
J. Symbolic Computation (1986) 2, 123-138

Modelling the Combination of Functional and
Logic Programming Languages

U. FURBACH AND S. HOLLDOBLER
Universitdt der Bundeswehr, Munchen, F.R.G.

(Received 14 January 1985, and in revised form 7 January 1986)

The combination of functional and pure Horn clause logic languages is formally introduced .
To give a framework for the investigation of implementations we define a complete and
consistent model, which retains full invertibility and allows separation of logic and control .
Some existing implementations are discussed from this viewpoint . An extended unification
algorithm is suggested, which incorporates the features demanded by our model .

Introduction

The rapid success of logic programming has led to numerous proposals for increasing the
efficiency of logic programming systems . In many cases these systems are enriched with
control mechanisms, thus putting the burden of controlling the evaluation of programs on
the programmer (e.g . Clark et al ., 1982). However, we see a real advantage of logic
programming in the possibility of preserving the principle of separation of logic from
control .

One way to bring together the demand for efficiency and for logic without control
mechanisms is the combination of a functional and a logic programming language (e.g .
Robinson & Sibert, 1982 ; Sato & Sakurai, 1983) . Another advantage of such a
combination is that both functional and logic programming styles can be used within one
system. In this paper we define a semantic model for the combination of a functional and
a logic language . This aims at a theoretical framework for both, the specification of such a
combination, and the discussion of the correctness of implementations .

For our purpose there is no need to define a functional language completely or to rely
on an existing language . We only have to specify sufficient conditions to provide a
framework for our semantic model . Concerning the logic programming language we
assume the general case of pure Horn clause programs . In particular, we do not include
any control mechanisms. Since we see control mechanisms mainly as a tool for increasing
efficiency of logic programs we expect that in a combination of functional and logic
programming this can be done by stressing the functional part of a program .

In section 1 we define FHCL (functional and Horn clause logic language) as a class of
languages which combines functional and logic programming . In section 2 we give a
model of an FHCL program which we use in section 3 as a framework for the discussion
of implementations . In section 4 we propose an implementation based on an extended
unification algorithm, which incorporates the features demanded by our model, and prove
its soundness . Section 5 contains an overview of related work .

We assume the reader to be familiar with the usual notations and basic results of logic

0747-7171/86/020123+ 16 $03 .00/0

	

© 1986 Academic Press Inc . (London) Ltd .

1 24

	

U. Furbach and S . Holldobler

programming and theorem proving (see, e .g. van Emden & Kowalski, 1976 ; Chang &
Lee, 1973) .

1. Combining Functional and Logic Languages
Let HCL (Horn clause logic) be the language of a first order predicate calculus

restricted to Horn clauses, such that

FHCL is a countable set of j-place function symbols, j > 0,
- CHCL is a countable set of constants .

Let FL (functional language) be a functional language, such that

(a) Syntax
- FFL is a countable set of j-place function symbols, j > 0,
-CFL is a countable set of constants,
---deffeFL if feFFL .

(b) Semantics
If deff e FL and f is an n-place function symbol, then there is a valuation function
M, such that

MQdef f I
C (CFL -+ CFL) •

An example for such a functional language is an FFP system (Backus, 1978) in which
"DEF p F" corresponds to the above "def f" and the representation function p to our
valuation function M. Another example is the collection of equations in KRC (Turner,
1981) .
The combination of HCL and FL is the set of pairs ({def fl , . . ., deff„}, S), called

FHCL, where

---for all 1 5 i< n : deff e FL,
--S is a finite set of clauses of HCL.

The set of function symbols of FHCL is F = FHCL u FFL and the set of constants of
FHCL is C = CHCL U CFL . Elements of FHCL are called programs .

The first component of an FHCL-program can be regarded as a functional
environment for S ; note that in case of FHCL n FFL = (p this environment cannot be used
by the second component S .

In the following we assume that an FHCL-program can only be activated from within
the logic part, i .e. by an initial goal statement . If the functional language will completely
be defined it should be possible to activate an FHCL-program also from within the
functional part .

As an example of an FHCL-program, take the following program which can be used to
prove that the edges a, b and c of a triangle satisfy the law of Pythagoras, The set of
clauses is given by

S = {PYTHAGORAS(a, b, c) <-SQUARE(c, a * a + b * b)
SQUARE(v, v * v)
MULT(x, 0, 0) -
MULT(0, y, 0) F-
MULT(x+ 1, y+ 1, y+ 1 +z MULT(x, y+ l, z)} .

Modelling the Combination of Functional and Logic Programming Languages

	

125

and def+ and def* are elements of an arbitrary functional language FL such that
MQdef+I and M~def*f are the operations on natural numbers one would expect .

Note that functional expressions can be used freely within a Horn clause and that the
multiplication of two numbers can be performed functionally as well as logically . It seems
that the clauses for MULT are not necessary for a computation containing a
PYTHAGORAS-clause. In section 4, however, we will demonstrate that in certain cases
only a logic evaluation of MULT guarantees a refutation of a PYTHAGORAS-clause .

2. Semantics of FHCL-programs

In the above definition of FHCL both components, the functional and the logic
language, seem to play a balanced role . In this section, however, we focus on the logic
part of FHCL by describing the semantics of a combined language entirely within the
logic framework . There are at least two reasons for this : firstly, the simple and well-
known semantics of Horn clause programs provide an elegant way of describing the
combination, and secondly, our view of the functional part as a tool for increasing
efficiency is reflected .

FUNCTIONAL CLOSURE

We shall now shift the function definitions from the FL-part of an FHCL-program into
the HCL-part by transforming every definition into Horn clauses which represent the
graph of its meaning . To provide an inference mechanism with the possibility of using
these new Horn clauses we also have to include the set of equality axioms .

Let K be the set of equality axioms for a given program prog = ({deffl , . . ., deffn }, S)
as follows :

x=xf--

	

(K1)
y=x4-x=y

	

(K2)
x=zf- x=yAy=z

	

(K3)
P(x1, . . ., Xi , . . ., x,i) f- X0 = xx A P(x 1i . . ., xo, . . ., xn)

for each n-place predicate symbol occurring in S and for all 15 j < n,

	

(K4)
f(xi, . . ., xi , . . ., xrt) = f(xl, . . ., X o , . . ., x„) f-Xi = Xo

for each n-place function symbol occurring in prog and for all
1 < j < n .

	

(K5)

The graph of deff (graph (P) is the possibly infinite set of clauses

{f(CI, . . ., cn) = -'-- : c1, C E CFL A M1{deff jj(C 1 , . . ., c,) = c} .

If prog = ({deffl , . . ., deff„}, S) is a program, its functional closure fcl(prog) is defined
as

SuKuF,
where

K = the set of equality axioms for prog
and

F = graph(fl) u . . . u graph(f„) .

The functional closure of a program will be used as a base for the following two
semantics of FHCL .

Note that for some classes of functional languages it is possible to transform a
functional program f into a logic program which computes the same results, thus avoiding

1 2 6

	

U. Furbach and S . Holldobler

the possibly infinite set of clauses graph(f) . If, for example, the functional programs
consist of a set of equations together with a call-by-name semantics the transformations
suggested in Kowalski (1983) can be used .

MODEL-THEORETIC SEMANTICS

The denotation of a program prog = ({deffi, . . ., deff„}, S) is given by

D~prog] = n Mod(fcl(prog)),
where Mod(fcl(prog)) denotes the set of all Herbrand models for fcl(prog) .

If P is an n-place predicate symbol occurring in S, its denotation is

DE[P]1 = {(ti, . . ., t„) : P(t l , . . ., t„) e D {prog]} .

As a trivial consequence of the definition of a functional closure we get the following

PROPOSITION 1

The interpretation of a function symbol feFFL determined by each element of
Mod(fcl(prog)) is the same as defined by MQjdeff 1 .

OPERATIONAL SEMANTICS

To define the operational semantics by LUSH-resolution (Hill, 1974) we regard a
clause as a chain of atoms instead of a set of atoms . A goal statement is a chain consisting
only of negative atoms. A goal statement is based on a set of chains S if all the constants,
function, and predicate symbols occurring in it occur also in S . Without loss of generality
we define the operational semantics only for goal statements which contain one atom .
The success-set of a set of clauses S is the set of all A in the Herbrand base of S, such

that S u {A} has a LUSH-refutation .
The operational semantics of a program prog = ({deffl , . . ., deff„}, S) is given by

O~progj = success-set of fcl(prog) .

If P is an n-place predicate symbol occurring in S, its operational semantics is

OQPI = {(t1, . . ., t„) : P(t,, . . ., t„) e OQprog]J} .

From the completeness of LUSH-resolution (Hill, 1974 ; Apt & van Emden, 1982) we
derive

PROPOSITION 2

Djfprogj=OQprog] holds for each FHCL-program .

3 . Discussion of Implementations

So far we have given a formal specification of a semantic framework for the
combination of functional and logic programming languages . We propose to use this
semantics of FHCL as a measure for implementations .

In this section we investigate whether LUSH-evaluation, i .e. the formalisation of the
evaluation-strategy used in LOGLISP (Robinson & Sibert, 1982), and input-output
patterns satisfy the requirements of our model .

Modelling the Combination of Functional and Logic Programming Languages

	

127

LUSH-EVALUATION

In the definition of LUSH-derivation, a selection function s is used to select atoms from
a non-empty goal statement . We extend this concept by allowing s to select also certain
terms from within a goal statement .

Let prog = ({deff1, . . ., deff„}, S) be a program and G the set of goal statements based
on S .
A selection function s for prog is a total function on S-{D}, such that for each geG,

its value s(g) is either an atom from g or a term f (c 1i . . ., c,) from g and f e (f1, . . ., f„} .
A LUSH-evaluation from prog by s is a sequence D = (go , . . ., gof goal clauses such

that for i= 1, . . ., m, g ; is obtained from g ;_ 1 by

-input resolution if s(g;- 1) yields an atom to be resolved upon or
-by substituting the occurrence of f(c 1 , . . ., c,) in g,- 1 by MQdeff1I(c 1 , . . ., c,) if

s(gi-1) =f(c1, . . ., c,) .

LUSH-evaluation can be seen as LUSH-resolution enriched by the possibility of
evaluating terms corresponding to the FL-part of a program . An implementation very
close to our concept can be found in LOGLISP (Robinson & Sibert, 1982) . The
substitution accomplished during a LUSH-evaluation step is done in LOGLISP within
the deduction cycle as a simplification step, i .e. before selecting the next atom every
reducible functional application within the goal statement is reduced .

In the framework of the preceding chapter the substitution-part of LUSH-evaluation
can be modelled by the following resolution strategy .

If s(g) yields a term t ; -f(c 1 , . . ., c,), resolve the atom containing this term, say

P(t1 , . . ., tn)

against the clause from the set of equality axioms K with head P. The resolvent is a goal
chain containing

f(C1, . . ., C,) = x0 A P(t 1 , . . ., x0, . . ., t1,) .
Resolving the atom f(c 1 , . . ., c,) = x 0 against the unique clause f(c1 , . . ., c,) = e t-

from graph(f), we get a goal chain containing

P(tt , . . ., c,

which is clearly the result of the LUSH-evaluation step .
To demonstrate that LUSH-evaluation is not a correct implementation, take our

previous example program for PYTHAGORAS, together with the goal
<- PYTHAGORAS(3, 4, 5) and a selection function such that we get the derivation :

4- PYTHAGORAS(3, 4, 5)
+- SQUARE(5, 3 * 3 + 4 * 4) by resolution
f-SQUARE(5, 9+4*4)
SQUARE(5, 9+ 16)

	

by substitutions with respect to LUSH-evaluation .
s-SQUARE(5, 25)

Since 25 is a constant there does not exist a substitution which unifies SQUARE(5, 25)
and SQUARE(v, v * v) . This implies that PYTHAGORAS(3, 4, 5) is not in the success-set
with respect to LUSH-evaluation .

As described above we can simulate in our model the above LUSH-evaluation, but

1 2 8

	

U. Furbach and S . Holldobler

additionally we can "compute" further

computed by LUSH-evaluation .
This incompleteness seems to be well known by language designers ; e .g. in LOGLISP

the programmer can find a context condition, which allows to use LISP-functions freely
only within the hypothesis of a Horn clause .

INPUT-OUTPUT PATTERNS

A less restrictive alternative to control the use of defined function symbols can be based
on the idea of mode-declarations or input-output patterns (e .g . Clark & Gregory, 1981 ;
Conery & Kibler, 1983) .

For each n-ary predicate symbol there is assumed to exist a mode-declaration, which is
simply an integer i < n together with the convention that

-for all 1 <,j < i : x; is an input-argument
-for all i < j S n : xj is an output-argument .

If no atom in the clause-set of a program contains a defined function symbol within an
input-argument and if goal statements only contain constants as input- and variables as
output-arguments, it should be possible to prove completeness of LUSH-evaluation for
this restricted class of Horn clauses .

However, an essential feature of logic programs gets lost by this restriction of the
language, namely the possibility to invert a program . This can usually be done by giving a
goal statement, where some of the "input-arguments" are variables and/or some of the
"output-arguments" are constants .

In the next section we suggest an implementation which incorporates invertibility and
we prove its correctness .

4 . Extended Unification

There are two obvious arguments against the use of our semantic model as a base for
evaluating FHCL-programs . Firstly, we cannot in general compute the set of clauses F,
and secondly, taking input clauses from S u K will lead to an exploding deduction tree,
where most of the branches are investigated needlessly .

In this section we propose a unification algorithm which takes into account, that terms
containing function symbols can be evaluated within the FL-part of an FHCL-program .
An algorithm which supports the reduction of functional expressions will be the starting
point of our development . We will then demonstrate that in order to incorporate the
features demanded by our model, we have to extend this unification procedure . First of all
we need some simple definitions .

Let X be an atom or a term and t a term . Then X is reducible with respect to t, iff t is a
subterm of X, such that

t =_ f(c l , . . ., c„) A deff e FL A MQdef f I (c 1 , . . .) cn) = c .

+--SQUARE(5, 25)
+-x4 = 25 A SQUARE(5, x 0) by resolving against the appropriate equality axiom
+-SQUARE(5, 5 * 5)

	

by resolving against 5 * 5 = 25 +-from graph(*)
El

	

by resolving against SQUARE(v, v * v) +- .

In other words PYTHAGORAS(3, 4, 5)c- OI{PYTHAGORAS], but cannot be

Modelling the Combination of Functional and Logic Programming Languages

	

129

To define the reduction of an atom or a term we introduce the notion of a term-
substitution [(el/sl)	(em/sm)], where e; and s; are terms, every e ; is different from s,,
and no two elements in the list have the same term after the stroke symbol .
The application of a term-substitution [(ells,), . . ., (em /s m)] is given by

- P(tl, . . ., t,.)[(el/S1), . . ., (em/sm)]
= P(tl[(el/Sl), . . ., (em/sm)], . . ., tn[(el/S1), . . ., (em/sm)]),

-t[(el/st), . . ., (em/Sm)] = t(el/S1)[(e2/s2), . . ., (em/sm)], t[] = t,
- t(e/s) = t', where t' is obtained from the term t by simultaneously substituting each

occurrence of a subterm s by e .

In the following we use the obvious extension of the application of a term substitution
to goal statements and sets

The reduction of an atom or a term X, red(X), is given by red(X) = X[(c/s)], where
X is reducible with respect to s =_ f(c l , . . ., c„) and MQdeff]J(c 1 , . . ., e„) = c .

The extended disagreement set of a non-empty set W of expressions is obtained by
locating the leftmost symbol, called disagreement symbol, at which not all the expressions
in W have exactly the same symbol, and then extracting from each expression in W the
subexpression that begins

-with the leftmost function symbol from FFL and contains the disagreement symbol, if
such a function symbol exists,

-with the disagreement symbol, otherwise .

We can now formulate our first version of the unification algorithm :

Step 1 Set k = 0, Wk = { A, B}, and ak= e .
Step 2 If Wk is a singleton, stop ; ak is a unifier for {A, B} . Otherwise, find the extended

disagreement set D k of Wk .

Step 3 If an element of Dk , say tk , is reducible, let ak+ 1 = ok and Wk+ 1
= Wk[(red(tk)/tk)], and go to Step 6 .

Step 4 If there exist elements V k and tk in Dk such that uk is a variable that does not
occur in t k , go to Step 5. Otherwise, stop ; {A, B} is not unifiable .

Step 5 Let ak+1 = a k{tk /v k } and Wkt1 = Wk{tk/vk } .
Step 6 Set k = k + 1 and go to Step 2 .

The reader might have noted that the above algorithm is not a real unification
algorithm in the sense that an application of the resulting substitution a on the input
atoms A and B yields in general not two syntactic equal atoms Aa and BQ . However, if
one defines an appropriate equivalence class with respect to the reducibility of terms over
the Herbrand base, Aa and Ba are "semantically" equivalent .

THE EXTENDED UNIFICATION ALGORITHM

It is obvious that the above algorithm is very similar to LUSH-evaluation. Using this
unification in the Pythagoras-example of section 3 we get the same intermediate goal
SQUARE(5, 25), but while LUSH-evaluation does not permit a unification with
SQUARE(v, v * v), the algorithm above yields v = 5 as a proper result . This is obtained by

1 30

	

U. Furbach and S . Holldobler

reducing terms during the unification process, i .e . unification of 25 and v * v{v/5} = 5 * 5
is possible with

5 * 5[(red(5 * 5)/5 * 5)] = 5 * 5[(25/5 * 5)] = 25 .

However, an attempt to resolve +- SQUARE(z, 25) with

SQUARE(v, v*v)4-

	

(1)

will lead to D1 = {25, z * z} within the unification algorithm . Since there is no element in
D1, which is either a variable or a reducible functional expression, the unification will fail .
To avoid the above incompleteness, we assume that an appropriate logic program for

the multiplication, say with predicate symbol MULT, is defined . If the procedure were
to have the form

SQUARE(v, y) <- MULT(v, v, y)

	

(2)

unification and resolution could be performed yielding the new goal statement

+- MULT(z, z, 25) .

To use the above property we define a partial function eql which, applied to any
f e FFL, yields the equivalent predicate symbol for f . More precisely, if
MQdef f ~(c1, . . ., cn) = c, then egl(f) is an (n+ 1)-ary predicate symbol, for which S
contains clauses such that

{(ci, . . ., c,,, c) : MQdef f J(c1, . . ., c„) = c} c DQegl(f)~ .

In the above example * eFFL and eql(*) = MULT . Note that DQegl(f)] must contain
a model for graph(f) and for the equality axioms as subset such that

(sl, . . ., s,,, t) a DQegl(f)]i iff f(s1, . . ., s,,) = t e D[prog] .

From the definition of eql and the equality axiom (K4) we conclude that (1) and (2) are
equivalent .

To embed this transformation in the unification algorithm we define an extended unifier
of the form <a, 'c, a>, where a is a substitution, r is a term substitution, and a is a set of
atoms . The elements of a will be added as conditions to the procedure whose head is to be
unified. a and r will initially be the empty substitutions and a will be the empty set . In the
above example

<a, ,u, a> = <a, [(25/z*z)], {MULT(z, z, 25)}> .

Let G - +-A1 A . . . A A. be

a goal statement and P - B<-B1 A

. . . A B„ be a
procedure. If A ; and B are unifiable with the extended unifier <a, ti, {C1, . . ., Ck} >, then
the goal statement

((<-AIA . . .AA;_1AB1A . . .ABnAA,+IA . . .AA,AC1A . . .ACk)z)a
is called the extended resolvent of G and P .

The extended unification algorithm is laid down below where,

egl'(f(tl, . . ., tn), t) = egl(f)(t1, . . ., t, t).

Step 1 Set k = 0, Wk = {A, B), and <O-k, 'Vk, ak> = <8, [10 .

Step 2 If Wk is a singleton, stop ; <ak, 'rk, ak> is an extended unifier for {A, B} .
Otherwise, find the extended disagreement set Dk of Wk .

Modelling the Combination of Functional and Logic Programming Languages

Step 3 If an element of DO say tk , is reducible, let

<ak+1s Tk+1, ak+1> = <ak , Tk-(red(tk)/tk), ak),

Wk+l = Wk[(red(tk)/tk)],
and go to Step 7 .

Step 4 If there exist elements Vk and t k in D k such that vk is a variable that does not
occur in tk , go to Step 5. Otherwise, go to Step 6 .

Step 5 Let

and go to Step 7 .
Step 6 If an element of Dk, say tk , is of the form f(t l , . . ., t„) and feFFL and the other

element of Dk , say Sk , is not of the form g(t l , . . ., t,„) and g 0 FFL , then let

<6'k+1, Tk+1, ak+1> _ <ak, Tk . (Sk/tk), ak U {egl'(s , tk)}>

Wk +I = Wk [(Skltk)],

and go to Step 7 . Otherwise, stop ; (A, B} is not unifiable .
Step 7 Set k = k+ 1 and go to Step 2 .

Note, in the case that FFL = Q, the extended disagreement set reduces to the
disagreement set in pure HCL . Furthermore, there does not exist a reducible term and the
extended unification algorithm reduces to the unification algorithm in pure HCL . From
these facts we can conclude that the extended resolvent reduces to the well-known
resolvent in pure Horn clause logic .

In the following the extended unification algorithm is applied to compute
F--PYTHAGORAS(3, 4, z), where eql(*) = MULT

+--PYTHAGORAS(3, 4, z)

	 <{3/a, 4/b, zlc}, [], 0)

.--SQUARE(z, 3*3+4*4)

	 < {z/v}, [(9/3 * 3), (16/4 * 4), (25/9 + 16), (25/z * z)],
{MULT(z, z, 25)})

{--MULT(z, z, 25)

	 {5/z}

0

CORRECTNESS OF THE EXTENDED UNIFICATION ALGORITHM

In this section we prove the soundness of the extended unification algorithm, i .e . its
correctness with respect to our model .

Let A, A1 , . . ., A„ be atoms and prog be a program . Then 0Q+-AJ prog , the meaning of
+-A with respect to prog, is given by

OQ+-A]I prog = { QIAa e0Eprog]} .

<O'k+1, Tk+1, ak+1) - <0_k(tklvk), Tk, ak>,

Wk+1 = Wk{tk/vk},

131

1 3 2

	

U. Furbach and S . Holldobler

The meaning of +-A, A . . . A A,, is defined by

OI{ A1 A . . . A A,]j,og =n {OI{Ad progll < i < n} .

Note that from ae 0[-A]1prog we can derive Arr e OQprog] and hence with proposition
2 we derive AveDEprog~ .

Notation: In the following we assume one given program ({def,fl, . . ., deff,}, S) and
therefore we will omit the index prog. Let X[s] denote that the subterm s occurs in the
atom or term X and X[s/t] denotes X, where one occurrence of t has been replaced by s.
g => g' denotes that g' is a LUSH-resolvent of g in fcl(prog) and g =>E g' denotes that g' is
an extended resolvent of g in S . Let D, D 1 and D2 be conjunctions of atoms .

The following technical lemma simply states that we can perform the substitution of a
variable for an arbitrary subterm of an atom or a term using only LUSH-resolution .

LEMMA 1 . Let X be an atom or a term and s be a subterm of X . The variable y does not
occur in X, then

<-X[s]=>*E--X[y/s] A y=S .

The proof is obtained by induction on the depth of the occurrence of the subterm s in X
by applying axioms from K . D

In the extended unification algorithm we can identify two cases where the length of the
list of term-substitutions i is increased .

In step 3, whenever a reduction is performed and the reduced term is substituted, this
reduction is additionally memorised in i and in step 6 when equivalent predicates are
introduced . After leaving the unifier we can use these term-substitutions to replace other
occurrences of subterms . This reflects the structure-sharing property of an intended
implementation . However, from a semantical point of view these term-substitutions can
as well be postponed to later extended unification steps .
The following lemma proves that in both cases the term-substitutions in T can be

omitted without changing the semantics .

LEMMA 2 . Let .-(Di)a be an extended resolvent, then

OQ -(DT)C = OQF-Dcr .

PROOF . From the extended unification algorithm we derive that (tls) e i if (i) red(s) = t or
(ii) eql'(t, s) . The proof is obtained by induction on the length of i . Let 2 be [(tls)] and
assume further that s occurs only once in D (the general case is obtained by an induction
on the number of occurrences of s) .

(i) The reducibility of s implies that there exists a subterm u of s and a constant c such
that u -f(t 1	t„) and u = c - eF . Let x be a new variable .

Let 2 be any element of 0T<--(Dr)o . Then by the definition of <-(Di)0), we
have

E ((Dz)a)A=>
and we have to show that

<-(Da)1=.* C7 :
E-(Da)2[u] =:~-* F-(D J)2[x/u] A X=U

	

(Lemma 1)

.- (D[c/u])a l
__ <-(Dr)cA

Hence A E OQ4- Dal.

Assume 2 e OQ<- Dul . We have to show that

E--D[t/s]a,1 =:>* 1-
1 +-D [t/s] a.1

	

.- D [c/u] a.1
+-Da2[c/u]

~* E--Do2[x/u] A x = c (Lemma 1)
<- Dc).[u/u] (u = c F-)
4--DQ2

(ii) Let D = D 1 A P[s] A eql'(t, s), where P is the atom containing s. For
.1e0~+-(DT)aj we conclude

{(P[t])a1, eql'(t, s)a l} e DQprog],

and by the definition of Degl, (t=s)aA.EDQprogj. Since D{prog] is also a model
for the equality axioms we derive with Lemma 1 that (P[s])a2EDEprog] and
therefore 1E0j<-Daj . Similarly, if Ae 0~<-Da1J, then)le OQ +--(Di)a~ holds .

For T =- T' . (t/s) it follows from the induction hypotheses that

0E[4-(Dr)a] = 0[+ -(D[(t/s)])i,

which is equal to OE<--Dai as shown above . O

In the following lemma we show that in an extended resolvent each eql'(s, t) can be
replaced by s = t . In the example of the deduction of .-PYTHAGORAS(3, 4, z), this
means that egl'(z *z, 25), which is identical to MULT(z, z, 25), can be replaced by
z*z=25 .

LEMMA 3 .
0[+-D A eg](f)(sl, . . ., s., t)~ = OI{ - D A f(s1, . . ., sn)= tj .

PROOF . Assume that
A eO~ -D A egl(f)(s1, . . ., s„, t)~,

it follows that

{D2, {egl(f){st,

	

;, t))2} S D{prog]

and from the definition of DQegl(f)]j, we derive that

(f(s1, . . ., s„) = t) .1 e DTprog]j .
Therefore,

,1EOQ4--D Af(s1, . . .,s„)=t]~ .
Similarly, if

,1 e OT I D A f(st, . . ., s„) = t]~,
then

AE0T-D A egl(f)(s1, . . ., s,,, t)] . 0

Modelling the Combination of Functional and Logic Programming Languages

	

133

=> - (Da)2[x/u] A U = X (K2)
f- (Da).l[c/u] (u = c f-)

1 3 4

	

U. Furbach and S . Holldobler

We will prove the soundness of the extended unification algorithm by constructing a
deduction sequence in our model for each extended resolution step . Because of Lemmas 2
and 3 we can omit the term substitution in our extended unification algorithm and we can
replace each eql'(s, t) by s = t in the extended resolvent . Using E-unify as an abbreviation
for a call of the extended unification algorithm modified as described above, we can state
the main lemma for the soundness proof .

LEMMA 4.

E-unify({s, t}, <e, 0>) = < a, a> implies <--D A s = t =>* <-(D A (Aa))a .

PROOF . The proof is by induction on the structure of s. Let EST denote
E-unify({s, t}, <s, 0>) .

(1) If s is a constant, then EST terminates successfully if
(i) t = s : EST = <s, Q> implies that +-D A s = t= 4-D by (K1), or
(ii) t is a variable :

EST = <{ s/t}, 0> implies that i-D A s=t=> 4--D{s/t} by (K1), or
(iii) t=f(t i , . . ., t„), fEFFL , and t is irreducible :

EST = <e, {t = s)> implies 4---D A s = t==> 1--D A t = s by (K2), or
(iv) t-f(t l , . . ., t,J,fEFFL , and t is reducible :

obviously, the set of terms with the relation reducible is a well-founded set, and
therefore we show by induction on the length m of the reduction sequence
performed within the extended unification algorithm that the lemma holds .
The reducibility of t implies that there exists a subterm u of t and a constant c
such that a =_ f'(ti, . . ., t„), f c- FFL and u= c 4 E F .

m = 1: i .e . red(t) is irreducible . There are two possibilities :
-if red(t) is a constant and red(t) __ s, then EST = <a, 4 > implies

*-D A s= t[u]

	

D A s= t[x/u] A x= u

	

(Lemma 1)
•

		

.- D A s = t[x/u] A u= x (K2)
+- D A s = t[c/u]

	

(u = C+-)
~- D A s = red(t)

•

	

F- D (K1)

-if red(t) - h(s l , . . ., sn) and h c- FFL , then EST = <c, {red(t) = s}> implies
<-D A s = t[u] =>* +- D A s = red(t)

	

(see above)
•

	

<-- D A red(t) = s . (K2)

m .m + 1 : EST= E-unify({s, red(t)j, <E, 0>) - <a, a) implies
D A s = t[u] * 4--D A s = red(t)

	

(see above)
~* (D A (Aa))cr

	

(induction hypotheses)
(2) Let s be a variable .

(i) if t is irreducible, then
---ifs occurs not in t :

EST = <{ t/s}, 0> implies +-D A s = t- 4 D{t/s} by (K1) .

(3)

Note that

implies

Modelling the Combination of Functional and Logic Programming Languages

	

135

- if s occurs in t, then EST terminates successfully if t is of the form f(t t , . . ., t„)
and f e FFL
EST= <E, {t = s} > implies +-D A s = t =>+-D A t = s by (K2) .

(ii) if t is reducible, then the lemma follows by an induction similar to the one given
in (1) and applying (2(i)) .

-If s=f(s l , . . ., sn) and feFFL, we have symmetric cases to (1) and (2) with s and
t reversed and the proof is a variation of the theme .

-If s=f(s 1 , . . ., s n) and foFFL, then EST terminates successfully if :

(i)
(ii)

t is a variable : see (2(i))
t=f(tl , . . ., t„) .

By induction on n we prove that
E-unify({st, . . s,), (t1, . . ., t0}, <a, 0) _ <a, a>

implies
+-D A S 1 = t 1 A . . . A Sn = to =>* <-(D A (Aa))a .

n=1 :
E-unify({(sl), (t1)}, <a,

	

E-unify({S1, t 1 }, <E, 9)>) _ <a, a>

implies
+-D A s l = t 1 =* +-(D A (Acc))u

by the outer induction hypotheses .

n =:>n + 1 : since
E-unify({(sl, . . ., S11+ 1), (t1, . . ., tn+1)}, <a, 9)>) = <a, a>,

there exist substitutions al, a2 and sets of atoms a t , a 2 such that
E-unify({(s l , . . ., sn), (t1, . . ., tn)}, <E, Q>) = <a1, a1>

and

where

Therefore,
<-D A S1 = t 1 A . . . A Sn = to A S„+1 " to+1

* (D A (Aa l) A Sn+1 = tn+1)a1

	

(inner induction hypotheses)
(D A (Aa1))a1 A (Sn+1 = to+1)a

~* ((D A (Aa 1))a 1 A (Aa2))a 2

	

(outer induction hypotheses)
-((D A (Aa1))a1 A (Aa2)a 1)a 2
4-(D A (Aa1) A (Aa2))a1a2
4-(D A (Aa))a .

It follows that <-D A f(s 1 , . . ., sn) = f(tl , . . ., t„)

~* -D A S l = tl A . . . A Sn - to
- (D A (Act)),, . R

E-unify({P(s1, . . ., sn), P(t1, . . ., t0}, <a, Q>) _ <a, a>

<-D A S 1 = t1 A . . . A Sn = t, .* -(D A (Aa))a .

E-unify({sn+1 a1, to+1a1}, <a, T>) = <a2, a2>,

<a, a> = <a1 a2, a l ua2> .

THEOREM. (Soundness of the extended unification algorithm) : Let (g o , . . ., 9n) be a sequence
of goal statements. Then, for all 0 < i < n, g1=t g;+1 implies gl=:-,- *g1+1 .

1 3 6

	

U. Furbach and S . Holldobler

PROOF . Because of Lemmas 2 and 3 it is sufficient to show that gi =~-E g,+ 1 implies
gi =~>* gi+ 1 , where g' is obtained from g by replacing each eql'(s, t) by s = t and omitting i .

Let g, = --+D, A P(s1 , . . ., Sit) ; since gc =p-E g~+ 1, there exists a clause of the form
P(t l , . . ., t„) E-D2 in S, such that

E-unify({P(s l , . . ., sit), P(t 1 , . . ., t0}, <E, 0>) = < a, a> .

Therefore we can construct the following deduction sequence in our model :

IMPROVING THE EXTENDED UNIFICATION ALGORITHM

Our intention is to design a combined functional and logic system where functional
evaluation is preferred . Assume we want to carry out some computation using natural
numbers. Very likely the functions "+" and "-" and their logic equivalents . "ADD" and
"MINUS" would be at our disposal . If we try to resolve

P(x+3) and P(5)4--,

we will receive the extended unifier <e, [(5/x+3)], {ADD(x, 3, 5)}> and the resolvent

l-ADD(x, 3, 5) .

Note that ADD(x, 3, 5) will be evaluated logically, However, the 1-dimensional inverse
of "+", "-", is also an element of the system and 5-3 is reducible . Therefore, we may
prefer an extended unifier of the form

<{5-3/x}, [(5/x+3)], ¢),

which would immediately lead to p .
Step 6 of the extended unification algorithm can be improved such that a functional

expression is replaced by its equivalent logic expression only if a reducible inverse
functional application does not exist . Otherwise the unification proceeds with the inverse
functional application .

We consider it an interesting problem to study the derivation or synthesis of inverse
functions as part of an advanced logic programming environment .

5. Related Research

Some of the features of our extended unification algorithm can be found in
Subrahmanyam & You (1984) . They propose a "semantic unification" where two terms
f(t 1 , . . ., t p) and g(s 1 , . . ., s,) are semantically unifiable iff there exist semantically
equivalent forms (obtained by reduction(s) on any reducible term in f(t 1 , . . ., t,,) and
g(s 1 , . . ., sq)), which are unifiable . However, in the execution model based on semantic
unification, invertibility is not possible in general . In our extended unification algorithm,
this is achieved by using equivalent logic expressions and inverse functions, respectively .

D 1 A P(s 1 , . . ., S it)

~* f--D 1 A P(x 1 , . . ., x„) A 8 1 =x 1 A . . . A s„=x„, (K2, K4, K5)
where x 1 , . . ., x„ are variables not occurring in g,
+--D1 ADZ A s 1 = t 1 A . . . A s„ = t„ (P(t1, . . ., tn) -D2)

= ' +-(D 1 A D2 A (Aa))Q - gi+1 . (Lemma 4) p

Modelling the Combination of Functional and Logic Programming Languages

	

1 3 7

Kornfeld (1983) extends Prolog to include equality : If an attempt to unify two terms t t
and t2 fails, the system will establish a goal (EQUAL t t t 2) . If this goal succeeds, then the
unification succeeds with the new variable bindings generated by the refutation of
(EQUAL t t t 2) . Therefore, functional expressions are always evaluated logically, while in
our extended unification, algorithm functional expressions are evaluated functionally
whenever this is possible . Because a new goal (EQUAL t l t 2) takes into account only the
terms t l and tz and not, as we do, the functional expressions that contain t l and t2 , the
system is incomplete .

Barbuti et al . (1984) propose a combined declarative (Horn clause logic) and
procedural (functional) programming language whose components operate on the same
data (Herbrand terms) and share the basic control mechanisms (rewriting) and basic data
control mechanisms (unification) . A procedural process can occur as a subgoal in the
body of a declarative clause and is rewritten only when it has the necessary information
on its input channels. The rationale for this is that a procedural process lacks the
invertibility property which is achieved by using equivalent logic expressions and inverse
functions in our system .

Fribourg (1984) presents the formalism of equational logic programming. A program is
a set of equational definite clauses which is activated by an initial equational goal clause .
The computation rules are reflection and superposition . Superposition can produce new
definite clauses and hence an equational logic program can be seen as an-sometimes
unlimited-extending object . Though equational clauses allow only one predicate, namely
the equality, general predicates of the form P(t) can be handled by translating them into
the equation P(t) = true, where P(t) is a term and true is a constant . While reflection and
clausal superposition are based on the Knuth-Bendix completion rule, our computation
is based on unification and resolution .

6. Conclusion

We have given a model for the combination of functional and logic languages . This
model relies on the transformation of the functional part of a program "prog" into Horn
clauses, yielding the functional closure of "prog" . The functional closure together with the
LUSH-inference rule preserves the advantages of a pure Horn clause calculus :

- completeness
---separation of logic and control
-invertibility .

We have demonstrated that current proposals for implementations lack some of these
properties and have developed an extended unification algorithm taking these features
into account. This algorithm is implemented in FranzLISP on a VAX 11/750 (Holldobler
et al., 1985) .

We would like to thank Bruno Buchberger for his valuable suggestions concerning the
improvement of this paper . Thanks go to Klaus Aspetsberger for his help during the revision of the
soundness proof.

References
Apt, K. R., van Emden, M. H. (1982) . Contributions to the theory of logic programming . J. Assoc . Comp .

Mach. 29, 3 .

1 3 8

	

U. Furbach and S . H611dobler

Backus, J . (1978). Can programming be liberated from the von Neumann style? A functional style and its
algebra of programs . Commun. ACM 21, 8 .

Barbuti, R., Bellia, M ., Levi, G ., Martelli, M. (1984) . On the integration of logic programming and functional
programming. IEEE Int . Symp. Logic Prog ., pp. 160-166 .

Chang, C . L., Lee, R . C . T. (1973) . Symbolic Logic and Mechanical Theorem proving . New York: Academic
Press .

Clark, K . L ., Gregory, S . (1981) . A relational language for parallel programming . Proc. of the ACM conf. on
functional programming languages and computer architecture .

Clark, K . L., McCabe, F . G., Gregory, S . (1982) . IC-PROLOG language features . In: (Clark, Tarnlund, eds)
Logic Programming . New York: Academic Press .

Conery, J., Kibler, D . (1983) . AND parallelism in logic programs . Proc . 8th IJCAI. Karlsruhe, West Germany .
Fribourg, L . (1984) . Oriented equational clauses as a programming language . J . Logic Prog., 165-177 .
Hill, R . (1974) . LUSH resolution and its completeness . Memo 78, DCL Univ. of Edinburgh .
Holldobler, S ., Furbach, U., Laul3ermair, T. (1985) . Extended unification and its implementation . Proc. GWAI

'85, Informatik Fachberichte 188 . Berlin : Springer .
Kornfeld, W. A . (1983) . Equality for Prolog. Proc. 8th IJCAL Karlsruhe, West Germany .
Kowalski, R . (1983) . Logic programming. IFIP 83 . Amsterdam: Elsevier-North Holland .
Robinson, J . A ., Sibert, E. E . (1982) . LOGLISP: An alternative to PROLOG. In: (Hayes, Michie, Pao, eds)

Machine Intelligence 10 . New York: John Wiley & Sons .
Sato, M ., Sakurai, T. (1983). QUTE: A PROLOG/LISP type language for logic programming . Proc . 8th IJCAI.

Karlsruhe, West Germany .
Subrahmanyam, P . A., You, J-H . (1984) . Conceptual basis and evaluation strategies for integrating functional

and logic programming . Proc, of the 1984 Int . Symp. on Logic Programming .
Turner, D . A . (1981) . The semantic elegance of applicative languages. Univ, of Kent at Canterbury.
van Emden, M. H,, Kowalski, R . A . (1976) . The semantics of predicate logic as a programming language . J.

Assoc. Comp . Mach . 23, 4 .

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

