) if p(x)=y
M,(x, 7) = {0 otherwise.
M, is a probability measure that is 0 everywhere on R x R
except on the graph of p, and its marginal on R is M.

By making these two adjustments, we can prove a result
that is similar to Haussler’s and apply it to the testing
problem. First we relate the pseudo dimension of the class
of loss functions associated with a given program p € P to
that of the class P.

LemMA 3.1. Let P be a class of programs computing
Sfunctions from Q to Q. For any pe P and Ke Q*, the class
of loss functions LX:={LX |qeP} associated with p
is a subset of the sum of two classes of functions
LYcsLy , +LY . such that dim(L} ,)<dim(P) and

dlm(L]f _) <dim(P).

Proof. We show this in three steps. First, by a result
of Wenocur and Dudley [ WD81], for any pe P, if we
define a new class of functions L, :={¢—p | g€ P}, then
dim(L,) = dim(P). This is easy to see. If L, shatters x using
the translation vector 7, then P shatters X using the transla-
tion vector 7', where t;=t,— p(x,).

Second, for any program ¢e€L,, the programs ¢, and
q_, computing the positive and negative part of ¢ respec-
tively, can be defined as follows:

(x) 1= {CI(X) if g(x)>0
7+ =170 otherwise
(x) {CI(X) if g(x)<0
X):=
- 0 otherwise.
The classes L, ,:={¢,|geL,} and L, :=
{¢_|¢q€L,} have the property that dim(L, ,)<dim(L,)

and dim(L, ) <dim(L,). Suppose the subset L, _ of L, _
shatters X using the translation vector 7. Then x is also
shattered by L, using the same 7. If there exists x;ex
and ¢_eL’ _ such that ¢_(x;)=0 and ¢_(x;)+1¢,>0,
then ¢(x;) + ¢,>0. On the other hand, if there exists x,€ X
and ¢g_eL) _ such that ¢_(x;)=0 and ¢g_(x;) +1¢,<0,
then ¥ is not shattered by L, _ since every ¢ €L, _ has
g _(x;)+¢,;<0. A similar argument can be made for L, , .

Third, for the classes L, , and L, _ and for Ke @* we
can define the classes L) | :={¢* | qeL, ,} and L} _:=
{—q%|qeL, _}, where ¢%(x)=g(x) if —K< q(x )<K
g% (x)=Kif ¢(x) =K, and ¢®(x)= —K if ¢(x) < — K. For
both of these classes the pseudo dimension is no more than
that of L, using the same argument as above.

Itis easy to see that LY <Ly  + L5 . 1



COMPLEXITY OF TESTING PROGRAM SEGMENTS

To prove our result on testing programs we use the
following notions and theorems from the literature.

DEFINITION [ Pol84, Hau92]. Let F be a family of func-
tions from a set S'into R and let M be a probability measure
on S. For ¢ >0, the covering number N (¢, F) of Fis defined
as the smallest m for which there exist functions g, ...g,,
(not necessarily in F) such that for all f€ F there is a g; with
E\(f, g:)<e. The e-separation number M (e, F) of F is
defined as the largest m for which there exists a set H < F of
functions of cardinality m such that for all distinct /,, h; € H,

E,(h;, h;) > e The family F has a nonnegative envelope f if

i It

f(x)=|f(x)| for all fe F.

THEOREM 3.2 [Hau92]. Let F be a family of functions
with envelope f. Then for any ¢ >0,

M2, FYS N (e, F)< M(e, F).

THEOREM 3.3 [ Pol84, Haus92]. Let F be a family of
functions from a set S into [0, K], where dim(F) =d < co.
Let M be a probability measure on S. Then for all 0 <e <K,

2K . 2K\
</%(3,F)<2<Z1ne’(>.

&

THEOREM 3.4 [Pol86]. Let F be a permissible family of
functions from a set S into [0, K], and let M be a probability
measure on S. Assume v>0, 0 <a <1, and m=1. Suppose
that xe S™ is generated by m independent random draws
from S according to M. Then the probability that there exists
fe Fsuch that d (E(f), E(f))> « is at most

AE(N (a8, F)) e~ mex,

where E is expected value and F\|  is the restriction of F to X;

that iS’ Flf: {(f(xl)’ '"7f(xm)) |f€F}

THEOREM 3.5 [NP87]. If F and G are families of func-
tions with envelopes f and g, then the class

F+G:={f+g|feF geG},
with envelope f + g, satisfies
N (2, +2e,, F+G) < N (g, F) N (&3, G).

We use the above theorems to prove a result for testing
programs that is similar to Haussler’s result for learning
functions.

THEOREM 3.6. Let P be a class of programs computing
functions from Q to Q with dim(P) =d < oo, and let M be a
probability measure defined over the set of inputs Q. Given
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pePand Ke Q™ , define the loss function for any q € P to be
K . R .

LY, and define Ly :={Ly | qeP}. Al;o, define the prob-

ability measure M, on R x R as above. If a random sequence

of test points X of length m is drawn from Q according to M,

and if

16K
m>2<4dln +In—
a’y

0

32eK 16>

for 0 <a, 0 <1 and for 0 <v < 8K, then the probability that
there exists f € Lf such that d (E (f), E(f)) > o« is at most 6.

Proof. We follow the form of Haussler’s proof. By
Theorem 3.4, if a random sequence x of m test points is
selected, then the probability that there exists f'e Lf such
that d (E(f), E(f))> a is at most

AE(N (/8 LK | 1)) e /10K,

Since LY<Ly , +LY_ by Lemma 3.1, and using

Theorem 3.5, this is at most

AE(N (av/32, LK

P, +, X

) N (av/32, LE | )) e m1ok,

By Theorems 3.2 and 3.3 and Lemma 3.1 this is at most

16 (64€K In 646K>2d e _“2‘,,,,/16](.
oy oy

Setting the above bound equal to J and solving for m
gives

16K deK deK 1
m> 10 <2d1n<6 oK), 84 >+1n6>.
oy o o 0

Simplifying this expression using the fact that
In(alna)<21In(a/2) when a>5 gives the final expres-
sion. ||

In the previous theorem, the program p € P that is chosen
to determine the loss functions and probability measure
represents a specification against which other programs
must be tested. As stated earlier, the loss function for a
tested program ¢ computes its error with respect to the
specification p. The empirical estimate EX(L,’,f ;) for the loss
function of ¢ represents the observed error of ¢ on the test
sequence. The expected value E (L;If, ,) represents the actual
error of ¢ with respect to p.

The theorem states that if P has finite pseudo dimension,
then with high probability these two measures of error will
be close for all programs in P. With respect to testing this
means that any program ¢ that is consistent with p on the
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test set will have small error for appropriately chosen «, d,
and v. We now state this more formally as a corollary.

COROLLARY 3.1. Let P be a class of programs computing
functions from Q to Q with dim(P) =d < oo, and let M be a
probability measure defined over the set of inputs Q. Given a
specification p € P, a maximum loss value K, an error bound
0<e<1, and a confidence parameter 0 <0 < 1, if a random
sequence of test points X of length m is drawn from Q
according to M, and if

m>64K<4dln

In —
+n6

&

64eK 16)
8 2

then with probability at least 1 — 6 any tested program q that
is consistent with p on X (i.e., g(x) =p(x) for all x e X) has
error no more than e.

Proof. We use the values « = 1 and v =¢ in the formula
for m from Theorem 3.6. The theorem states that with prob-
ability at least 1 — 0 no program in P will have an error that
differs by more than 4 from its observed error on the
random test sequence, when d, is used to measure this dif-
ference. For a program ¢ that is consistent with p on the test
sequence X, £ X(L!’f ;) =0. Therefore, in order for

. |[EALY )—E(LY )|
ds(Ei(L;];(,q)a E(Lllfq)):g—}—E,(LK )+E(LK )
X P, q P q

_ E(L;,)
e+ E(LY,)

to be less than 3, the actual error of ¢, E(LY ), must be less
thane. |

In this section we have discussed the relationship between
VCP-dimension and pseudo dimension and have shown
how pseudo dimension can be used to determine the
number of random test points needed to approximately test
a program. These dimensions also give an intuitive measure
of the testing complexity of a program class, so they can be
used to compare the complexity of different program
classes. In the following sections we investigate the VCP-
dimension of different classes of program segments.

4. TESTING STRAIGHT LINE PROGRAMS

First we consider the case of testing straight line
programs. We define P,, the class of straight line programs
with n lines of computing code and one output line, as
follows:

DEFINITION. Program class P, is defined by the following
schema:

P,:={p|px)i=y,=a,° by;

yn:anon bﬂ;
output(y, )},
where ;e {4+, —, *} anda,, b,e QU {x} U {y,| j<i}.

Each line of code in a program from P, either adds, sub-
tracts, or multiplies a constant, the input x, or a previous
expression to either a constant, the input x, or a previous
expression. Thus each line of code uses two operands that
are polynomials. Since the set of polynomials with rational
coefficients is a ring, and rings are closed under addition,
subtraction, and multiplication, each p e P, computes a
polynomial over the rationals.

DerINITION.  The class F,, of functions computed by P,
can be defined inductively,

Fy:={x}uQ

Fn:: {f(h)og(h) |fEFiag€F}ﬂhEFka

ce{+, —, =}, i+j+k<n—1},

where the meaning of f(h) for fe F,, heF, is that func-
tion f performs i elementary operations (from the set
{4+, —, =} ) using the operands x, &, and any c € Q.

A function in F, is built up from smaller functions f(/)
and g(/), which have / as their largest common subexpres-
sion. The two functions f(/) and g(%) are joined together in
the last computing step of a program in P,. Obviously,
F,cF, , for all k>0 since any function in F, can be
realized by a program in P, , that has k lines of code that
are not used in computing the final expression.

4.1. Lower Bounds on VCP-Dimension of Straight Line Code

Before investigating the VCP-dimension of the class P,
we make a few observations. For a class P of polynomials to
have VCP-dimension k, it must contain a program p that
changes sign at least k — 1 times. Therefore, p must compute
a polynomial of degree at least k — 1 that has at least k — 1
distinct real zeros. Using Horner’s method [ Baa88] it is
known that any degree k polynomial can be computed with
2k elementary operations (addition, subtraction, multipli-
cation). Therefore VCP-dimension(P,) is at least | n/2 |+ 1.
Other work has been done [RS72] to get the number of
operations for evaluating a degree k& polynomial down to
3k/2, which means that VCP-dimension(P,,) is even higher.

On the other hand, Borodin and Cook [BC76] have
demonstrated a polynomial with 3-"3- real, distinct zeros
that can be computed with n operations, so just examining
the largest number of real, distinct zeros that can occur in a
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polynomial computed by a program in P, is not sufficient to
obtain a good bound on the VCP-dimension. Since Borodin
and Cook [BC76] have also proven that “most” polyno-
mials of degree greater than or equal to (n + 2)? cannot be
computed with n + operations, even when an unbounded
number of multiplication operations are allowed, it appears
that VCP-dimension(P,,) is no more than O(»?). In fact, in
the next section we will prove an upper bound that is close
to this one.

We now examine VCP-dimension(P,) for some small
values of n to get a feel for how the dimension grows with
the size of the programs. As a base case, programs in P,
have no computing lines and can only output a constant or
the input x, so VCP-dimension(P,) = 1. The class P, con-
tains programs with one computing line and can be
enumerated by P, ={k, kx, x +k, x —k, k —x, x*}, where
ke Q. It is easy to see that VCP-dimension(P,)=2.

ProPOSITION 4.1.  VCP-dimension(P,) = 3.

Proof. First we show that VCP-dimension(P,) >3 by
showing that the set 7= { —2, 0, 2} of 3 points is shattered
by P,. We represent a subset of 7" by an ordered list of +
and — signs where a + sign in the ith position means that
the ith smallest element of T is in the subset. So, for
example, (+, —, +) represents the subset { —2,2} of T.
The following list shows each subset of T along with a poly-
nomial computed by a program in P, that obtains that sub-
set. Each subset in the left column begins with a — sign, and
the corresponding subset in the right column is the negation
of this subset, so the polynomial that obtains it is the nega-
tion of the polynomial in the left column. Subsets in the left
column are ordered by increasing number of + signs.

(= — —) — (4,4, +) 3
(= —+)x—1 (+ -) 1=
(= 4+, =) 2=x (4, = +) x*—
(=, +,+) x+1 (+ —) —1—x

Now we show that VCP-dimension(P,) < 3. In order for
VCP-dimension( P,) to be greater than 3, it must be possible
to shatter a set of points of size at least 4 with P,. Therefore,
P, must contain a program that computes a function that
obtains the subset (+, —, +, —) for some set of 4 points.
However, this can only be done with a polynomial that has
at least 3 distinct real zeros, and the only polynomials of
degree greater than 2 in P, are x> and x*, which only have
one real zero. So P, cannot shatter a set with more than 3
points.

Since VCP-dimension(P,) >3 and VCP-dimension(P,)
< 3, VCP-dimension(P,)=3. |

PrOPOSITION 4.2. VCP-dimension(P) =4.

Proof. First we show VCP-dimension(P;)>4 by
showing that the set = { —3, —1, 1, 3} of 4 points is shat-
tered by P;. The following list shows each subset of T along
with a polynomial computed by a program in P, that
obtains that subset.

(= ———) =3
(+,+,+,+)3

( , —, +) x—2
(+,+,+, —) 2—x

(=, —, 4+, =) I—(x—1)2
(+, 4+, — +) (x—1)>—1
(—, 4+, — —) I—(x+1)?
(+, = 4+, +) (x+1)*—1
(=, — +,+) x
(+,+, — —) —x

(— +,—, +) X’ —4x
(+, = 4+, =) dx—x°

(— +, +,—)2—x°
(+, — — +) x*=2

(— +,+, +) x+2
(+,— — —) —2—x

Now we show that VCP-dimension(P;) <4. In order for
VCP-dimension(P5) to be greater than 4, Py must contain
a program that computes a polynomial that has at least 4
distinct real zeros. However, the only polynomials of degree
greater than 3 in P; are kx*, x*+k, (x(x+k))% (x+k)*,
(x24+ k)%, x*(x* + k), x*+ x3, x*+ x, x°, x°, x® and none of
these have 4 distinct real zeros, so Py cannot shatter a set
with more than 4 points. ||

It can similarly be proven that VCP-dimension(P,) =5.
From the above examples we could conjecture that VCP-
dimension(P,) =nr+ 1. This is, in fact, a lower bound for
VCP-dimension(P,,), but as n increases it is no longer an
upper bound, as the following two theorems demonstrate.

THEOREM 4.1. VCP-dimension(P,)>=n+ 1.

Proof. First we demonstrate how to build an n degree
polynomial with n distinct real zeros using n operations, and
then we show how a set of n+ 1 points can be shattered.
If ¢, ¢y, ..., are distinct positive rationals, then the
following polynomial has n distinct real zeros (if # is odd, a
factor of x is inserted):

= (=D =c3) - (P =l ).
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This polynomial can be computed in n operations with the
following program:

p(x) =y, =xx*X;

_ 2.
Vo=V1—C75

_ 2.
V3=YV1—C3;

Ya=DY2* Y3,

V,=xx*y,_ q;(ifnisodd)
YVn=Vn_2*Yu_1, (ifniseven)

output( y,)

The program p builds | n/2 | degree 2 polynomials,
x? —¢?, each with two distinct real zeros, ¢; and —¢;, and
multiplies these together. If # is odd, p multiplies this poly-
nomial by x to make 0 the nth zero.

A set T of n+ 1 points can be chosen by choosing a point
between every two zeros of f, as well as a point at either end
of the zeros of f. The polynomial f obtains one subset of T
with 7 sign changes, and its negation, which can be obtained
in n operations by negating one factor (that is, by using
(¢ —x?)), obtains the other subset with n sign changes.
Given any subset S of T with less than n sign changes, the
following steps will give a polynomial computable in n
operations which obtains that subset.

1. Build a polynomial similar to f, except skip the factor
(x*—¢?) if the points in T on either side of ¢, or —¢; are
assigned the same sign by S. This will “save” two operations.
If n is odd and the two points next to 0 are assigned the same
sign by S, then remove the factor x.

2. For each ¢, for which the factor (x> — ¢7) was skipped
in step 1, if ¢; (—c¢;) has the points on either side of it
assigned different signs by S, then place a line through it.
That is, insert the additional factor ¢; — x( —c; — x) into the
polynomial. This additional factor will change the sign of
all points greater than ¢, (greater than —c;). It requires
two operations, the same number as were “saved” by not
inserting the factor (x* — ¢?).

3. If no factors were inserted into the polynomial by
either step 1 or step 2, then S contains no sign changes, so
it is given by a constant polynomial. If the polynomial
obtained by steps 1 and 2 assigns a different sign to the
smallest point in 7 than S does, then it must be negated.
This can be done by negating one of its factors.

The polynomial created by the above steps has a zero
between every two points of S where a sign change occurs
and has no other zeros. Since each of these zeros actually
passes through the x axis, and no zero is shared by two or
more factors, the resulting polynomial actually changes sign

at each zero. Since step 3 ensures that the smallest point in
T is assigned the correct sign by the polynomial, all other
points will also be assigned the correct sign. ||

THEOREM 4.2. For n>42, VCP-dimension(P,)>n+ 1.

Proof. We demonstrate how, using several “tricks”, we
can shatter a set of n+ 2 points, where n>42. For n even,
define T:={—(n+1), —(n—1), .., =3, =1, 1,3, .., n—1,
n+1} and for n odd define 7:={—n, —(n—2), .., —3,
—1,0,1,3, .., n—2,n}. Observe that any subset of 7"can be
obtained by constructing a polynomial with exactly one
zero (a zero where the polynomial actually “crosses” the x
axis) between each pair of consecutive points in 7' where a
sign change occurs. Since the points chosen for 7" are sym-
metric around 0, any subset of 7 that has at least one pair
of sign changes missing (that is, any subset where there
exists a ¢ >3 such that —¢ and — (¢ —2) are assigned the
same sign and ¢ and ¢ — 2 are assigned the same sign) can be
obtained using the techniques in the proof of Theorem 4.1.
Also, any subset with three consecutive sign change pairs
(that is, any subset where there exists a ¢>6 such that
—¢, —(c—2), —(c—4), —(c—6) and (c—06), (c—4),
(¢ —2), c are assigned alternating signs) can be obtained, as
the following claim shows.

Cram 4.2a. Any subset of T containing three con-
secutive sign change pairs can be obtained with n lines of
computing code.

Proof. Let S be asubset of 7 with three consecutive sign
change pairs, and let ¢ be the constant such that S assigns
alternating signs to —c¢, —(¢—2), —(¢c—4), —(c—6) and
to (¢—6), (c—4), (c—2), c. Assume S assigns a + sign to
—c. The following five lines of code will build the polyno-
mial (x>—(c—3)*)((x*>—(c—3)%)?>—k), which evaluates
to a positive number for —¢, —(¢—4),c—4,¢ and a
negative number for — (¢ —2), —(¢—6), c—6, c—2 for an
appropriately chosen k.

Vi=X*x X

Y=y —(c—3)%

V3=Y3;
Ya=ys—k;
Vs=DVa* Y4,

An appropriate choice of k is one for which the polynomial
(x?— (¢ —3)?)? —k realizes the sign sequence +, —, —, +
for x=(c—6),(c—4),(c—2),c, respectively. Such a &k
exists if

min{c’>—(¢—3)% (¢—3)>—(c—6)*}
>max{(c—2)>—(c—3)% (¢—3)*—(c—4)*}.
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Reducing these formulas gives
min{6¢ —9, 6¢ —27} >max{2c—5,2c—7},

or 4¢ > 22, which holds for all ¢ > 6. Since the restriction on
¢ is ¢ > 6, a k with the correct properties always exists.

The above five lines of code produce a polynomial with
six zeros (three symmetric pairs of zeros). In addition to the
sign changes produced by these zeros, S contains a total of
at most [ (n—5)/27] pairs of sign changes and single sign
changes (a single sign change occurs when there exists a
positive ¢ such that ¢ and ¢ —2 are assigned the same sign
but —c¢ and —(c¢—2) are assigned different signs, or visa
versa). Since each pair of sign changes can be obtained with
two additional lines of code (by including the factor x* —¢;),
and each single sign change can be obtained with two
additional lines of code (by including the factor x —c,),
at most 2 [ (n— 5)/27 additional lines of code are needed to
obtain the rest of the sign changes in S. For n odd
21 (n—95)27=2(n—5)2=n—5, so the total number
of lines of code needed to obtain S is n. For n even
27 (n—5)/27=2(n—4)/2=n—4. However, onec of the
possible sign changes in S is at 0, and this sign change can
be obtained in one line by adding the factor x, so a total of
n lines of code are needed to obtain S in this case too. ||

Now we must demonstrate how to obtain subsets of T
that do not have any pairs of sign changes missing and do
not contain three consecutive sign change pairs. We claim
that such subsets must have one of the following two
properties:

1. There exist three single sign changes k; <k, <k, (a
sign change k; is defined to be ¢ — 1 where S assigns different
signs to ¢ and ¢ —2) such that k, —k, =k;— k5.

2. There exist four single sign changes k|, <k, <k; <k,
such that k, —k, =k, —k;.

A subset of T can be represented by a string of length
n+ 1 from the alphabet 2’ = {0, 1, 2}. A 2 in the ith position
of such a string represents a sign change between the ith and
the (i + 1)st points of T that is one of a symmetric pair of
sign changes. A 1 in the ith position represents a sign change
between the ith and the (i 4 1)st points of 7 that is a single
sign change. A 0 in the ith position represents that no sign
change occurs in T between the ith and the (i 4 1)st points.
By searching through longer and longer even length strings
(for n even, the possible sign change at 0 is omitted)
it is found that all even length strings of length at least
44 that contain at least one sign change of any possible
pair of sign changes and do not contain three consecutive
sign change pairs satisfy at least one of the above two
properties. (Note: A search program was written and
executed to do this.) A string of length 42 that does not

satisfy either of the two properties is the following:
221122021202202212122220202212212021220022.

If a subset S of T has property 1, then the following four
lines of code will build a polynomial that changes sign at
kq,k,,and k5:

yi=x—ky;
V2=l
yi=yr—(ks—k,)*;
Ya=DV3* V15

S will contain, in addition to these sign changes, a total of
at most [ (n—5)/27] pairs of sign changes and single sign
changes. A polynomial can be built using n — 5 operations
to obtain these sign changes, as explained in the proof of
Claim 4.2a. Using one more operation to multiply the two
polynomials together, the subset S can be obtained with n
operations.

If a subset S of T has property 2, then the following five
lines of code, where ks =k, + (k; —k,)/2, will build a poly-
nomial that changes sign at k,, k,, k5, and k,:

yi=x—ks;

Vo=

y3=y2—(k3—k5)2;
2

Va=yr—(ky—ks);
Vs=Y3*Ya;

In addition to these sign changes, S will contain a total of at
most [(n—7)/27] pairs of sign changes and single sign
changes, and these can be obtained with n — 7 operations.
Therefore S can be obtained with n — 1 operations.

We have demonstrated how any subset of 7 can be
obtained using no more than n operations. Therefore, for
n>42, VCP-dimension(P,,) is at least n + 2. ||

4.2. Upper Bounds on VCP-Dimension of Straight Line Code

One way to obtain an upper bound on the VCP-dimen-
sion of P, is to determine the largest number of real, distinct
zeros occurring in any polynomial computed by a program
in P,. However, since we mentioned at the beginning of the
previous subsection that there are programs in P, that com-
pute polynomials with a number of real, distinct zeros that
is exponential in #n, this technique does not yield a good
upper bound on the VCP-dimension of the class.

To obtain better upper bounds we use recent results by
Goldberg and Jerrum [GJ93] in computational learning
theory on bounding the VCP-dimension of classes param-
eterized by real numbers. We use the following theorem
from their work.
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THEOREM 4.3 [GI93]. Let C be a concept class where
concepts and instances are represented by k and n real values,
respectively. Suppose that the test for membership of an
instance x in a concept c consists of an algorithm A,_, taking
k+n real inputs representing ¢ and x, whose runtime is
t=1t(k,n), and which returns the truth value xec. The
algorithm A,_, is allowed to perform conditional jumps
(conditioned on equality and inequality of real values) and
execute the standard arithmetic operations on real numbers
(+, —, %, /) in constant time. Then VC-Dimension-
(C)=O(kt).

In our terminology a concept is a program, and an
instance is an input to the program. If we say that an
instance x is in a program p (x € p) if and only if p(x) >0,
then the VCP-dimension of a program class is the same as
the VC-dimension of a class defined as in the above
theorem.

Since we examine only programs taking one rational
input, an instance can be represented by one real value.
A program p € P, can be represented by Sn real values by
using five real numbers to encode the syntax of each line of
the program. That is, line i of the program can be repre-
sented by parameters (p; 1, Pi 2, Pi35 Pi4s Pis)» Where p;
encodes the operator, p, , and p; ; encode the first operand,
and p; 4 and p; s encode the second operand. The encoding
for p; ; uses “0” for “+7, “1” for “—" and “2” for “+”. The
encoding for p; , and p, , uses “—1” for a constant, “0” for
the input x, and “j”, where 1<j<n—1, for “y;,”. If the
operand is a constant, then p, ; or p; s is used to store the
constant, otherwise this parameter is 0 and is not used. As
an example, the following program in P; can be represented
byp=(2,0,0,0,0,1,1,0, —1,6,0,2,0,0,0):

p(x) =y, =xxx;

Vo=y1—6;
V3=Yr+X;
output( y;)

In order to apply Theorem 4.3, we must show how to
write an algorithm that takes 5» + 1 real inputs representing
a program p € P, and an input x and determines if p(x) > 0.
The algorithm takes O(logn) time to examine the
parameters p; ;, 1 <j <35 and execute the code for line i of
a program. Since a program has » lines of code, the total
runtime of the algorithm is O(n log n). First the algorithm
examines p; ; to determine the operation to be performed.
Next it performs a one-sided binary search over possible
values of p; , to determine the first operand. It does the same
thing to determine p, 4. Finally it performs the operation for
the ith line of code. The following is part of the code for such
an algorithm.

;o if p; ; =0then goto /; ,
if p, ;=1 then goto /;

if p; ,=—1then goto/

i, *,cC

if p; ,=0then goto /; ,

if p; ,>1then goto /;

*, p2.1

gOtO li, #, p1

~

if p; ,>2thengoto/; , ,n»

i, %, p2.1 :

goto /;

L *, 02

L w oot if p, ;>4 thengoto/; , ,»;

if p; , =3 then goto /;

#, 3

gotol; . 4

~

w3 i p,,>8thengoto/; , ,»s

if p;,>6thengoto/; , o4
if p; ,=>5 then goto /;

s, Y5

gOtO li, *, 6

~

0w ppas if p,y=Tthengoto/, ,

gOtO li, *, 8

i, *, p2.5:

if p,,>16thengoto/, , 9

w3 if p,g=—1thengoto/; , ;.

if p; 4=0then goto /

i, *,y3, x

if p; ,>1thengoto/; , ;3

Yi=V3* Vi

goto /;

li, w,y3,c0 Vi=V3*Pis

Using the algorithm described above, we can apply
Theorem 4.3 to obtain the following upper bound on the
VCP-dimension of the class P, of straight line programs

with n lines of computing code.

THEOREM 4.4. VCP-dimension(P,) = O(n*log n).

As mentioned in Section 3.2, the same upper bound holds
for the pseudo dimension of the class P,,.

COROLLARY 4.1. dim(P,)= O(n*logn).

Proof. 1f we convert each program p € P, to a program
p' that takes two inputs x and y and computes p'(x, y) =
p(x)—y, then we obtain a new class of programs P/,. An
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instance for a program in P, consists of two real values, and
the program itself can be represented by 5n real values. We
can use the same algorithm as in the proof of Theorem 4.4
to evaluate a program in P!, by simply adding to the end of
the algorithm the line “y,,,=y,—»”. Therefore, VCP-
dimension(P,,) = O(n” log n). Since Macintyre and Sontag
[MS93] showed that dim(P,) < VCP-dimension(P,), the
result follows. ||

Since the pseudo dimension of P, is polynomial, this
implies that P, is polynomially testable by Theorem 3.6.

The upper bound given in the previous result depends on
the operations allowed in a straight line program. If we have
a different set of basic operations, then we get different
bounds on the VCP-dimension. For example, if we allow
not only addition, subtraction, and multiplication, but
also exponentiation (denoted by 1) and floor functions
(denoted by | ), then we find that the VCP-dimension of
straight line programs is infinite.

DEFINITION. Program class
schema:

P} is defined by the following

Pi:={p|px)=y =e;
yn :e}’l;
output(y,)},

where ¢;=| a; | or ¢;=a;°; b, and

a,,b,e@u{ b {y,|]<z}.

o€ {+, %, 7} and

Each line of code in a program from P either takes the
floor of an operand, performs an exponentiation, or adds,
subtracts or multiplies two operands. The operands per-
mitted are constants, the input x, or a previous expression.

THEOREM 4.5. For n=", VCP-dimension( P}) is infinite.

Proof. We use techniques from [GJ93] for proving
lower bounds to demonstrate a subclass of P¥ that can
shatter the set {0, 1, 2, .., d — 1} for any d > 0. Since dummy
lines can always be added to a program, this shows that
VCP-dimension(P}¥) is infinite for any n > 7.

The set S={0, 1, 2, .., d— 1} can be shattered by the 2¢
programs of the followmg form, where a;=j2"“ for
0 <j < 29 The bit representation of each a; represents a dif-
ferent subset of S. When an integer x >0 is mput to program
P,» p;extracts and outputs the (x + 1)st bit to the right of the
decimal point in a;. Thus the program p; obtains the subset
{X1, o0 X4} where the (x;+1)st bit to the right of the
decrmal point in g; is 1 for 1 <i<k and all other bits are 0.
To make the presentatlon clearer, we show the binary
representations of most of the intermediate variables.

pi(x):=y,=a; (y1=0.byby---by_y)
y2=21x
Vs=yi1#Yy (ya=bo-b._ybbyy)
Ya=Lysl  (ya=bo---b. 1)
VYs=y3—=Ya: (ys=0b,---bs)
Ye=2%ysi  (ye=bybyiy-by i)
yi=Lyeli  (y7=0b))
output(y,)

Note that only the values of the constants a; are
dependent on d, so for any d >0 a set of 2¢ programs from
P#* can be constructed to shatter {0, 1,2, ...,d—1}. |

4.3. Empirically Investigating Complexity

Since there is a gap between the upper and lower theoreti-
cal bounds on the VCP-dimension of the class P, of straight
line programs, we performed an empirical study to estimate
the complexity of this class of programs. An empirical study
is also important to give an indication of the “average” com-
plexity of the class, as opposed to the worst case complexity
indicated by the VCP-dimension. Since the VCP-dimension
of a program class is determined by the existence of a set of
inputs that can be shattered, the VCP-dimension may be
high even though most sets of inputs of this size cannot be
shattered. Also, even though a set of # inputs can be shat-
tered by a program class, it may not be possible to shatter
the set of inputs with most sets of 2” programs.

The algorithm for empirically investigating complexity
goes as follows:

ALGORITHM TO ESTIMATE EXPECTED COMPLEXITY.

1. Generate a random input sequence of length m.
2. Generate m * 2™ random programs of length n.

3. For each program, determine the subset of the input
sequence that it gives.

4. Count the number of different subsets obtained by
the programs.

5. Repeat steps 1-4 several times to find the average
number of distinct subsets obtainable by a large set of
programs on an input sequence of length .

The number of different subsets obtained gives a lower
bound on the VCP-dimension of the class, using Sauer’s
Lemma [ Ass83]. This result states that if the VCP-dimen-
sion of a class is d, then for an input sequence S of length m,
where m > d, the class will obtain no more than 3¢ (7) <
m?+1 different subsets of S. Therefore, if a randomly
selected sample from the class P, obtains k subsets of an
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input sequence of length m, then the dimension of P, is at
least log,,(k—1).

Using this result and the empirical data in Table 1, we
obtain a lower bound estimate of 3 for VCP-dimension(P,,)
for n ranging from 10 to 20. This empirical lower bound is
less than the theoretical lower bound found in Section 4.1.
This is because the sets of programs in P, that can shatter
input sequences of length n + 1 have a small probability.

Although the empirical data do not yield a useful bound
on VCP-dimension(P,), they do give an estimate of the
expected complexity of the class. We now define this notion
more formally.

DerINITION. The expected complexity of a class of
programs P for input size m is the expected number of sub-
sets of a random input sequence of length m that can be
obtained by a set of m2"” randomly chosen programs.

We chose the bound m2™ in the above definition for the
following reason. If all subsets of an input sequence of length
m were equally likely to be obtained by a random program,
then by a well known probabilistic result, m2” random
programs would be sufficient to determine the number of
subsets obtainable. The probabilistic result states that if
equally likely balls are in an urn and » log n independent
draws with replacement are made of the balls, then the
expected number of different balls seen will be almost n. The
“balls” in our case are subsets of an input sequence of length
m, so n is at most 2", and thus at most m2” random
programs would be needed to determine the number of sub-
sets. For the program classes that we study, however, all
subsets are not equally likely, but we are interested in
knowing the expected number of subsets that will be
obtained from this same sample size.

For the class P, the expected complexity is a function of
both n and m. The empirical data in Table 1 indicate that
the expected complexity of P, does not grow very quickly.

TABLE 1
Empirical Data of Expected Complexity

m

n 8 9 10 11 12 13 14 15 16

10 48 72 112 170 266 400 633 1031 1574
11 50 80 119 183 281 439 710 1106 1797
12 50 76 122 178 272 437 656 1054 1739
13 55 81 124 190 303 464 758 1207 1914
14 54 83 126 199 298 482 775 1220 2040
15 54 87 134 206 327 530 830 1338 2153
16 54 88 132 201 312 489 781 1260 2012
17 58 8 135 216 343 510 832 1333 2107
18 58 92 139 225 329 547 869 1422 2291
19 58 95 142 225 355 576 904 1454 2327
20 59 91 144 228 341 558 870 1396 2289
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Thus it is feasible to use random testing of programs with a
uniform probability distribution to ensure that with high
probability a program in P, computes a function that is
approximately correct.

5. TESTING IF-THEN-ELSE STATEMENTS

We now examine more complicated program classes to
determine the difficulty of testing various program con-
structs. We begin by looking at programs containing
if-then—else statements.

DEerFINITION.  We define the class Py( P, P") of programs
containing an if-then—else statement as follows:

Py(P',P"):={p|p(x):=ifa-bthen
Pi(x)

else

Pa(x);
Output( yl‘)} 5

where ce{ =, #, <, >, <, >} and a, be {x} UQ and
p,€P and p,e P".

P (P, P") contains programs with an if-then—else state-
ment where the then-clause contains a program segment
from P’ and the else-clause contains a program segment
from P”. The boolean expression in the if-then—else state-
ment of these programs cannot be more complicated than a
comparison of the input with a constant. The output is a
variable that is assigned a value in one of the two clauses.

Using this general definition we can then define the
following class of programs:

Pi:=Py(P,, Py)

Each branch of a program in PX contains k lines of
straight line computing code. Let FX denote the class of
functions computed by P%. It is obvious that F, = Ff since
any function in F, can be computed by an if-then—else
program that has its boolean expression always evaluate to
true and uses only the p, block of code for computing.

5.1. Complexity of If-Then—Else Statements

In this section we give upper and lower bounds on the
VCP-dimension of the classes Py(P’, P,) and P%.

THEOREM 5.1. VCP-dimension Py (P’, P,) > VCP-dimen-
sion(P’") + VCP-dimension( P, _ ).

Proof. Let VCP-dimension(P’')=m, VCP-dimension
(Pr_,)=n, S be a set of m points shattered by P’, and T
be a set of n points shattered by P, _,. Furthermore, let
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toin :=min(7T) and s, :=max(S), and define the set
ST :=8 U {Smax + 1 +Xx— 11 | x€ T}. The set ST has car-
dinality m + n and contains the set S and a copy of T that
is shifted to the right of S. It can be shattered by P;:(P’, P,.)
as follows. Given any subset ST’ = ST, let S be the subset
of ST’ whose elements are less than or equal to s,,,,,, and let
T' be the subset whose elements are greater than s,,,,,. The
set S’ is a subset of S, so there exists p, € P’ that obtains this
subset. Similarly, the set {x — sy — 1 +fmin | X€T'} is a
subset of T, so there exists p, € P, _; that obtains this subset.
Using this program we can obtain the k line program
PAX) =y =X —Smax — | + tmins P2(y1), which obtains the
subset T". Therefore, the program

p(x) :=1f x <5, then

Pi(x)
else

Pa(x);
output( y,)

which is in Py (P', P,), will obtain the subset ST of ST.
Since the subset ST’ was arbitrarily chosen, any subset of
ST can be obtained by Py (P', P,), so Py(P', P,) shatters
set ST. |

COROLLARY 5.1.  VCP-dimension(P%) > VCP-dimen-
sion(P,.) + VCP-dimension(P, _,).

THEOREM 5.2.  VCP-dimension(Py(P’, P')) <2(VCP-
dimension(P')) + 1.

Proof. Let VCP-dimension(P')=n, and suppose set T
of cardinality 2n + 2 is shattered by P;(P’, P'). Consider the
n+ 1 smallest points in 7. Since no set of # + 1 points can be
shattered by P’, there exists some subset S of these points
that cannot be obtained by any program in P’. Now, con-
sider all subsets of T'that have S as the subset of the smallest
n+ 1 points of T. There are 2" ! such subsets, one for each
possible subset of the largest n + 1 points of 7. For each of
these subsets of 7, the program in Py(P’, P') that obtains
this subset must use both blocks of code (that is, both
clauses of the if~then—else) to obtain the subset S. Therefore,
its boolean expression must divide the # + 1 smallest points
of T into two sets. However, since the only boolean expres-
sions allowed are ones that compare x to a constant, any
boolean expression that divides the n + 1 smallest points of
T into two sets must include all the n + 1 largest points of 7'
in one of these two sets. This means that each subset of 7'
containing S obtains a subset of the n + 1 largest points of
T using only one block of code. Therefore, this set of
n+ 1 points is shattered by P'. This contradicts the fact that
VCP-dimension(P')=n. |

Note that the above theorem cannot be generalized to
VCP-dimension(P;(P’, P")) < VCP-dimension(P’) + VCP-

101

dimension(P") + 1. Although VCP-dimension(P’) =m and
VCP-dimension(P")=n implies that for any set of
m + n + 2 points, the m + 1 smallest points will not be shat-
tered by P’ and the n + 1 largest points will not be shattered
by P”, it may be possible to shatter a set of m + n + 2 points
with programs in P;(P’, P"). This is because a subset of the
m+ 1 smallest points that is unobtainable by P’ may be
obtained by either using the boolean condition of a program
in P,:(P', P") to split this set in two, or by using a program
from P” to obtain it. For example, let P’ on the set of
inputs T={t,,1,, 13,1, be P:={(1,1,1,1), (0,1, 1, 1),
(1,0,1,1), (1,1,0,1), (1,1,1,0)} and let P":=
{(0,0,0,0), (1,0,0,0), (0, 1,0,0), (0,0, 1,0), (0,0,0, 1)}.
Then VCP(P')=1 and VCP(P")=1, but Py (P, P")
shatters 7.

COROLLARY 5.2. VCP-dimension(P%¥) < 2(VCP-dimen-
sion(P,)) + 1.

Any program in P% can be represented by 10k + 5 real
values, where five real numbers are used to encode the syn-
tax of each line inside one of the two branches and five addi-
tional numbers are used to encode a, b and -. An algorithm
that evaluates a program encoded in this way can be written
similarly to the one for programs in P,. The runtime of the
algorithm will be O(k log k). Therefore, it can be shown that
the pseudo dimension of P% is polynomial in k and thus P%
is polynomially testable.

5.2. Nested vs Sequential If-Then—Else Statements

In most large programs, many if-then—else statements are
used. Sometimes these statements follow each other in
sequential order and sometimes they are nested. We now
define and compare program classes containing nested
if-then—else statements to classes containing sequential
if-then—else statements to determine which are more dif-
ficult to test.

K .
DerINITION.  We define the class P25 of programs

containing n nested if-then—else statements as follows:

Pﬁéft»if:: {P | p(x) :=ifa, o, b, then
if a,o,b,then

ifa, o, b, then

n n n

pi(x)
else

) P2(x)

else
Pu(x)
else
Pn +1 (X);
output( y;)},
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where o e{=, #, <, >, <, >} and a;,b,e{x}uQ
and p,; e P,..

DErFINITION.  We define the class P, of programs con-

taining n sequential if~then—else statements as follows:

Pgég-if:: {p|p(x):=ifa,o, b then
pi(x)
else
Pa(x);

ifa, o, b, then
Pan—1(X)
else
P2u(X);
OUtput( ynk) } 5
where o,e{=, #, <, >, <, >} and a;,b,e{x}uQ
and p;e P,.

Since Pk = P,.(P"_1:* P,), then by Theorem 5.1 and

nest-if — nest-i)f s
induction on n we can show that VCP-dimen-
sion( Pk .)) = n(VCP-dimension( P, _,)) + VCP-dimen-

sion(P,). The following theorem finds an upper bound for
VCP-dimension(P".% ;) using a similar argument as in the
case of one if-then—else statement.

VCP-dimension(P"*

nest-if’

THEOREM 5.3.
dimension(P,)) + n.

)<(n+1)(VCP-

Proof. Let VCP-dimension(P,)=m, and suppose set T’
of cardinality (n+ 1)(m+ 1) is shattered by P~k ... Con-
sider the partition of T into n + 1 sets of m + 1 points, where
the m + 1 smallest points of T are in the first set, the next
m+ 1 points are in the next set and so on. Since no set of
m + 1 points can be shattered by P,, there exists a subset S,
for each of these sets of points that cannot be obtained by
any program in P,. Now, consider the subset of 7 that is the
union of all the S;. To obtain this subset of 7, a program in
Pk . must contain boolean expressions that divide each of
the n+1 sets of points into different blocks of code.
However, since the only boolean expressions allowed are
ones that compare x to a constant, a boolean expression can
divide at most one set of points. Therefore, n + 1 boolean
expressions are needed to do this. But programs in Pk ..

only contain n boolean expressions, so no program in P"*

nest-if

will obtain the subset of 7 that is the union of the S;. ||

In order to compare nested if-then—else constructs to
sequential if-then—else constructs, we give the following
theorem which gives a lower bound for VCP-dimen-

Sion(PZéé_if).
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THEOREM 54.  VCP-dimension(P’* ) > VCP-dimen-

sion(P,,;.) + VCP-dimension(P,, _ ) > 2nk + 1.

Proof. We use a technique similar to that used in the
proof of Theorem 5.1 to prove this theorem. Let VCP-
dimension( P, ) =m and let T be a set of m points shattered
by P,,. Similarly, let VCP-dimension(P,,_,)=m" and let
T' be a set of m' points shattered by P, _,.Letd :=max(T)
and let d' :=min(7"). If d' > d define the set S to be S:=
Tu T'; otherwise define Stobe S:=Tu {x+(d—d')+1|
x € T'}. Set S, which has cardinality m + m’, contains 7 and
a (perhaps shifted) copy of 7.

Any subset of S can be obtained by a program in P, of
the form

p(x) :=if x <d then

Pi(x)

else

DPa(x);

if x <d then

Pan—1(X)

else

p2n(x);
output( y,.)}

where each p,e P,. Since all the boolean expressions
are the same, there are only two paths that the program
can take. If the input is less than or equal to d, then the
program executes p;;ps; ... P»,_1; Otherwise it executes
P2 Pa; ... Pan- The code blocks py; ps; ... ps,— 1 are chosen
such that together they compute a function from P,, that
obtains the desired subset of the m smallest points of S (that
is, a subset of 7'). The code blocks p,; p4; ... p,, are chosen
such that the first line is y,=x if S=TuT oris y, =
x—((d=d)+1)if S=Tu{x+(d—d)+1|xeT}. The
other nk —1 lines combine to compute a function from
P,, _, that uses y, as its input parameter and obtains the
desired subset of 7”. That is, it obtains the subset of 7"
whose shifted copy is the desired subset of the m' largest
points in S.

Using this technique, any subset of .S can be obtained, so
S is shattered by P5. |

seq-if*

In the following corollary we combine the results of
Theorems 5.3 and 5.4 to compare the nested branching
construct with the sequential branching construct.

COROLLARY 5.3. For large n and k, VCP-dimension
(PF.) > VCP-dimension(P™ % ).

seq-if’ nest-if



COMPLEXITY OF TESTING PROGRAM SEGMENTS

Proof. Since an exact bound on VCP-dimension(P,) is
not known, we consider two cases.

1. VCP-dimension(P,) is linear. That is, VCP-dimen-
sion(P;)=ck +d where ¢, de Q. Then by Theorem 5.3,
VCP-dimension( Pt ;) < (n+1)(ck +d) +n=nck + nd +
ck+d+n. By Theorem 5.4, VCP-dimension(P ) >
cnk +d+ c(nk — 1) + d =2cnk + 2d — c. By combining these
two inequalities we see that forn > (ck —d+¢)/(ck—d — 1),
2cnk +2d — ¢ > nck + nd + ck + d+ n, and therefore VCP-

dimension( P ;) > VCP-dimension( P75 ;).

2. VCP-dimension(P,) is not linear. In this case, for
sufficiently large n, n( VCP-dimension (P,)) < VCP-dimen-
sion (P,.). Also, since the highest degree polynomial
computable in k steps is x*, for sufficiently large k,
2(VCP-dimension (P,))> VCP-dimension (P, ). By
combining these two facts and using Theorem 5.4 we see
that for large n and k, VCP-dimension (P75 ) > VCP-dimen-
sion(P,,) + VCP-dimension(P,, _,) > VCP-dimension(P,,)
+ 1/2(VCP-dimension(P,;)) > n(VCP-dimension(P,)) +
n/2(VCP-dimension(P,)) = n(VCP-dimension(P,)) + VCP-
dimension(P,) + (n/2 — 1)(VCP-dimension (P,)). Fork > 1
and n sufficiently large, (n/2 — 1)(VCP-dimension (P,)) > n.
By Theorem 5.3, VCP-dimension (P™% ..) < n(VCP-dimen-
sion(P,)) + VCP-dimension(P,) +n. By combining this
with the previous inequality we see that for large n and k,
VCP-dimension(P"*.) > VCP-dimension(P™% ). |1

seq-if’ nest-if.

This corollary shows that although nested branching con-
structs may be harder to understand from a programmer’s
point of view, they are actually less complicated from a test-
ing point of view than are sequential branching statements.

6. TESTING FOR LOOPS

Iteration is an important programming construct, so in
this section we examine the complexity of iteration. In
particular, we look at programs containing for loops.

DEerINITION. We define the class Pf* of programs con-
taining one for loop as follows:
Puli={plp(x)=y;=c
fori=/toudo

yi=ao; by;

Vi=dy o by;
output(y,)},
where 1 <j<k and ce{x} uQ and LLueZ and u—I<n

and Ome{+a_a*} and am’bn1€®u{xsi}u{y/1|1<
h<k}.
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P: ¥ contains programs with one for loop where the loop
index is bounded above and below by constants and the
number of times through the loop is no more than n. There
is one initialization line before the loop and k lines of
straight line computing code inside the loop. Since a for
loop must be able to access values computed in the previous
iteration of the loop, the righthand side of each line inside
the loop is allowed to use any y,, value, for m between 1 and
k. In order to avoid the problem of uninitialized variables,
we assume that all variables y,, are initialized to 0 before the
program is executed.

6.1. Complexity of For Loops

Since a for loop with constant bounds on the index
variable can be unrolled into a straight line program, every
program in Pj* can be translated into an equivalent
program in P, . Then by applying Theorem 4.4 we can
obtain an upper bound of O((nk)?*log(nk)) on the VCP-
dimension of Pf:*¥. However, the structure of programs in
P ¥ is more restrictive than that of programs in P, . ,, so
by making a closer examination of this structure we can
obtain better upper bounds on the VCP-dimension.

Any program in P:* can be represented by 5k + 5 real
values, where five real numbers are used to encode the syn-
tax of each line inside the loop and additional numbers are
used to encode y;, ¢,/ and u. Using this encoding an algo-
rithm can be written that takes as input a program p e Pj;*
and an input x € Q and determines if p(x) > 0. The first part
of the algorithm is similar to the algorithm for straight line
code, except that it just determines the syntax of the body of
the for loop without executing any lines of code. Since the
binary search to determine the operands for each line of
code only needs to search from —2 to k (“-2” is used to
represent the loop index “i”), the runtime of the first part of
the algorithm is O(k log k). Next the body of the for loop is

executed by the following piece of the algorithm:

y1=0
V=0
Yi=¢
i=1

loop:  y,=a;°, b,

Yie=ay o by
i=i+1

if i <u then goto loop
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This piece of the algorithm has a runtime of O(nk) since
it must execute the body of the for loop once for each value
of the index variable. Thus the total runtime for the algo-
rithm is O(k log k + nk). Since each program is represented
by O(k) real values, Theorem 4.3 can be applied to obtain
the following upper bound on the VCP-dimension.

THEOREM 6.1. VCP-dimension( P %) = O(k*(log k + n)).

for

As in the proof of Corollary 4.1, the above algorithm for
evaluating programs in Pj;* can easily be changed to
evaluate programs of the form p'(x, y)=p(x)—y, where
pe Pk, without changing the runtime of the algorithm.
Thus we get the following corollary, which shows that Pf:*
is polynomially testable.

dim(P%5) = O(k*(log k + n)).

for

COROLLARY 6.1.

6.2. Combining For Loops and If-Then—Else Statements

We now examine the complexity of two program con-
structs formed by combining iteration and branching. Each
of these constructs consists of a for loop with an embedded
if-then—else statement. In one construct the loop index is
bounded above and below by constants, and in the other
construct the upper bound on the loop index is the input x.
This change produces a large difference in the testing com-
plexity of the two constructs.

DerINITION.  We  define the class Py, 1. ism) Of
programs containing a for loop with an embedded if-then—
else statement and a constant upper bound on the loop
index as follows:

Prorin, ko, itim) -= {P | p(x) =Y, =a
fori=/toudo
Pi(x);
if o c then
q:(x)
else
q2(x);
Pa(X);
Output( yk + m) } s
where 1<j<k+m and ae{x}uQ and LueZ and
u—Il<nandp,eP; ,p,eP,,, qeP,, and k, +k,=k and

ce{=,#, <, > <, =}andbeQu{xi} u{y|j<k,}
and ce Q and

P;ﬁ:{l’ | p(x):=y,=a,°,by;

Yn=4dy Onbn;}a
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where ¢, e {+,
J<k+m}.

—,*} and a,,b,eQu{x, i} u{y|1<

DerFINITION.  We define the class Py, 1) it of programs
containing a for loop with an embedded if-then—else state-
ment and a variable upper bound on the loop index as
follows:

Prorix, ko), ifom) = {P | p(x) =yi=a

fori=/toxdo

Pi(X);
if bocthen

q2(x);
DPa(x);
output( yy 4 )},

where 1 <j<k+mandae{x} uQand/eZandp, eP},,
P2€P,, q;€P,, and k,+k,=k and - e{=, #, <, >,
<, =zlandbeQuix, i} u{y|j<k,} and ce Q.

The classes Prori ay.itimy aNd  Prorc ). inomy cONtain
programs with one for loop with an embedded if-then—else
statement. There is one initialization line before the loop, m
lines of straight line computing code inside each branch of
the if-then—else statement, and k lines of code inside the
loop but outside the if-then—else statement. As in the class
Ptk the righthand side of each line inside the loop is
allowed to use any y, value, for i between 1 and k +m. In
order to avoid the problem of uninitialized variables, we
assume that all variables y, are initialized to 0 before the
program is executed. In class Py, ). ir.m) the loop index is
bounded above and below by constants and the number of
times through the loop is no more than n, but in class
Pror(x. 1), i) the loop index is bounded above by the input x,
so the number of times through the loop is unbounded. If
the input x is not an integer, then the upper bound on the
loop index for a program in Py, 4y, ifum 15 LX .

If we do not make use of the for loop in a program from
Piorin 1), ity DY simply recomputing the same function each
time through the loop, then we can apply Corollary 5.1 and
Theorem 4.1 and obtain a lower bound of 2m + 1 on the
VCP-dimension of the class. Such a lower bound would be
obtained by a subclass of programs that use only the lines
of code in the if-then—else statement to compute a function.
Similarly, we can apply just Theorem 4.1 and obtain a lower
bound of kK +m + 1 on the VCP-dimension of the class by
using a subclass of programs that have a boolean statement
that is always true. These programs would use the m lines of
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code in the true clause of the if-then—else statement and the
k lines of code outside the if-then—else statement to compute
a function with straight-line code.

It is also possible to obtain a lower bound on VCP-
dimension that is a function of n, the number of times that
the for loop is executed. To do this we use a class of
programs that are syntactically the same as those in
Pror(n. 1), itmy €Xcept that two initialization lines are per-
mitted before the for loop. The following result gives a lower
bound on the VCP-dimension of this class.

THEOREM 6.2.  Let class Piy,y. 0. 1), itom) CONtain programs
that are syntactically equivalent to those in Py, 1. itm)
except that they contain two initialization lines of code
before the for loop. Then for k=1, m>=4, VCP-dimen-
SIO0(Prora, . 1), it(m)) = -

Proof. The proof techniques we use are similar to those
in the proof of Theorem 4.5. We demonstrate a subclass of
Piora. . 1).in4) that can shatter the set {1,2, .. n}. Since
dummy lines can always be added to a program, this shows
that VCP-dimension(P;., 5. .. 4. ifm)) =7 for any k>1 and
m=4.

Pj(x) =Y2=4dy
ys=1;

fori=1tondo

Yi=2%ys;

if y, > 1 then
Ya=y1—1L;
y3=x—1;
Ya=Y3* Y
Vs =DVs*Va;

else
Vo=V
y3=0;
V4=0;
ys=ys*1;

output(ys)

The set {1, 2, .., n} can be shattered by the 2" programs
of the form shown above, where a;=j* 27" for 0 <j <2".
The bit representation of each a, represents a different sub-
set of {1,2,..,n}. When an integer x between 1 and n is
input to program p;, p; determines the xth bit to the right of
the decimal point in a; and outputs a positive number if it
is 0 or outputs 0 if it is 1. Thus the program p; obtains the
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subset {x,, .., x.} of {1, 2, ..n}, where for 1 <i<k the x,th
bit to the rlght of the demmal point in a; is 0 and the rest of
the first n bits to the right of the demmal point are 1.

The ith iteration through the for loop extracts the ith bit
to the right of the decimal point in a;. If this bit is one, then
the factor (x —i)? is multiplied to ys, otherwise ys is not
changed. If the xth bit to the right of the decimal point in g,
is 0, then on input x program p; multiplies a number of
positive factors together to get the final value of ys, so
P j( x)> 0. If the xth bit to the right of the decimal point in
a;is 1, then on input x the xth iteration through the for loop
multlphes the factor (x x)>=0to ys, so p,(x) =0. There-
fore the subset of {1, 2, ...n} represented by the zeros in the
first n bit positions to the right of the decimal point in a; is
obtained by program p;. |

We get the following bounds on the VCP-dimension of
the classes Pror(y, 1), itim) A0 Pror(x iy ifim) -

THEOREM 6.3. VCP-dimension(Pro, s, ifm) = O(n(k +m)?
log(k + m)).

Proof.  We show that any program in Py, 1), i) can be
represented by O(k +m) real values, and we describe an
algorithm with O(n(k + m) log(k +m)) runtime that can
determine for any pe€ Pro, 1) iy and xe@Q whether
p(x)>0. Then by applying Theorem 4.3 we obtain the
desired bound.

Any program in Pi,, 1) i €an be represented by
5(k +2m) + 10 real values. Parameters p,; , ..., py. ;,, Where
1 <i<5, encode the syntax of the k lines of code inside the
for loop but outside the if-then—else statement, parameters
Dkt 1.i> = Prc+m.i» Where 1 <i<5, encode the syntax of the
m lines of code inside the true clause of the if-then—else
statement, and parameters p; . 1. ;> < Pk +2m i» Where
1 <i< 5, encode the syntax of the m lines of code inside the
false clause of the if-then—else statement. Three additional
parameters encode the initialization line y,=a, four
parameters encode the boolean clause boc, and three
parameters store k,, /, and u.

The algorithm to evaluate p(x) for any program
P € Provin. ). itom and any x € Q first evaluates the initializa-
tion line and then enters a loop to evaluate the body of the
for loop. After evaluating each line of code, it checks
whether &, lines have been evaluated and, if so, jumps to a
place that evaluates the if-then—else statement. Next it
evaluates the remaining lines of code outside the if-then—
else statement. Since the binary search to determine the
operands for each line of code only needs to search from —2
to k+m, the algorithm takes O(log(k+m)) time to
evaluate each line of code. Each pass through the loop
evaluates k£ + m lines of code, and the loop is executed at
most n times, so the total runtime is O(n(k+m)
log(k +m)). 1
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The following code illustrates part of the algorithm from
the proof of Theorem 6.3:

init: code fory,=a
i=1
loop: j=1

if j > k, then goto [,
code for line y,
j=j+1

if j > k, then goto /,

l.,: code for boolean clause b o ¢

if boolean clause true then goto /,, ,

Iy, s: codeforline y, , jusing py 15 1 <Ii<S
code for line y;, ; ,, USINg py 1 5, ;» 1 <Ii<S
goto /i, 4,
I, x,s codeforline y,, ., usingpy, oy, 1 <i<5

code for line y, , ,, using p; ;, 1 <i<5
i=i+1

if i < u then goto loop

Using techniques similar to those in Theorems 4.5 and 6.2
we can show that the VCP-dimension of the class
Prorix 1. it 18 infinite.

THEOREM 6.4. For VCP-dimension

(Pror(x, x), itomy) 1S infinite.

k=1, m>=2,

Proof. We demonstrate a subclass of Py, 1) in2) that
can shatter the set {1, 2, ..., d} for any d > 0. Since dummy
lines can always be added to a program, this shows that
VCP-dimension( Py, (. 4. ifmy) 1S infinite for any k> 1 and
mz=2.

The set {1, 2, ..., d} can be shattered by the 2¢ programs
of the following form, where ;= = 2~ “for 0 <j <2 The
bit representation of each a; represents a different subset of
{1,2, .., d}. When a positive integer x is input to program
p;> p; extracts and outputs the xth bit to the right of the
decimal point in a;. Thus the program p; obtains the subset
{x1, .., x,} where the x,th bit to the right of the decimal
point in a; is 1 for 1 <i<k and all other bits are 0.
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pi(x):=y,=a;
fori=1to xdo
Yi=2xy,;
if y, > 1 then

Vo=yi—1;
yy=1
else
Y2=D1s
y3=0;
output( ys)

Note that only the values of the constants a; are
dependent on d, so for any d> 0 a set of 2¢ programs from
Piorx. 1), ifr2) €an be constructed to shatter {1,2,...,d}. |

Theorem 6.4 shows that even simple program classes can
be complex from a testing point of view. This indicates that
program constructs that are simple from a syntactic point of
view may not necessarily be simple to test. In particular, if
there is not an upper bound on the number of times that a
loop can be executed, it may lead to programs that are not
randomly approximately testable.

7. CONCLUSION

Determining the difficulty of testing a program is an
important part of assessing the complexity of the program.
Since exact testing of a program is usually impossible, it is
reasonable to use an approach that determines the difficulty
of approximately testing the program. We have done this by
defining a measure of testing complexity known as VCP-
dimension and applying this measure to classes of
programs, each with the same syntactic structure. We have
investigated the VCP-dimension of straight line code,
if-then—else constructs, and for loops, as well as several
combinations of these constructs.

As a complexity measure, VCP-dimension has the draw-
back that it is not easy to compute exactly for most program
classes. However, using techniques such as those in [ GJ93],
it is often possible to derive upper bounds fairly easily, as we
have done in this paper. Also, unlike other complexity
measures, we have proven results that relate this measure to
the number of random test points required to determine
that a piece of software is approximately correct. Although
VCP-dimension is not a ready-to-use complexity measure
to apply to real, large scale programs, a theoretical
investigation into testing complexity is valuable for gaining
a better understanding of the nature of testing complexity,
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and theoretical results may eventually lead to more
meaningful complexity measures that are easy to compute.
One future direction of this research would be to deter-
mine the VCP-dimension of other program constructs and
combinations of constructs. Another direction would be to
develop simple methods to approximate the VCP-dimen-
sion of pieces of software and to develop tools to automate
the process of making these approximate computations.
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