Rutten-van Mölken MPMH4, Postma MJ 1
University of Groningen, Groningen, The Netherlands, 2Ghent University, Ghent, Belgium, 3Ghent University, Hospital, Ghent, Belgium, 4Kraamuniversity Rotterdam, Rotterdam, The Netherlands

OBJECTIVES: The Belgian community pharmacist-led PHARMACOP intervention provided educational inhalation training sessions and motivational interviewing regarding medication adherence in patients with Chronic Obstructive Pulmonary Disease (COPD). The program significantly improved medication adherence and inhalation techniques compared with usual care. This study aimed to evaluate its cost-effectiveness.

METHODS: An economic analysis was performed from the Belgian health care payer’s perspective. A Markov model was constructed in which a cohort of 1,000 patients with COPD receiving the 3-month PHARMACOP-intervention or usual care, was followed. This cohort had a mean age of 70 years, 66% were male, 43% current smokers and patients had a mean Forced Expiratory Volume in 1 second of 50. Three types of costs were calculated: intervention costs, medication costs and exacerbation costs. Outcome measures included the number of hospital-treated exacerbations, cost per prevented hospital-treated exacerbation and cost per Quality Adjusted Life-Year (QALY) gained. Follow-up was 1 year in the base case analysis. Univariate- , probabilistic sensitivity- and scenario analyses (including long-term follow-up) were performed to assess uncertainty.

RESULTS: In the base case analysis, the average overall costs per patient for the PHARMACOP intervention and usual care were €1,221 and €1,448, respectively within the 1-year time horizon. This reflects cost savings of €227 for the PHARMACOP-intervention. The intervention resulted in a 37% decrease of PHARMACOP intervention.


WASTE AND COST MINIMIZATION OF ALKALINE SOLUTION BY STANDARDIZATION PROCESSES CONTROL FOR AMBULATORY HEMODIALYSIS: A SIMULATION STUDY

Federal University of Juiz de Fora, Juiz de Fora, Brazil

OBJECTIVE: There are few studies about costs of inputs used in hemodialysis and among these expenditures, the compounds that make up the dialysate are one of the values considered as representative of this therapy. However, there aren’t costs studies that guiding solutions. The objective of this article is discuss whether there is wasteful of alkaline solutions in hemodialysis and hence the possibility of standardization in cost and establishment of dialysate flow in periods shifts in hemodialysis outpatients.

METHODS: Starting from a observational analytic cross-sectional research from a real case study and was elaborated a model. This study was conducted with simulated twenty scenarios based on different outpatient profiles that affect the solution flow, having ten cases established by standardizing processes control on the dialysate flow in periods shifts in hemodialysis. The probabilistic sensitivity analysis was performed using as a base the prices of three suppliers of alkalai liquid or powder. RESULTS: It was observed savings among the scenarios with standardized processes ranging between 7.7% and 31.5% in the alkaline solution cost (powder or liquid as input). The probabilistic sensitivity analysis (PSA) explore the wasteful use of alkaline solutions, both powder and liquid. Consequently, its cost from the patterning on reducing the flow of dialysate during the intervals between shifts observed in the outpatient hemodialysis. However, these data are conditional upon the commitment of health professionals, mainly to supervision exercise and control of activities in quality function deployment.