The Positivity of a Sequence of Numbers and the Riemann Hypothesis

Xian-Jin Li

The University of Texas at Austin, Austin, Texas 78712 Communicated by A. Granville

Received September 10, 1996; revised December 16, 1996

In this note we prove that the Piemann hypothesis for the Dedekind zeta View metadata, citation and similar papers at <u>core.ac.uk</u>

1. THE RIEMANN ZETA FUNCTION

Let $\{\lambda_n\}$ be a sequence of numbers given by

$$(n-1)! \lambda_n = \frac{d^n}{ds^n} [s^{n-1} \log \xi(s)]_{s=1}$$
(1.1)

for all positive integers n, where

$$\xi(s) = s(s-1) \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s)$$

with $\zeta(s)$ being the Riemann zeta function.

THEOREM 1. A necessary and sufficient condition for the nontrivial zeros of the Riemann zeta function to lie on the critical line is that λ_n is non-negative for every positive integer n.

Proof. Define

$$\varphi(z) = \xi\left(\frac{1}{1-z}\right) = 4 \int_{1}^{\infty} \left[x^{3/2}\psi'(x)\right]' \left(x^{-1/2}x^{1/2(1-z)} + x^{-1/2(1-z)}\right) dx \quad (1.2)$$

0022-314X/97 \$25.00 Copyright © 1997 by Academic Press All rights of reproduction in any form reserved. for z in the unit disk, where

$$\psi(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$$

Write

$$\xi(s) = \prod_{\rho} \left(1 - \frac{s}{\rho} \right) \tag{1.3}$$

where the product is taken over all nontrivial zeros of the Riemann zeta function with ρ and $1-\rho$ being paired together. It follows that

$$\varphi(z) = \prod_{\rho} \frac{1 - (1 - (1/\rho))z}{1 - z}$$

A necessary and sufficient condition for the nontrivial zeros of the Riemann zeta function to lie on the critical line is that $\varphi'(z)/\varphi(z)$ is analytic in the unit disk. Put

$$\frac{\varphi'(z)}{\varphi(z)} = \sum_{n=0}^{\infty} \lambda_{n+1} z^n$$

for $|z| < \frac{1}{4}$, where

$$\lambda_n = \sum_{\rho} \left[1 - \left(1 - \frac{1}{\rho} \right)^n \right] \tag{1.4}$$

for every positive integer n. On the other hand, by (1.3) we have

$$\frac{1}{(n-1)!} \frac{d^n}{ds^n} \left[s^{n-1} \log \xi(s) \right]_{s=1} = -\sum_{\rho} \sum_{k=0}^{n-1} \binom{n}{k} (\rho-1)^{k-n}$$
$$= \sum_{\rho} \left[1 - \left(1 - \frac{1}{\rho}\right)^n \right],$$

and hence λ_n is also given by the expression (1.1). Let

$$\varphi(z) = 1 + \sum_{j=1}^{\infty} a_j z^j.$$
 (1.5)

We find that

$$\lambda_n = n \sum_{l=1}^n \frac{(-1)^{l-1}}{l} \sum_{\substack{1 \le k_1, \dots, k_l \le n \\ k_1 + \dots + k_l = n}} a_{k_1} \cdots a_{k_l}$$

for every positive integer n. Expanding the right side of (1.2) in power series (1.5), we find that

$$a_{j} = 2 \sum_{n=0}^{\infty} \frac{(j+n)\cdots(j+1)}{n! (n+1)! 2^{n}} \int_{1}^{\infty} \left[x^{3/2} \psi'(x) \right]' (x^{-1/2} + (-1)^{n+1}) (\log x)^{n+1} dx$$
(1.6)

for every positive integer j. By (1.6) we can write

$$\begin{aligned} a_{j} &= 4 \sum_{n=0}^{\infty} \frac{(n+j)\cdots(n+1)}{j!(n+1)! \ 2^{n+1}} \int_{1}^{\infty} \left[x^{3/2} \psi'(x) \right]' (x^{-1/2} + (-1)^{n+1}) (\log x)^{n+1} dx \\ &= \frac{4}{j!} \frac{d^{j}}{dt^{j}} \left\{ t^{j-1} \sum_{n=0}^{\infty} \frac{(t/2)^{n+1}}{(n+1)!} \int_{1}^{\infty} \left[x^{3/2} \psi'(x) \right]' \\ &\times (x^{-1/2} + (-1)^{n+1}) (\log x)^{n+1} dx \right\}_{t=1} \\ &= \frac{4}{j!} \frac{d^{j}}{dt^{j}} \left\{ t^{j-1} \int_{1}^{\infty} \left[x^{3/2} \psi'(x) \right]' (x^{-1/2} \left[e^{(t/2) \ln x} - 1 \right] + \left[e^{-(t/2) \ln x} - 1 \right] \right) \right\}_{t=1} \\ &= \frac{4}{j!} \frac{d^{j}}{dt^{j}} \left\{ t^{j-1} \int_{1}^{\infty} \left[x^{3/2} \psi'(x) \right]' (x^{-1/2} \left[e^{(t/2) \ln x} - 1 \right] + \left[e^{-(t/2) \ln x} - 1 \right] \right) \right\}_{t=1} \\ &= 4 \sum_{l=1}^{j} \frac{(j-1)}{(j-l)} \frac{1}{l!} \int_{1}^{\infty} \left[x^{3/2} \psi'(x) \right]' \left(\frac{1}{2} \log x \right)^{l} \left[1 + (-1)^{l} x^{-1/2} \right] dx. \end{aligned}$$

This expression implies that a_j is a positive real number for every positive integer *j*. Since the identity

$$\sum_{n=1}^{\infty} na_n z^{n-1} = \left(\sum_{i=0}^{\infty} a_i z^i\right) \left(\sum_{j=0}^{\infty} \lambda_{j+1} z^j\right)$$

holds, we have the recurrence relation

$$\lambda_n = na_n - \sum_{j=1}^{n-1} \lambda_j a_{n-j}$$

for every positive integer *n*.

By (1.1), λ_n is a real number for every positive integer *n*. If the nontrivial zeros of $\zeta(s)$ lie on the critical line, then $|1 - (1/\rho)| = 1$ for every nontrivial

zero ρ of $\zeta(s)$. Put $1 - (1/\rho) = \exp(i\theta_{\rho})$ for some real number θ_{ρ} . Then by (1.4) we have

$$\lambda_n = \sum_{\rho} (1 - e^{in\theta_{\rho}}) = \sum_{\rho} (1 - \cos n\theta_{\rho}).$$

This implies that the number λ_n is nonnegative for every positive integer *n*.

Conversely, if the number λ_n is nonnegative for every positive integer *n*, then

$$\lambda_n \leq na_n$$

for every positive integer n. It follows that

$$\sum_{n=1}^{\infty} |\lambda_n z^{n-1}| \leq \sum_{n=1}^{\infty} na_n |z|^{n-1} = \varphi'(|z|) < \infty$$

for z in the unit disk. This implies that $\varphi'(z)/\varphi(z)$ is analytic in the unit disk.

This completes the proof of the theorem.

2. THE DEDEKIND ZETA FUNCTION

Let k be an algebraic number field with r_1 real places and r_2 imaginary places. The Dedekind zeta function $\zeta_k(s)$ of k is defined by

$$\zeta_k(s) = \prod_{\mathfrak{p}} (1 - N\mathfrak{p}^{-s})^{-1}$$

for Re s > 1, where the product is taken over all the finite prime divisors of k. Put $G_1(s) = \pi^{-s/2} \Gamma(s/2)$ and $G_2(s) = (2\pi)^{1-s} \Gamma(s)$. Define

$$Z_k(s) = G_1(s)^{r_1} G_2(s)^{r_2} \zeta_k(s).$$

By Theorem 3 of Chapter VII, Section 6, of [4], the function $Z_k(s)$ is analytic in the complex plane except for simple poles at s = 0 and s = 1, and satisfies the functional identity

$$Z_k(s) = |\mathfrak{d}|^{(1/2)-s} Z_k(1-s)$$

where \mathfrak{d} is the discriminant of k. Its residues at s = 0 and s = 1 are respectively $-c_k$ and $|\mathfrak{d}|^{-1/2} c_k$ with $c_k = 2^{r_1} (2\pi)^{r_2} hR/e$, where h, R, and e are respectively the number of ideal classes of k, the regulator of k, and the number of roots of unity in k. Let $\xi_k(s) = c_k^{-1} s(s-1) |\mathfrak{d}|^{s/2} Z_k(s)$. Then $\xi_k(s)$ is an entire function and $\xi_k(0) = 1$.

Let $\{\lambda_n\}$ be a sequence of numbers given by

$$(n-1)! \lambda_n = \frac{d^n}{ds^n} [s^{n-1} \log \xi_k(s)]_{s=1}$$

for all positive integers n. The aim now is to prove the following theorem.

THEOREM 2. A necessary and sufficient condition for the nontrivial zeros of the Dedekind zeta function $\zeta_k(s)$ to lie on the critical line is that λ_n is non-negative for every positive integer n.

3. PROOF OF THE THEOREM 2

LEMMA 3.1. The identity

$$\lambda_n = \sum_{\rho} \left(1 - \left(1 - \frac{1}{\rho} \right)^n \right)$$

holds for every positive integer n, where summation is taken over all nontrivial zeros of the Dedekind zeta function $\zeta_k(s)$ with ρ and $1 - \rho$ being paired together.

Proof. By Theorem 2 of Barner [1], we have the formula (cf. Chapter 2 of [2])

$$\xi_k(s) = \prod_{\rho} \left(1 - \frac{s}{\rho} \right), \tag{3.1}$$

where the product is taken over all zeros of $\xi_k(s)$ with ρ and $1-\rho$ being always paired together. An argument similar to that made for the Riemann zeta function in Chapter 2 of [2] shows that the convergence of the product (3.1) is uniform on compact subsets of the complex plane.

Since $\xi_k(s) = \xi_k(1-s)$, we have

$$\frac{d^n}{ds^n} [s^{n-1} \log \xi_k(s)]_{s=1} = (-1)^n \frac{d^n}{ds^n} [(1-s)^{n-1} \log \xi_k(s)]_{s=0}.$$
 (3.2)

Since $\zeta_k(s)$ does not vanish at s = 0, we can write

$$\log \xi_k(s) = -\sum_{\rho} \sum_{m=1}^{\infty} \frac{\rho^{-m}}{m} s^m$$
(3.3)

where $|s| < \varepsilon$ for a sufficiently small positive number ε , where ρ and $1 - \rho$ are paired together in the summation over ρ . Since the product (3.1)

converges uniformly, the series (3.3) converges uniformly for $|s| < \varepsilon$. It follows that

$$\frac{1}{(n-1)!}\frac{d^n}{ds^n} \left[(1-s)^{n-1} \log \xi_k(s) \right]_{s=0} = -\sum_{\rho} \sum_{m=1}^n (-1)^{n-m} \binom{n}{m} \rho^{-m}$$

This formula together with (3.2) implies the stated identity.

Define

$$\varphi(z) = \xi_k \left(\frac{1}{1-z}\right)$$

for z in the unit disk. Since the function $\xi_k(s)$ is analytic in the complex plane of s, the function $\varphi(z)$ is analytic in the unit disk.

LEMMA 3.2. Let

$$\varphi(z) = 1 + \sum_{j=1}^{\infty} a_j z^j.$$

Then the coefficient a_i is a positive real number for every positive integer j.

Proof. Define ε_v to be one when v is a real place of k and to be two when v is an imaginary place of k. Let $x = \prod x_v$ be the variable in the half space $\mathbb{R}_+^{r_1+r_2}$. Denote by |x| the product $\prod x_v^{\varepsilon_v}$, which is taken over all infinite places of k. If $N = r_1 + 2r_2$, then the Hecke theta function $\Theta_k(x)$ is defined by

$$\boldsymbol{\Theta}_{k}(\boldsymbol{x}) = \sum_{\boldsymbol{\mathfrak{b}}} \exp\left(-\pi |\boldsymbol{\mathfrak{d}}|^{-1/N} (N\boldsymbol{\mathfrak{b}})^{2/N} \sum_{\boldsymbol{v}} \varepsilon_{\boldsymbol{v}} \boldsymbol{x}_{\boldsymbol{v}}\right)$$

where the summation over b is taken over all nonzero integral ideals of k and where the summation over v is taken over all infinite places of k. Put $dx = \prod dx_v$. It follows from Theorem 3 of Chapter XIII, Section 3, in [3] that

$$\xi_k(s) = 1 + c_k^{-1} s(s-1) \int_{|x| \ge 1} \Theta_k(x) (|x|^{s/2} + |x|^{(1-s)/2}) \frac{dx}{x}.$$
 (3.4)

Let

$$\int_{|x| \ge 1} \Theta_k(x) (|x|^{1/2(1-z)} + |x|^{1/2} |x|^{-1/2(1-z)}) \frac{dx}{x} = \sum_{m=0}^{\infty} b_m z^m.$$
(3.5)

It is clear that b_0 is a positive number. We have

$$b_m = \sum_{n=0}^{\infty} \frac{(m+n)\cdots(m+1)}{n! (n+1)! 2^{n+1}} \int_{|x| \ge 1} \Theta_k(x) (1+|x|^{1/2} (-1)^{n+1}) (\log |x|)^{n+1} \frac{dx}{x}$$

for every positive integer m. By computation, we find that

$$b_{m} = \frac{1}{m!} \sum_{n=0}^{\infty} \frac{(n+m)\cdots(n+1)}{(n+1)! \ 2^{n+1}} \\ \times \int_{|x| \ge 1} \Theta_{k}(x)(1+|x|^{1/2} \ (-1)^{n+1})(\log |x|)^{n+1} \frac{dx}{x} \\ = \frac{1}{m!} \frac{d^{m}}{dt^{m}} \left(t^{m-1} \int_{|x| \ge 1} \Theta_{k}(x)(e^{(t/2)\log |x|} + |x|^{1/2} \ e^{-(t/2)\log |x|}) \frac{dx}{x} \right)_{t=1}.$$

It follows that

$$b_m = \sum_{l=1}^m \binom{m-1}{m-l} \frac{1}{l!} \int_{|x| \ge 1} \Theta_k(x) \left(\frac{1}{2} \log |x|\right)^l (|x|^{1/2} + (-1)^l) \frac{dx}{x}$$
(3.6)

for every positive integer *m*. Since $\Theta_k(x)$ is positive for every *x* in $\mathbb{R}^{r_1+r_2}_+$, it follows from (3.6) that the coefficients b_m are positive real numbers for all nonnegative integers *m*.

The identity

$$\frac{z}{(1-z)^2} = \sum_{q=1}^{\infty} q z^q$$

holds for z in the unit disk. It follows from (3.4) and (3.5) that

$$c_k a_j = \sum_{m=0}^{j-1} (j-m) b_m \tag{3.7}$$

for every positive integer j. Since b_m are positive numbers for all non-negative integers m, we see that a_j is a positive real number for every positive integer j.

Proof of the Theorem. Since $\xi_k(1) = 1$ and $\xi_k(s) = \xi_k(1-s)$, it follows from the product formula (3.1) that

$$\varphi(z) = \prod_{\rho} \frac{1 - (1 - (1/\rho))z}{1 - z}.$$
(3.8)

Since $\xi_k(s)$ does not vanish at s = 1, we can write

$$\varphi'(z)/\varphi(z) = \sum_{n=0}^{\infty} \lambda_{n+1} z^n$$
(3.9)

by using the formula (3.8) when $|z| < \varepsilon$ for a sufficiently small positive number *ɛ*. Since

$$\sum_{n=1}^{\infty} na_n z^{n-1} = \left(\sum_{i=0}^{\infty} a_i z^i\right) \left(\sum_{j=0}^{\infty} \lambda_{j+1} z^j\right),$$

we have

$$\lambda_n = na_n - \sum_{j=1}^{n-1} \lambda_j a_{n-j}$$
(3.10)

for n = 2, 3, ..., where $\lambda_1 = a_1$ and $a_0 = 1$.

If the nontrivial zeros of $\zeta_k(s)$ lie on the critical line, it follows from Lemma 3.1 that the numbers λ_n are nonnegative for all positive integers *n*.

Conversely, assume that the number λ_n is nonnegative for every positive integer n. It follows from (3.10) and Lemma 3.2 that

 $\lambda_n \leq na_n$

for every positive integer n. This inequality together with Lemma 3.2 implies that

$$\sum_{n=1}^{\infty} |\lambda_n z^{n-1}| \leq \sum_{n=1}^{\infty} na_n |z|^{n-1} = \varphi'(|z|)$$
(3.11)

for z in the unit disk. Since $\varphi'(z)$ is analytic in the unit disk, $\varphi'(|z|)$ is finite for z in the unit disk. It follows from (3.9) and (3.11) that $\varphi'(z)/\varphi(z)$ is analytic in the unit disk. It is clear that a necessary and sufficient condition for the nontrivial zeros of the Dedekind zeta function $\zeta_k(s)$ to lie on the critical line is that $\varphi'(z)/\varphi(z)$ is analytic in the unit disk. Therefore, the nontrivial zeros of the Dedekind zeta function $\zeta_k(s)$ lie on the critical line.

This completes the proof of the theorem.

Remark. We know from the proof of Theorem 2 that $\lambda_1 = a_1$, which is a positive number by Lemma 3.2. An explicit expression for λ_n is implicit in the recurrence relation (3.10) together with formulas (3.6) and (3.7).

ACKNOWLEDGMENT

The author thanks the referee for valuable suggestions on improving the presentation of the original version of this paper.

REFERENCES

- 1. K. Barner, On A. Weil's explicit formula, J. Reine Angew. Math. 323 (1981), 139-152.
- 2. H. M. Edwards, "Riemann's Zeta Function," Academic Press, New York, 1974.
- 3. S. Lang, "Algebraic Number Theory," Addison-Wesley, Reading, MA, 1970.
- 4. A. Weil, "Basic Number Theory," Springer-Verlag, Heidelberg, 1967.