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Abstract 

Lambe, L.A., Resolutions which split off of the bar construction, Journal of Pure and Applied 
Algebra 84 (1993) 311-329. 

Resolutions which split off of the bar construction are quite common, but explicit formulae 

expressing these splittings are not often encountered. Given explicit splitting data. perturba- 

tions of resolutions can be computed and the perturbed resolutions can be used to make 

complete effective calculations where previously only partial or indirect results were obtainable. 
This paper gives a foundation for the perturbation method in homological algebra by 

providing a symbolic encoding of binomial coefficient functions which is useful in deriving 

formulae for an infinite class of resolutions. Formulae for perturbations of those resolutions are 

then derived. Applications to certain infinite families of groups and monoids are given. 

The research for this theory as well as the calculation of closed formulae within the theory 

was aided by new methods in symbolic computation using the Axiom (formerly called 

Scratchpad) system. 

1. Introduction 

1.1. Motivation 

Certain formal complexes were associated to groups and formal groups over the 

ring ZlpZ (including the case p = 0, i.e., the integers) in [16]. These complexes 

are obtained by homological perturbation theory (see [16] and the references cited 

there) and can be thought of roughly in the following way. If p is a formal group 

law, then p(x, y) = x + y + O(m2). One can think of p as a ‘perturbation’ of the 

affine group ((ZlpZ)“, +, 0). Given a resolution over the group ring of this affine 
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group, one might try to ‘deform it’ to obtain a ‘resolution’ over the given formal 

group. If the formal group law p is actually a convergent series, so that one has an 

ordinary group, this can lead to resolutions suitable for the computation of Ext 

and Tor over the group ring. In particular, it can lead to computations of the 

(co)homology of the group. If the group law is actually given by a polynomial 

function, then in the case p = 0, one has a finitely generated, torsion-free 

nilpotent group, and in the case p > 0, one has a finite p-groupand conversely. 

For the particular homological perturbation method cited above, it is crucial to 

have a resolution over the affine group that is embedded in the bar construction 

(or some other standard resolution) is a special way. When this occurs, the 

resolution is said to ‘split off of’ the standard resolution (see Section 2.4). One 

important aspect of this method is that it produces resolutions that also split off of 

a standard resolution. This makes iteration possible. 

Resolutions over group rings of finitely generated abelian groups and which 

split off of the bar construction are known [4, 61, although the complete data is 

not often presented. This data is given for a much wider class of objects in 

(2)-(4) and Lemmas 2.4 and 2.5. 

Homological perturbation methods were used in [16] and [17] in the case of 

linear affine group schemes over the integers and certain convergent power series 

group laws taking integers to integers. As already mentioned, the method is not 

restricted to the p = 0 case. In fact, it can be applied to groups over rings other 

than Z/pZ as well (with suitable alterations of the ‘affine model’). It can also be 

applied to cases other than group rings or formal groups. A classic example is 

given by May in [20] for mod-p restricted Lie algebras and Hopf algebras where it 

is also important to consider resolutions that split off of the bar construction. 

May’s paper as well as the memoirs of Gugenheim and May [12] and the author’s 

previous collaborations with Gugenheim and Stasheff [9-11, 181 provided much 

inspiration for [16] and this paper. 

One of the main goals of this paper is to provide a simple foundation for the 

calculation and deformation of resolutions that split off of the bar construction. 

1.2. General remarks 

Let R be a commutative ring with 1, and let A be an augmented algebra over 

R: A-+ R. The bar construction resolution (see Section 4.1) [4-61 of R over A 
is of the form 

(R + B(A), s> > 

where B(A) --b B(A) is an R-module map, and Ra B(A) and B(A)& R 
are A-module maps which satisfy FU = 1, ds + sd = 1 - (TE. Recall that B(A) = 
A gR B(A), and 
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E(U]U, I I %I) = I 0, if n>O, 
E(a) ) if n=O, 

s(4a, I I %I> = [a I a, I . . . I %I 

The relationship between R and B(A) given by E, CT, and the homotopy s is one of 

a strong deformation retraction of B(A) to R. 
Strong deformation retractions are quite common and involve objects other 

than resolutions, but also involve resolutions in ways other than the one pointed 

to above. For example, minimal resolutions of a module over an algebra can lead 

to such retractions. A classic example is given by the Koszul resolution K = 
A@E,[u,, . . , u,,] for the ideal I = (x,, . . . , x,,) in the polynomial ring A = 

R[x,, . . > x,,]. A is an augmented algebra over R and we may form the bar 
construction B(A) for R over A as above. K is also a resolution of R over A and 

by the comparison theorem, there is a chain homotopy equivalence K- B(A). In 

this case, a map which is the inclusion for a strong deformation retraction 

K * B(A) exists. We say that K ‘splits off of’ the bar resolution (Section 2.4). 

The small resolutions of Eilenberg and Mac Lane, and of Cartan also give rise to 

such deformation retractions [4, 61. The point of this paper is to look more closely 

at the behavior ‘in the large’ of such resolutions and to follow up by examining 

that behavior in some classic examples. All of the general propositions for 

resolutions that split off of the bar construction given in this paper are applicable 

to the resolutions for cyclic groups Z/pZ found in [4] and [6], but for simplicity in 

the exposition, for this class, only the case p = 0, i.e., the integers will be 

presented. In fact, well-known resolutions over the free abelian group in n 

generators and the Koszul resolution will be presented in a new light. These 

already show some very complicated behavior. 

An important distinction between these homological perturbation methods and 

other methods for calculating resolutions is that they often allow one to calculate 

resolutions for a class of objects which are parameterized in some way. The 

perturbation methods allow one to obtain parameterized families of resolutions 

using the parameters from the given family. This was illustrated in [16] in the case 

of the ‘integral Heisenberg groups’ parameterized by q. This class of groups is 

given by 

Notice that U,(q) is a ‘deformation’ of the free abelian group on three 

generators, i.e., in the naive sense, lim,,,, U,(q) = Z”. As a further illustration, 

parameterized resolutions will be given for a class of non-nilpotent groups in 
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Section 4. For more information about these sorts of resolutions see [16, 171 and 

the references cited there. 

2. Splitting homotopies and resolutions 

Some generalities on algebraic strong deformation retractions are recalled and a 

general formula for a splitting homotopy (Section 2.2) on the bar construction for 

a class of resolutions is given in this section. 

2.1. Strong deformation retraction 

Consider two chain complexes M and N over R. We say that M is a strong 
deformation retraction (SDR) of N if there are chain maps V, f, and a chain 

homotopy 4, 

such that 

fV=l, Of = 1 - (d+ + $d) . 

In addition. it can be assumed that 

f$@=O, 40=0, f4=0. 

Indeed, if these conditions do not hold, they can be obtained by leaving f and V 

alone and changing 4. If the last two do not hold, we can replace 4 by 

4” = D(+)4D(4) h w ere D(4) = d+ + qbd. If now the first condition does not 

hold, all three conditions may be achieved by replacing 4” by 4” = $“d4”. This 

was pointed out in [18], although the proof was omitted. A special case was given 

in [7]. A proof, which will contain some notation and observations used elsewhere 

in this paper will be given here. 

By a graded map of degree k we mean an R-module such that f, : X, + Y,,+k. 
We use the notation ) f) = k for such a map. For convenience, the notation 

D(f) = df - (-l)‘jlfd will be introduced for a map f : X+ Y of degree k of chain 

complexes X and Y. It is easy to verify that D is a derivation with respect to 

composition of maps. 

Lemma 2.1. Given a strong deformation retraction 
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(1) If I$ # 0 or f$ # 0 then the vanishing conditions for qbV and f@ may be 
obtained (with no change in f or V) by replacing C#J by 4’ = D( ~)$D(c#I). 

(2) If $V = 0 and f@-0 but 6’ # 0 then the vanishing condition for C#J~ may be 
obtained by replacing 4 by 4’ = 4d4. 

Proof. Let 7~ = Of. Since fV = 1, we have ZYT = n. Also D(4) = 1 - rr, and 

(1 - rr)(l - r) = 1 - rr. By hypothesis, (1 - ~T)V = 0 and f(1 - n) = 0. Consider 

4’ from (1). We have +‘V= (1 - ~)4(1 - r)V= 0 and similarly, f+’ = 0. Also, 

D(4’) = D(4)3 since D’ = 0 and D is a derivation, but D(+)3 = (1 - T)~ = 1 - 7~. 

Now given a 4 that satisfies the hypotheses of (2), notice that d&$d = (1 - T - 

4d)(l - 7~ - d4), but this product is easily seen to vanish. Thus 4’6’ = 0. 0 

The conditions obtained in the lemma are often called ‘the side conditions’. 

Also, V is called the ‘inclusion’, f is called the ‘projection’, and 4 is called the 

‘homotopy’ of the given SDR 

The side conditions will be required in what follows. 

2.2. Resolutions 

Suppose that E : A+ R is an augmented algebra. A resolution of R over A is a 

differential A-module (X, d) which is projective as an A-module and which is 

‘acyclic on A’, i.e., the homology of (X, d) is zero except in degree 0 where it is 

R. If X is actually a free A-module then (X, d) is called a free resolution. A 

particularly useful class of free resolutions are those of the form X = A @ x where 

X is a free R-module. For such free resolutions, let (X, 2) = (R@, X, 1, BA d). 
We will call the complex (X, 2) the ‘reduced complex’. We think of X 4 X via 

x++l@x=X. 

By the comparison theorem for resolutions, there exists a chain homotopy 

equivalence B(A)-+ X. In cases of interest, it often occurs that this chain 

homotopy equivalence may be completed to an SDR 

W+ B(A), 4) 

An explicit contracting homotopy on X leads to an implementation of this 

retraction. 

Assume that X+ R is a resolution with an explicit contracting homotopy cp 

(RA tt_X/f). 

One has explicit contracting homotopies for the standard ‘small resolutions’ of 

Eilenberg and Mac Lane and Cartan mentioned above (see [4, 61). 
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Comparison maps V : X+ B(A) and f : B(A)+ X which are A-linear may be 

defined inductively, using the contracting homotopy cp for X and the standard 

contracting homotopy s for B(A). One has 

V(‘(x) = sVdX , for X E x 

and 

f(b) = cpfdb > for 6 E B(A). 

A straightforward and useful criterion for when the map V defined above is 

one-one is given by May in the following theorem: 

Theorem 2.2 [20, Section 71. Let X = A gR _J? + R be a free resolution of R over 
A. Let V : X-+ B(A) be given by V(X) = sVd2, for X E 2. Zf d(z,,) fl g,,_, = 0, 

then V is one-one. 0 

In general, both composites Of and fV are homotopic to the respective identity 

maps and we may use the given contracting homotopies to explicitly construct 

these homotopies. Using the mapping cylinder construction, such ‘two-sided data’ 

may be factored into the composite of two sets of ‘one-sided data’. We shall 

assume that we are in the one-sided case, i.e., that fV= 1,. Then we have an 

SDR 

where the A-linear chain homotopy 4 : B(A)+ B(A) is given inductively by 

4(b) = s(Vf6 - 6 - 4ab). Note that s vanishes on @A) so this formula reduces 

to $(6) = s(Vf6 - +db). These formulae will be summarized in Section 2.4. 

2.3. Splitting homotopies 

Consider an SDR 

where M and N are any R-modules. As in Lemma 2.1, let q = Of. Since r is a 

projection, there is a direct-sum decomposition 

N = im(rr) @ ker(v) 

In fact, because of the side conditions, it is straightforward to see that the 
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homotopy vanishes on im(rr). Furthermore, restricted to ker(rr), it is a contract- 

ing homotopy. Thus, ker(rr) is a totally contractible complex. In addition, 

M z im( n) as differential modules and the original SDR is completely determined 

by 4. 
Conversely, given a degree-one map 4 : M - M which satisfies $4 = 0, and 

@d+ = 4, then by setting 7~ = 1 - (&$ + +d) and M = im(rr), we obtain an SDR 

These observations were made in [l] where such homotopies 4 were called 

‘splitting homotopies’. 

In summary, an SDR is completely determined by a splitting homotopy 4, i.e., 

a degree-one endomorphism of a differential 

@=o, +d+=+. 

module N which satisfies 

Given an SDR, i.e., a splitting homotopy 4 

that M splits off of N. 

with M = im(r), we will often say 

The following lemma can be found in [6] and is used in [2], [7], [18], and [24]. 

Lemma 2.3. Given strong deformation retractions 

(M, + N,, 4;) > 

for i = 1,2, there are tensor product strong deformation retractions 

where either 

or 

Furthermore, if 4, satisfy the side conditions for i = 1,2, then so does 4. 0 

There is no particular reason to choose one of the homotopies over the other. 

We will consistently use 4 = 1 @ 4 + 4 @ r and when we consider tensor products 

of n-resolutions, we will use the tensor product homotopy 
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(1) 

By the lemma, if C$ satisfies the side conditions, then so does I#J? 

2.4. Resolutions which split off of the bar construction 

For the remainder of this paper, assume that X is a free A-resolution of R and 

that an explicit contracting homotopy cp is given, so that we have an SDR 

By Lemma 2.1 we may assume the side conditions. In particular, we have (p’ = 0. 

Now assume that 

V(X) = sVd2 , for XtE2, 

f(6) = cpfa6 , for b E @A) , 

$(6) = s(Vf6 - +ab) , for b E B(A) , 

(2) 

(3) 

(4) 

define maps such that Vf = 1, so that we have an explicit splitting homotopy 4 on 

the bar construction, 

((A 63 x, d) + B(A), 4) . 

This situation is not unusual (see for example, [4], [6], [12, Appendix], [14]). 

It follows that on reduced elements, i.e., on elements of 2, we have the 

following: 

Lemma 2.4. The A-linear map f is given inductively by 

f[b,l= db,) 3 f[b, I . . . / b,,l= p(b,f([bz 1. . . 1 b,l)). 

Proof. On reduced elements, the inductive formula for f gives 

f[b, 1 . . I b,,l= da[b, 1 . . . I b,,l 

= q(b,f[b, I . . . I b,,l) + c 2 cpflb, I . . . I b,b;+, I bnl 

But if X is reduced, then ‘pf2 = cpcpfax = 0. The result follows. 0 

The following notation [16] is useful. If b = C [b,, I . . I b,&] E @A), then for 

[x, 1 . xn] E l!?(A), let 
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[Xl 1.. . Ix n : b] = c [x, 1 . . . 1 x, ( b,, 1 . . . 1 bJ E B(A). 

A straightforward induction using the recursive formula for C$ yields the following: 

Lemma 2.5 [16]. Assuming the hypotheses above for the splitting homotopy 4, 

k-l 

+[b, I.. . 1 bk] = c (-l)‘[b, I.. . 1 b;: sVf[b,+, I.. . 1 bk]]. 0 
I=0 

It is important to note that Lemmas 2.4 and 2.5 show that f and 4 are 

completely determined by the contracting homotopy cp : X-+ X for any resolution 

X that splits off of the bar construction 

(X+ B(A), 4). 

The following corollary is also given in [16]. For convenience, its simple proof is 

indicated here as well. 

Lemma 2.6 [16]. Assuming the hypotheses above, if X is a finite resolution, i.e., X 

vanishes above degree n for some n, then for all m > n 

4[b, I.. I b,] = (-l)“-“Lb, 1.. . 1 b,,-,, : 4[b,,-n+, 1. . . I bmll . 

Thus 4 is completely determined by @[b,], $[b, I b2], . . . ,4[b, I.. I b,]. 

Proof. Since 4 - sVf - $4~3 on &A) and, necessarily, f vanishes on elements of 

degree greater than n, we have that for m > n, 4 = -s4d = -s4p, where 

p[b, I . . . I b,l = b,[b, 1 I b,]. 0 

There is a wealth of information on finite resolutions in [22]. 

Since little can be said about the general nature of the differential d in X for an 

arbitrary resolution that splits off of the bar construction, a general form for the 

inclusion V cannot be given. However, in many of the classical cases that have 

already been mentioned, V turns out to be related to the well-known ‘shuffle’ 

operation. Two cases that will be examined in detail are the Koszul resolution 

over a polynomial algebra P = R[t, , . . . , t,] and the analogous resolution over 

the Laurent polynomials A = R[t,T’, . . , tl’, t,, . . , t,]. 

3. Resolutions over polynomials and Laurent polynomials 

Methods of homological perturbation theory were used in [16] and [17] to 

calculate explicit resolutions of Z over the integral group ring A of a finitely 
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generated nilpotent group. The resolutions that were split off of the bar construc- 

tion as a step in the process will be reviewed along with closed formulae which 

allow one to reproduce and extend those calculations. The method is illustrated 

further in Section 4 where a parameterized class of resolutions for some 

semidirect product groups is calculated. 

In addition, we will view the classic Koszul resolution from this perspective. As 

is pointed to in the cases above, such splittings of the bar construction in general 

can lead to solutions of other ‘transference problems’ (in the terminology of [l, 

161) including those involving Lie algebras. 

For the remainder of this paper, let P = R[t,, . . , t,] denote the polynomial 

algebra and A = R(t,‘, . . , t;’ , t,, . , t,,] the Laurent polynomial algebra over 

R. Of course, A is the group ring of the free abelian group G on n-generators 

t,, . . , t,, (which we write multiplicatively) and P may be thought of as the 

monoid ring on the positive cone (with respect to the usual order) in G. If we 

should need to refer to the number of multiplicative generators n, we will write 

A,, and P,,. 

There are natural augmentations in P and A which are quite distinct. This 

distinction is at the heart of the difference between Lie algebra cohomology and 

group cohomology. One striking way in which this manifests itself is the action of 

the generalized Steenrod algebra in the cohomology of a cocommutative bialge- 

bra. It was shown in [21] that there is such an action for any cocommutative 

augmented bialgebra and, in fact, an algorithm was given for its action. Both A 

and P are cocommutative Hopf algebras and it is easy to compute that the 

generalized Steenrod algebras obtained are different. In fact, they differ in only 

one relation. For A one has sq(’ = 1, and for P, one has sq” = 0. These facts are 

well known. In the first case, one has the ordinary Steenrod algebra and in the 

second case, one has the ‘Lie algebra version’ of the Steenrod algebra [23]. 

3.1. Exterior algebra SDR 

Both A,, and P,, are tensor products of n copies of A I = I?[ t] and P, = R[t- ‘, t] 

respectively. Thus, we begin with these one-generated algebras. It will be 

convenient to use the notation p(t) for an element in either A, or P,. When 

possible, both algebras will be discussed simultaneously. Thus, let Q denote either 

A, or P,. The augmentation in Q is given by 

A&R-O, 4dt)) =dq) > 

where q = 0 if Q = P, and q = 1 if Q = A,. The unit of Q is simply given by 

c(r) = r. 1. 

An R-basis of Q is given by the set of all t’ where i ranges over the non-negative 

integers in the case of P, and over all integers in the case of A,. 
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Theorem 3.1. Let Q be either the group ring R[ tP ‘, t] of the free abelian group on 

one generator t or the polynomial algebra R[ t] on one generator t (over an arbitrary 

commutative ring with one R). Let E[ u] denote the exterior algebra on one 

1 -dimensional generator u. 

Define a Q-linear map d : Q @‘R E[ u] + Q BR E[ u] of degree - 1 and an R- 

linear map cp : Q gR E[ u] + Q OR E [ u] of degree + 1 by 

d(t”) = 0, d(u) = t - c(t) , 

cp(t”) = t(“}U ) cp(t”U) = 0 ) 

where, in the polynomial case, 

, if n>O, 
if n=O 

and, in the group ring case, 

t(rl) _ t” - l 
t-l 

<Q BR E[ul, 4 is a Q-f ree resolution of R. Extending the augmentation E and unit 

cr to (Q C3R E[u], d) in the obvious way (o(n) = n C3 1, and e(u) = 0), we have an 

SDR 

Proof. The identity dp + cpd = 1 - (TF is easily verified. 0 

The resolutions mentioned in Theorem 3.1 are, of course, well known, as are 

their tensor products below; however, their contracting homotopies, crucial to 

many constructions, are less widely distributed. The approach taken here presents 

both resolution and contracting homotopy as one entity, viz., an SDR. This is a 

very useful viewpoint. Generally, there are algorithms which transform one or 

more resolutions into another resolution. This is an important aspect of homologi- 

cal perturbation theory as mentioned in the Introduction. In these cases, the 

algorithms are designed to produce new SDR’s, i.e., the contracting homotopy on 

the new resolution is also constructed. This makes it possible to iterate. 

As already mentioned (see (l)), one can tensor strong deformation retractions 

to produce a resolution 

CR + Q, @K E[u,> . . . . 3 u,,l> cp> 

where Q is either the group ring of the free abelian group on n generators 

t,, ” . , t,, or the polynomial ring on n generators t,, . . . , t,,. In fact, the polyno- 
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mial case in degree one yields exactly the contracting homotopy of Hochschild 

[13] for the Koszul resolution. We will present these contracting homotopies in 

Lemma 3.3 using the notation defined in Theorem 3.1 for t!“‘. 

The actions of the maps 7~, cp, and E for the one-generated case will be recorded 

in Lemma 3.2. Let Q be either A = R[tC’, t] or P = R[t], as usual. 

Lemma 3.2. cp, E, and 7~ are R-linear maps such that 

P(l) = 0 3 F(1) = 1 ) ?-r(l) = 1 ) 

cp(t’) = t(‘) ) 
ifQ=A, 

ifA=P, i>O, ?T(t’) = E(tl). 1 ) 

cp(f’U) = 0 ) F(h) = 0 ) %-(t’u) = 0 . Cl 

Note that (p(p = 0 for the contracting homotopy above. In fact, the side 

conditions hold for 

(R+QQ”IW, ~1. 

The tensor product of these resolutions has the contracting homotopy of (1). It 

is a sum cp @ = Et_, ‘p, where 

From Lemma 3.2 we thus obtain the following: 

Lemma 3.3. There is an explicit contracting homotopy cp@ such that 

(R F 2 Q,, @R E[u,, . . . 3 u,,l, cp@‘> 

is an SDR satisfying the side-conditions. It is given by cp@ = zf=,, ‘p, where, on an 

additive basis element t’,’ . . . tbu:l . . u? (5, E (0, l}), 

and sgn is the function 

i 

1, if s = 1, 
w(5,,...,5,-,)= t,+...+c,_,, ifs>l, 0 
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For example, in the group ring case for n = 4, let t’ = t’,lt;tf:$. Then explicitly, 

(5) 

Using (2)-(4), Lemmas 2.4 and 2.5, Theorem 3.1 and Lemmas 3.2 and 3.3, it is 

not difficult to see that there is an SDR of the form 

Explicit formulae for V, f, and 4 will be given in Lemma 3.5. The one- 

dimensional group ring case was given in [6]. Using the present notation, V, f, and 

4 are Q-linear maps such that 

Before giving the n-dimensional case, some new notation will be introduced. 

Write 

fit(k) = fl+{k) = ff”)+’ 

Notice that if k = 0, then f’ftk’ = 0, and, if k = 1, then f’f’kl = f’. It will also be 

convenient to talk about exponents e = i + {k}, etc., for the expression fC = fi+‘k). 

Lemma 3.5. There is an SDR 

The inclusion V is completely determined by the fact that it is Q-linear, V(u,) = [ti], 

and V(uu) =V(u) *V( ) v w h ere ‘*’ denotes the well-known shu@e product in the bar 
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construction [5, 191. In other words, the inductive formula (2) produces exactly the 

classical formula for the inclusion of the exterior algebra in the bar construction 

given in the cited references. 

The projection f, a Q-linear map, is given by 

f[b, I. . . 1 bk] = (-l)“L c f(b,, . . . , b,)““ ~~~p4up, . . up, , 
,lp,‘:...<pks” 

where 

and for s = 1,2, , pk, the exponential e(b,, . . . , bk),r’. -+J~ depends upon which 

interval of the partition of { 1,2, . . . , pk} determined by p, < . . . < pk s is in. For 

Osisk-1, onehas 

e(b,, . . . , bk)t)” “’ 

exp(b,, s) +. . . + exp(bk-,+,. ~1, 

+ exp(b,_,, s) + {exp(bk-i+L, s)> , 

furthermore, exp is given by 

exp(t’,’ . . . t:;, s) = i, 

and the exponent Us is given by I+ = ( k ; ’ ). 

The homotopy 4 is given by this and Lemma 2.5, 

$[b, 1 . . 1 bk] = sVf[b, I. . . 1 b,] -[b, : sVf[b? I.. . 1 bk] 

+ . . . + (-l)kp’[b, ) . . . ) b,_, : sVf([b,])] . 

Proof. The proof is a straightforward application of (2)-(4), Lemmas 2.4 and 2.5, 

Theorem 3.1 and Lemmas 3.2 and 3.3, using induction. 0 

As with many inductions, it is useful to investigate the first few cases of Lemma 

3.5. Parts of the rank-three and rank-four cases were given in [16] and [17]. Of 

course, the rank-four case can be worked out completely using (5). It should be 

emphasized that the Scratchpad computer algebra system was quite useful in 

investigating general perturbation formulae. In fact, (5) was calculated symboli- 

cally within that system. Needless to say, it would have been quite tedious initially 

to investigate these things ‘by hand’. In retrospect, one can see general combina- 
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torial patterns which allow the development of such formulae, but they will not be 

presented here. It is noted that even when these general formulae are obtained, it 

is most convenient to use them via computer algebra. The parameterized class of 

resolutions given in Section 4 below were computed completely symbolically and 

quite conveniently using Scratchpad. The point of such computations is, as 

always, to develop a feel for a particular kind of mathematical structure and to 

reinforce intuition. It is felt that the examples presented here are of sufficient 

complexity to shed some light on what to expect in other cases, but, it is hoped, 

are still within the bounds of palatability. 

4. Application to resolutions over certain monoids 

This section relies heavily upon the results in [16] for calculating resolutions by 

deforming resolutions that split off of the bar construction. The idea will be 

briefly sketched, but the reader should see [17] and [16] for more details. 

4.1. A parameterized class 

A very simple class of semi-direct products of the form G X/K where 

f : K* Aut(H) is a given group homomorphism will be considered here. In fact, 

we will look only at the case K = Z and H = Z’. A homomorphism f as above is 

then given simply by an invertible matrix of integers F. Note that F is simply a 

2 X 2 matrix of integers with determinant 21. The semi-direct product group G 

determined by such a matrix 

has underlying set G = Z’ X Z and has group law given by 

where F”’ denotes exponentiation of matrices, and ‘t’ denotes matrix transpose. 

We could require the condition 

ab-dc=kl 

as originally stated, but in any case, the product rule given in (6) gives a monoid 

operation on Z”, the identity element being (O,O, 0). For a given F, write the 

corresponding monoid as G,. 

It is well known that one has a theory of homological algebra over monoids in 

analogy with the theory for groups. We will consider the class of monoids given in 
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(6) for arbitrary F and present a small resolution of the integers over the integral 

monoid ring of G,. 

To begin, note that there is a bar construction for G, just as in the group ring 

case (see Section 1.2 and the references cited there). We briefly describe the bar 

construction here. Let A = R(G,) be the monoid ring (i.e., the free R-module 

with basis G, and multiplication given by extending the multiplication of G, 

linearly). The specific augmentation considered on A is analogous to that of the 

group ring case 

Recall that different augmentations can give quite different cohomological results 

(cf. the introduction of Section 3). 

The model of B(G,) we use is given as follows. B,,(G,) is the free R-module 

generated by one element denoted by [ 1, B,,(G,) is the free R-module generated 

by all elements of the form b = [g, 1 . . 1 g,,] where g, E G, with the convention 

that the element is zero if one of the g, is the identity of G,. The bar construction 

resolution is given by B(A) = A C3 &A) w h ere the A-linear differential a is 

ah I . . I g,,l= a2 I . . . I g,,l 

+ c (-l)‘[g, I I g,-I I g,g;+, I gi+z I . . . I snl 

+(-l>“[g, I ” . I EL-II 

Homological perturbation theory may be used to find a small resolution over the 

monoid ring R(G,) using the exterior algebra resolution which splits off of the bar 

construction in Lemma 3.5. As described briefly in Section 1.1, the idea is this. 

One has an SDR 

Q3 and R(G,) have the same underlying R-module structure and because of this, 

B( Q3) has the same underlying R-model structure as the bar construction B(G,). 

Let B denote this R-module for either case. Thus B supports two different 

differentials, viz., the bar construction differential a+ for the free abelian group, 

and the bar construction differential a for the monoid G,. Let M = a - a+ (i.e., 53 

is an initiator [l, 9, 181). In this situation, there is a formal process which, when 

convergent, gives a new SDR 

((R(G) @ E]u,, u2> 43 0 + (B, a>,+‘) 

Only the differential for the formal solution will be written here. There are 

analogous formulae for the inclusion, projection, and homotopy [l, 2, 7, 241. 
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This formula along with the analogous formulae for the rest of the SDR first 

occurred in [24] for the study of the normalized chain complex of a simplicial 

fibration. It was noticed that they could be applied in more general situations in 

[2] (inspired by conversations with M.G. Barratt [3]). They were developed into 

what is known now as ‘the basic perturbation lemma’ in [9-11, 181 and in [7] 

where some of their formal properties in terms of asymptotic behavior were given 

as well. A natural explanation of how the formulas arise is given in [l] where they 

are proven to be essentially unique. Some very concrete applications to resolu- 

tions over group rings of nilpotent groups can be found in [17], and, as already 

mentioned, an application to formal groups occurs in [16] where models for 

spectral sequences are also developed by their use. Their application to the 

calculation of resolutions first occurs as a remark in [18], but was expanded in 

[17]. It was noticed in [16] that the two-stage method mentioned in [18] and [17] 

could be replaced by one application of the basic perturbation lemma as above. 

By using the explicit data from Lemma 3.5 in this case we obtain the following: 

Proposition 4.1. Consider the monoid G, with underlying set iZ3 and rnonoid law 

(6). Using the homological perturbation method referred to above, one has a 
resolution that splits off of the bar construction 

((R(G)@ E[u,, 4, uJ,O A (B> a>, 4’) 2 

f’ 

where 

In order to discuss the reduced complex, i.e., the complex whose homology is 

the homology of G,, we need a lemma that is of independent interest because 

iterates of the construction in Lemma 3.3 occur in general formulae for resolu- 

tions obtained by the methods in this paper. The proof is straightforward. 

Lemma 4.2. Let Q be the Laurent polynomial ring in the variable t and let E be the 
augmentation (Section 3.1). As in Lemma 3.3 define t(‘) = (t’ - l)l(t - 1). Extend 
this notation for i 2 0 by defining the iterates 
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1-I i-l I-1 
t(l)2 = 

c t{” ) t{fh = 2 c t(k) ) . . . ; 

j=O j=O k=O 

then we have 

Ep) = (1) 0 

Because of this, the reduced complex whose homology is the homology of the 

monoid G, is given by 

iJ’U; = 0 ) 

&l,u, = 0 ) 

h.~u, = (f- l)u, + hu, , 

2u,u, = gu, + (k - l)U, ) 

~‘u,u+ = (l- det(F))u,u, , 

where det(F) = fk - gh is the usual determinant. 

Note. Recently the Scratchpad system mentioned in this paper evolved into what 

is now called the Axiom system. 
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