
Metareasoning about Security Protocols using

Distributed Temporal Logic

Carlos Caleiro1

CLC, Department of Mathematics, IST, Lisbon, Portugal

Luca Viganò2 David Basin3

Department of Computer Science, ETH Zurich, Switzerland

Abstract

We introduce a version of distributed temporal logic for rigorously formalizing and proving met-
alevel properties of different protocol models, and establishing relationships between models. The
resulting logic is quite expressive and provides a natural, intuitive language for formalizing both
local (agent specific) and global properties of distributed communicating processes. Through a
sequence of examples, we show how this logic may be applied to formalize and establish the cor-
rectness of different modeling and simplification techniques, which play a role in building effective
protocol tools.

Keywords: Security protocols, protocol models, intruder models, distributed temporal logic,
secrecy, authentication, metareasoning.

1 Introduction

Many security protocols have been proposed to help build secure distributed
systems. Given how difficult it is for humans to predict all the possible ways

1 Email: ccal@math.ist.utl.pt
2 Email: vigano@inf.ethz.ch
3 Email: basin@inf.ethz.ch
This work was partially supported by FCT and EU FEDER via the Project FibLog
POCTI/MAT/37239/2001 of CLC, and by the FET Open Project IST-2001-39252 and
BBW Project 02.0431, “AVISPA: Automated Validation of Internet Security Protocols and
Applications”.

Electronic Notes in Theoretical Computer Science 125 (2005) 67–89

1571-0661 © 2005 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.05.020
Open access under CC BY-NC-ND license.

mailto:ccal@math.ist.utl.pt
mailto:vigano@inf.ethz.ch
mailto:basin@inf.ethz.ch
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


for distributed computation to proceed, it is not so surprising that attacks have
been found on many protocols that were originally believed to be secure. Due
to the subtlety of the problem, the use of formal methods for analyzing security
protocols has been gaining popularity, e.g. [1,2,5,10,13,14,15,16]. In this paper,
we report on how a suitable version of temporal logic for communicating agents
can be used as a metalevel tool for analyzing security protocol models and
properties.

Our starting point is the distributed temporal logic DTL of [9], which
focuses on the expressibility of properties from the local point of view of
each agent, and which we extend in order to also express global properties.
Aside from its clean interpretation structures, which provide a simple, intu-
itive model of distributed systems, our reasons for using this logic are primarily
threefold. First, it is well-suited for specifying and reasoning about communi-
cating agents in distributed systems. Second, its temporal dimension can be
effectively used to formalize and reason about interleaved protocol executions.
Finally, its distributed dimension, with explicit agent identifiers, supports an
elegant formalization of the different security goals that protocols are supposed
to achieve, such as different forms of authentication and secrecy.

The logic we introduce here provides an object level tool where we can
specify and reason about specific protocols and the properties that the proto-
cols are supposed to establish. In particular, as we describe in [3,4], using the
logic it is possible to specify a protocol-independent distributed communica-
tion model, on top of which protocols can be formally defined and analyzed.
The principal aim of our work, however, is not the mere ad hoc analysis of
specific protocols. Rather, our long-term objective is to use our logic as a
metalevel tool for the comparative analysis of security protocol models and
properties. Our logic provides a basis to rigorously investigate general met-
alevel properties of different protocol models by establishing modeling and
analysis simplification techniques that contribute to the sound design of ef-
fective protocol validation tools. In this regard, we believe that our logic can
contribute to clarifying the concepts involved by providing a basis for naturally
representing and reasoning about the underlying computational models.

We anticipate several applications. The most direct consists of a rigorous
account of different widely used simplification techniques, as we discuss in this
paper. We prove here a general lemma about secret data that is similar to the
secrecy theorems of [7,12]. We also obtain soundness and completeness results,
with respect to typical security goals, for two model-simplification techniques:
one intruder is enough, along the lines of [6], and the predatory intruder, a
restriction on the behavior of the intruder, variants of which underly the trace
models used in practice, e.g. [14]. While these results, mutatis mutandis, have

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–8968



already been shown for other particular formalisms, our logic provides a means
for proving them in a general and uniform way within the same formalism,
which paves the way for further general investigations. Our formalization
has also allowed us to clarify aspects of these simplification properties that
are often neglected or cannot be specified in the first place (e.g. concerning
principals’ identities and the way security properties are established).

We have also begun applying our logic to other metatheoretical investiga-
tions, such as developing appropriate partial-order techniques that may reduce
the (potentially infinite) state-space exploration involved in model-checking
protocol properties (cf. [2]). This is work in progress and the first results are
promising.

We proceed as follows. In §2 we introduce our distributed temporal logic.
Using the logic, in §3, we define a protocol-independent distributed communi-
cation model, on top of which protocols and security goals can be formalized
and analyzed, as shown in §4. In §5 we present metalevel results, and conclude
in §6 with a discussion of related and future work.

2 Distributed temporal logic

DTL [9] is a logic for reasoning about temporal properties of distributed sys-
tems from the local point of view of the system’s agents, which are assumed to
execute sequentially and to interact by means of synchronous event sharing.
Distribution is implicit, making it easier to state the properties of an entire
system through the local properties of its agents and their interaction. Herein,
we introduce a minor extension of DTL tailored also to support the smooth
formalization and proof of global properties.

The logic is defined over a distributed signature

Σ = 〈Id, {Acti}i∈Id, {Propi}i∈Id〉

of a system, where Id is a finite set of agent identifiers and, for each i ∈ Id,
Acti is a set of local action symbols and Propi is a set of local state propositions.
The global language L is defined by the grammar

L ::= @i[Li] | ⊥ | L⇒ L ,

for i ∈ Id, where the local languages Li are defined by

Li ::= Acti | Propi | ⊥ | Li ⇒Li | Li U Li | Li S Li | @j [Lj] ,

with j ∈ Id. Locally for an agent, U and S are respectively the until and
since temporal operators. Actions correspond to true statements about an

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–89 69



A e1 �� e4 �� e5 �� e8 �� . . .

B e2 �� e4 �� e7 �� e8 �� . . .

C e3 �� e4 �� e6 �� e7 �� e9 �� . . .

Fig. 1. A distributed life-cycle for agents A, B and C.

πA(∅)
αA(e1)

�� πA({e1})
αA(e4)

�� πA({e1, e4})
αA(e5)

�� πA({e1, e4, e5})
αA(e8)

�� . . .

Fig. 2. The progress of agent A.

agent when they have just occurred, whereas state propositions characterize
the current local states of the agents. Note that @j[ϕ] means different things
depending on the context. If it is a global formula, it means that ϕ holds at
the current local state of agent j. If it is a local formula appearing inside an
@i-formula then it is called a communication formula and it means that agent
i has just communicated with agent j for whom ϕ held.

The interpretation structures of L are suitably labeled distributed life-
cycles, built upon a simplified form of Winskel’s event structures [19]. For
brevity, we just give an outline of their definition here and refer to [3] for
details. A local life-cycle of an agent i ∈ Id is a pair λi = 〈Evi,→i〉, where
Evi is the set of local events and →i ⊆ Evi×Evi is the local successor relation,
such that the transitive closure →∗

i defines a well-founded total order of local

causality on Evi. A distributed life-cycle is a family λ = {λi}i∈Id of local
life-cycles such that the transitive closure →∗ of → =

⋃
i∈Id →i defines a

partial order of global causality on the set Ev =
⋃

i∈Id Evi of all events. This
last condition is essential since events can be shared by several agents at
communication points.

We can check the progress of an agent by collecting all the local events
that have occurred up to a certain point. This yields the notion of the local

configuration of an agent i: a finite set ξi ⊆ Evi closed under local causality,
i.e. if e →∗

i e′ and e′ ∈ ξi then also e ∈ ξi. The set Ξi of all local configurations
of an agent i is clearly totally ordered by inclusion and has ∅ as the minimal
element. In general, each non-empty local configuration ξi is reached, by
the occurrence of an event that we call last(ξi), from the local configuration
ξi \ {last(ξi)}. We can also define the notion of a global configuration: a finite
set ξ ⊆ Ev closed for global causality, i.e. if e →∗ e′ and e′ ∈ ξ then also e ∈ ξ.
The set Ξ of all global configurations constitutes a lattice, under inclusion, and
has ∅ as the minimal element. Clearly, every global configuration ξ includes
the local configuration ξ|i = ξ ∩Evi of each agent i. Given e ∈ Ev, note that
e↓= {e′ ∈ Ev | e′ →∗ e} is always a global configuration.

An interpretation structure µ = 〈λ, α, π〉 consists of a distributed life-cycle

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–8970



{e1}
���

{e1, e2}

��
��

��
� {e1, e2, e3, e4, e5}

���
�

∅

��
��

��
�

�������
{e2}

�������

�������
{e1, e3} {e1e2, e3} {e1, e2, e3, e4}

���������

									
. . .







{e3}

���
{e2, e3}

�������
{e1, e2, e3, e4, e6}

Fig. 3. The lattice of global configurations.

λ plus families α = {αi}i∈Id and π = {πi}i∈Id of local labeling functions. For
each i ∈ Id, αi : Evi → Acti associates a local action to each local event, and
πi : Ξi → ℘(Propi) associates a set of local state propositions to each local
configuration. We denote the tuple 〈λi, αi, πi〉 also by µi.

Fig. 1 illustrates the notion of a distributed life-cycle, where each row com-
prises the local life-cycle of one agent. In particular, EvA = {e1, e4, e5, e8, . . .}
and →A corresponds to the arrows in A’s row. We can think of the occur-
rence of the event e1 as leading agent A from its initial configuration ∅ to the
configuration {e1}, and then of the occurrence of the event e4 as leading to
configuration {e1, e4}, and so on; the state-transition sequence of agent A is
displayed in Fig. 2. Shared events at communication points are highlighted
by the dotted vertical lines. Note that the numbers annotating the events are
there only for convenience since no global total order on events is in general
imposed. Fig. 3 shows the corresponding lattice of global configurations.

We can then define the global satisfaction relation at a global configuration
ξ of µ as

• µ, ξ � @i(ϕ) if µ, ξ|i �i ϕ;

• µ, ξ �� ⊥;

• µ, ξ � γ ⇒ δ if µ, ξ �� γ or µ, ξ � δ,

where the local satisfaction relations at local configurations are defined by

• µ, ξi �i act if ξi �= ∅ and αi(last(ξi)) = act;

• µ, ξi �i p if p ∈ πi(ξi);

• µ, ξi ��i ⊥;

• µ, ξi �i ϕ ⇒ ψ if µ, ξi ��i ϕ or µ, ξi �i ψ;

• µ, ξi �i ϕ U ψ if there exists ξ′′i ∈ Ξi with ξi � ξ′′i such that µ, ξ′′i �i ψ,
and µ, ξ′i �i ϕ for every ξ′i ∈ Ξi with ξi � ξ′i � ξ′′i ;

• µ, ξi �i ϕ S ψ if there exists ξ′′i ∈ Ξi with ξ′′i � ξi such that µ, ξ′′i �i ψ,
and µ, ξ′i �i ϕ for every ξ′i ∈ Ξi with ξ′′i � ξ′i � ξi;

• µ, ξi �i @j [ϕ] if ξi �= ∅, last(ξi) ∈ Evj and µ, (last(ξi) ↓)|j �j ϕ.

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–89 71



∅









ξ

�
�

�
�

�
�

�
�

�
�

�
�

�

ξ′









A e1

ϕ
�� e4

¬ϕ
�� e5

ϕ
�� e8

ϕ
�� . . .

B e2

ψ
�� e4

ψ
�� e7

ψ
�� e8

@A[ϕ]
�� . . .

Fig. 4. Satisfaction of formulas.

We say that µ is a model of Γ ⊆ L if µ, ξ � γ for every global configuration ξ
of µ and every γ ∈ Γ. Other standard operators are defined as abbreviations,
e.g. ¬, �, ∨, ∧, and

X ϕ ≡ ⊥ U ϕ next

Y ϕ ≡ ⊥ S ϕ previous

F ϕ ≡ � U ϕ sometime in the future

P ϕ ≡ � S ϕ sometime in the past

G ϕ ≡ ¬F¬ϕ always in the future

H ϕ ≡ ¬P¬ϕ always in the past

† ≡ ¬X� in the end

∗ ≡ ¬Y� in the beginning

F◦ ϕ ≡ ϕ ∨ F ϕ now or sometime in the future

P◦ ϕ ≡ ϕ ∨ P ϕ now or sometime in the past

G◦ ϕ ≡ ϕ ∧ G ϕ now and always in the future

H◦ ϕ ≡ ϕ ∧ H ϕ now and always in the past

Fig. 4 illustrates the satisfaction relation with respect to communication
formulas of our running example. Clearly µ, ∅ � @B[ψU@A[ϕ]], because µ, ξ′ �
@B[@A[ϕ]]. Note however that µ, ξ �� @B[@A[ϕ]], although µ, ξ � @A[ϕ].

Rules for proving invariants by induction can be established in our logic
in the standard way (see [3,4]).

3 The network model

We provide a specification of a generic open network where agents interact by
exchanging messages through an insecure public channel. A network signature

is a pair 〈Princ, Name〉, where Princ is a finite set of principal identifiers
A, B, C, . . . , and Name is a family {NameA}A∈Princ of pairwise disjoint finite
sets of names, corresponding to the possible aliases used by each principal (the
importance of aliases will become clearer below, e.g. in §5.2). We use primed
notation to denote names, e.g. writing A′ to denote a name used by principal
A. By abuse of notation, we also use Name =

⋃
A∈Princ NameA. Furthermore,

we assume fixed two sets Nonce and Key of “numbers” that can be used as
nonces and keys, respectively, and whose members we denote by N and K,
possibly with annotations. In general, we assume that several kinds of keys
can coexist and that each key K has its own inverse key K−1. Messages,

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–8972



which we denote by M , possibly with annotations, are built inductively from
atomic messages (names and “numbers”), by concatenation ( ; ), which we
assume to be associative, and encryption under a key K ({ }K). The set Msg
of messages is thus defined by

Msg ::= Name | Nonce | Key | Msg; Msg | {Msg}Key .

Note that we consider an equational signature with four sorts, namely the
sort of messages and its subsorts names, nonces and keys, where we follow
the usual free-algebra assumption so that syntactically different terms denote
different messages.

Given a network signature 〈Princ, Name〉, we obtain a distributed signa-
ture by taking Id = Princ � {Ch}, where Ch is the communication channel
(used to model asynchronous communication), and defining the local alphabet
of each agent (the principals and the channel) as follows. The signature of a
principal A requires actions ActA and state propositions PropA, where ActA
includes

• send(M, B′) — sending of the message M to B′;
• rec(M) — reception of the message M ;
• spy(M) — eavesdropping of the message M ; and
• nonce(N) — generation of the fresh nonce N ,

and PropA includes

• knows(M) — knowledge of the message M .

Note that we do not explore the epistemic dimension of this knowledge.

For the channel Ch we do not require any state propositions, i.e. PropCh =
∅, whereas the actions ActCh include

• in(M, A′) — arrival at the channel of the message M addressed to A′;
• out(M, A′) — delivery of the message M from the channel to principal

A; and
• leak — leaking of messages.

The model could, of course, be extended in many ways. For example, we
could include other kinds of message constructors (e.g. for hashing and expo-
nentiation), or further actions and state propositions. We will consider such
extensions in future work, where we will also include servers and further chan-
nels with distinct accessibility and reliability properties. For now, however,
the above is enough to abstractly formalize and reason about the properties
of communication between principals executing security protocols.

In the network model that we define, principals can send and receive mes-
sages, at will, always through the channel. If the principal A sends a message

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–89 73



to B′, then the message synchronously arrives at the channel, where it is stored
for future delivery to B. If delivery ever happens, it must be synchronized with
the corresponding receive action of B. However, the principal A can only send
M to B′ if A knows both the name B′ and how to produce the message M .
As usual, the knowledge of principals is not static. In addition to their initial
knowledge, principals gain knowledge from the messages they receive and the
fresh nonces they generate. Principals may also spy on messages being leaked
by the channel and learn their content. We do not allow principals to explic-
itly divert messages, but we also do not guarantee that messages delivered to
the channel are ever received.

To ensure that principals cannot learn messages in an ad hoc fashion, we
specify that the knows propositions only hold where strictly necessary. To this
end, we follow the idea underlying Paulson’s inductive model [14], in accor-
dance with the usual assumption of perfect cryptography (that the only way
to decrypt an encrypted message is to have the appropriate key). We restrict
attention to those interpretation structures µ such that, for every principal
A, the following condition holds for all messages M and global configurations
ξ ∈ Ξ such that ξ|A �= ∅:

(K) µ, ξ �A knows(M) iff M ∈ synth(analz({M ′ | µ, ξ �A (Y knows(M ′)) ∨
rec(M ′) ∨ spy(M ′) ∨ nonce(M ′)})),

where analz and synth are the functions representing how principals analyze
or synthesize messages from a given set of messages (see, e.g., [14]). Note
that (K) implies that, in every model µ = 〈λ, α, π〉 of the specification, π is
completely determined by λ and α, given πA(∅) for each A ∈ Princ. This is
equivalent to saying that the knowledge of each principal only depends on its
initial knowledge and on the actions that have occurred. A number of other
useful properties follow from (K), e.g. for each principal A ∈ Princ:

(K1) @A[knows(M1; M2) ⇔ (knows(M1) ∧ knows(M2))];

(K2) @A[(knows(M) ∧ knows(K)) ⇒ knows({M}K)];

(K3) @A[(knows({M}K) ∧ knows(K−1)) ⇒ knows(M)];

(K4) @A[knows(M) ⇒ G◦ knows(M)];

(K5) @A[rec(M) ⇒ knows(M)];

(K6) @A[spy(M) ⇒ knows(M)]; and

(K7) @A[nonce(N) ⇒ knows(N)].

To guarantee the freshness and uniqueness of the nonces generated by each
principal, we further require the axioms

(N1) @A[nonce(N) ⇒ Y¬ knows(MN )],

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–8974



(N2) @A[nonce(N)] ⇒
∧

B∈Princ\{A} @B[¬ knows(MN )],

where MN ranges over all the messages containing the nonce N . Together
with (K7), (N1) and (N2) guarantee that every nonce is generated at most
once, if at all, in each model, and always freshly (also taking into account the
initial knowledge of all agents). The specification of the network model also
comprises a number of axioms that characterize the behavior of the channel
and of each principal A ∈ Princ:

(C1) @Ch[in(M, A′) ⇒
∨

B∈Princ @B[send(M, A′)]];

(C2) @Ch[out(M, A′) ⇒ P in(M, A′)]]; and

(C3) @Ch[out(M, A′) ⇒ @A[rec(M)]],

(P1) @A[send(M, B′) ⇒ Y(knows(M) ∧ knows(B′))];

(P2) @A[send(M, B′) ⇒ @Ch[in(M, B′)]];

(P3) @A[rec(M) ⇒ @Ch[
∨

A′∈NameA
out(M, A′)]];

(P4) @A[spy(M) ⇒ @Ch[leak ∧ P
∨

B′∈Name in(M, B′)]];

(P5) @A[
∧

B∈Princ\{A} ¬@B[�]]; and

(P6) @A[nonce(N) ⇒¬@Ch[�]].

The channel axioms (C1–C3) are straightforward. They state that a message
addressed to A′ only arrives at the channel if it is sent to A′ by some principal
B; that the channel only delivers a message to A′ if such a message for A′

has previously arrived; and that if the channel delivers a message to A′ then
A receives it. The principal axioms are also simple. (P1) is a precondition
for sending a message, stating that the sender must know both the message
and the recipient’s name beforehand. The next three formulas are interaction
axioms. (P2) and (P3) state that the sending and receiving of messages, re-
spectively, must be shared with the corresponding arrival and delivery actions
of the channel. (P4) guarantees that a spied message must have arrived at
the channel, addressed to some recipient. The two final axioms limit the possi-
ble interactions: (P5) guarantees that principals never communicate directly
(only through the channel), and (P6) states that nonce generating actions are
not communication actions.

4 Modeling security protocols

Protocols are usually informally described by short sequences of messages
that are exchanged by principals in order to achieve particular security goals
in open, hostile environments. We model protocols on top of our network.

We illustrate protocol modeling by using a standard example: the (flawed)

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–89 75



simplified Needham-Schroeder Public Key Protocol NSPK [10], which we
present as the following sequence of message exchange steps.

(step1) a → b : (n1). {n1; a}Kb

(step2) b → a : (n2). {n1; n2}Ka

(step3) a → b : {n2}Kb

In this notation, a and b are variables of sort name that denote the roles
played in one execution of the protocol, and n1 and n2 are variables of sort
nonce. The arrows represent communication from the sender to the receiver.
The parenthesized nonces prefixing the first and second messages signify that
these nonces must be freshly generated before the message is sent. Moreover, it
is assumed that public and private keys have been generated and appropriately
distributed: Ka represents the public key of a, whose inverse key should be
private, i.e. known by no one but the principal using that name. Although
other possibilities, such as shared keys, could be easily added to the model,
we refrain from doing so here, for simplicity, and assume that these are the
only existing keys.

Formalizing a protocol like the above involves defining the sequences of
actions (send, rec, and nonce) taken by honest agents executing the protocol.
Namely, for each role, we formalize the actions taken and the order in which
they must be taken. In the case of NSPK, there are two roles: an initiator role
Init, represented by a, and a responder role Resp, represented by b. Given
distinct names A′ and B′, of principals A and B respectively, and nonces
N1 and N2, the role instantiations should correspond to the execution, by
principal A, of the sequence of actions runInit

A (A′, B′, N1, N2):

〈nonce(N1).send({N1; A
′}KB′

, B′).rec({N1; N2}KA′
).send({N2}KB′

, B′)〉 ,

and to the execution, by principal B, of the sequence runResp
B (A′, B′, N1, N2):

〈rec({N1; A
′}KB′

).nonce(N2).send({N1; N2}KA′
, A′).rec({N2}KB′

)〉 .

In the remainder of the paper, we use w = 〈w1.w2.w3 . . . 〉 to denote a
(possibly infinite) sequence composed of the elements w1, w2, w3, . . . , and we
use |w| to denote its length. Of course, 〈〉 denotes the empty sequence and
|〈〉| = 0. We assume that |w| = ∞ if w is infinite. We write w � w′ to denote
sequence concatenation, provided that the first sequence is finite.

In general, a protocol description like the one above may involve j name
variables a1, . . . , aj, corresponding to j distinct roles, and k nonce variables
n1, . . . , nk, and consist of a sequence 〈step1 . . . stepm〉 of message exchange

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–8976



steps, each of the form

(stepq) as → ar : (nq1, . . . , nqt
). M ,

where M can include any of the name and nonce variables. A protocol in-

stantiation is a variable substitution σ such that each σ(ai) ∈ Name, each
σ(ni) ∈ Nonce, and σ is injective on name variables, i.e. if i1 �= i2 then
σ(ai1) �= σ(ai2). We extend σ to messages, actions, sequences, and formu-
las in the natural way. Each instantiation prescribes a concrete sequence of
actions to be executed by each of the participants in a run of the protocol:
for each role i, if σ(ai) ∈ NameA then we have the corresponding sequence
runi

A(σ) = σ(stepi
1) � · · · � σ(stepi

m) where

stepi
q =

⎧⎪⎪⎨
⎪⎪⎩

〈nonce(nq1) . . .nonce(nqt
).send(M, ar)〉 if i = s,

〈rec(M)〉 if i = r,

〈〉 if i �= s and i �= r.

We can easily formalize in the logic the complete execution by principal A
of the run corresponding to role i of the protocol. If runi

A(σ) = 〈act1 . . . actn〉
then we can consider the local formula rolei

A(σ):

actn ∧ P(actn−1 ∧ P(. . . ∧ P act1) . . . ) .

In general, if we denote the set of all protocol instantiations by Inst, we
can define the set Runsi

A of all possible concrete runs of principal A in role i,
and the set RunsA of all of A’s possible concrete runs in any of the j roles:

Runsi
A =

⋃
σ∈Inst

{runi
A(σ) | σ(ai) ∈ NameA} and RunsA =

j⋃
i=1

Runsi
A .

It should be clear that µ, ξ � @A[rolei
A(σ)] if and only if A has just completed

the required sequence of actions runi
A(σ) at ξ. Often, in examples, we will

use ā = 〈a1 . . . aj〉 and n̄ = 〈n1 . . . nk〉, and write runi
A(σ(ā), σ(n̄)) instead of

runi
A(σ), and rolei

A(σ(ā), σ(n̄)) instead of rolei
A(σ).

4.1 Honesty

We take an external view of the system, and consider a protocol signature to
be a triple 〈Hon, Intr,Name〉 where Hon and Intr are disjoint sets of honest

and intruder principals, and 〈Hon ∪ Intr,Name〉 is a network signature such
that every honest principal has exactly one name. Note that this implies that

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–89 77



no honest agent will ever play two different roles in the same run of a protocol.
Without loss of generality, we assume that NameA = {A} for every A ∈ Hon.
This implies that if we know that a principal A is honest then we always write
A instead of A′. We assume also that the private key of each honest principal
is initially only known by that principal. This can be achieved by the axioms
(Key1) and (Key2) below, where A ∈ Hon:

(Key1) @A[∗ ⇒ knows(K−1
A )]; and

(Key2) @B[∗ ⇒ ¬ knows(M)], for every B ∈ Princ \ {A} and every M con-
taining K−1

A .

Models of a protocol are those network models where, furthermore, all
honest principals strictly follow the rules of the protocol. That is, for every
A ∈ Hon, if the local life-cycle of A is e1 →A e2 →A e3 →A . . . , then the
corresponding (possibly infinite) sequence of actions

w(A) = 〈αA(e1).αA(e2).αA(e3) . . . 〉

must be an interleaving of prefixes of sequences in RunsA, but using distinct
fresh nonces in each of them. Formally, we say that two sequences of actions
w and w′ are independent provided that if wi = nonce(N), for some i ≤ |w|
and N ∈ Nonce, then w′

j �= nonce(N) for every j ≤ |w′|. The requirement
on protocol models can now be rigorously defined. For each A ∈ Hon, there
must exist a set W ⊆ RunsA of pairwise independent sequences such that for
every i ≤ |w(A)| it is possible to choose w ∈ W , j ≤ |w| and i1 < · · · < ij = i
satisfying w(A)ik = wk for all k ≤ j.

Note that this is essentially equivalent to approaches such as [14], where
the behavior of an honest agent A is defined inductively in such a way that
the jth action of a sequence w ∈ RunsA can be executed only if the previous
j − 1 actions have already been executed, or to strand spaces [17,18] where
essentially the same sequences of RunsA are used to model honest agents. In
all cases, the intruders (attackers or penetrators) can act freely, according to
the standard Dolev-Yao capabilities.

In the case of the NSPK protocol, this means that the life-cycle of each
honest agent must be built by interleaving prefixes of sequences of the form
runInit

A (A, B′, N1, N2) or runResp
A (B′, A, N1, N2), where no two such initiator

runs can have the same N1, no two responder runs can have the same N2, and
the N1 of an initiator run must be different from the N2 of any responder run.

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–8978



4.2 Security goals

The aim of protocol analysis is to prove (or disprove) the correctness of a
protocol with respect to the security goals that the protocol should achieve.
For instance, the secrecy of the critical data exchanged during an execution
of the protocol among its participants is one such goal. In addition, an honest
principal running the protocol should be able to authenticate the identities of
its protocol partners by examining the messages he receives. There are many
approaches to specifying secrecy and authentication in the literature, depend-
ing in part on the underlying model used. However, the various approaches
mostly agree on the general picture. Below, we show how to formulate the
required secrecy and authentication goals of protocols in the general case,
illustrating them by means of the NSPK protocol.

As usual, given a security goal, we call an attack on a protocol any protocol
model µ and configuration ξ for which the formula expressing the goal does
not hold. Let us start with secrecy.

Secrecy

We can formalize that the messages in a finite set S will remain a shared
secret between the participants A1, . . . , Aj after the complete execution of a
protocol instantiation σ, with each σ(ai) ∈ NameAi

, by the formula secrS(σ):

j∧
i=1

@Ai
[P◦ rolei

Ai
(σ)] ⇒

∧
B∈Princ\{A1,...,Aj}

∧
M∈S

@B[¬ knows(M)].

Of course, this property can only be expected to hold in particular situa-
tions. Assume that all the participants are honest, i.e. each Ai ∈ Hon and so
NameAi

= {Ai}. One might then expect that the “critical” nonces generated
during that run will remain a secret shared only by the participating princi-
pals. Indeed, being honest, they will not reuse those nonces in further protocol
runs. Using the logic, we can check the property secrσ(F )(σ) for the relevant
set of fresh nonce variables F ⊆ {n1, . . . , nk}. As before, we sometimes write
secrσ(F )(σ(ā), σ(n̄)) instead of secrσ(F )(σ).

In the case of the NSPK protocol, this would amount to requiring that
secr{N1,N2}(A, B, N1, N2) holds, with A and B both honest.

Authentication

There are many possible notions of authentication (see, e.g., [11]). How-
ever, most authors agree that authentication expresses some kind of corre-
spondence property between the messages an agent receives in a protocol run

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–89 79



and the messages that other participants of the same run are supposed to send.
The typical authentication goal states that if an honest principal A completes
his part of a run of a protocol in role i, with certain partners and data, then
it must be the case that these partners have also been actively involved by
sending to A the messages that he received.

Given a protocol instantiation σ such that σ(ai) = A ∈ Hon and σ(aj) ∈
NameB, the property that A authenticates B in role j at step q of the protocol
can be defined in our logic by the formula authi,j,q

A,B(σ), which is

@A[rolei
A(σ)] ⇒ @B[P◦ send(σ(M), A)], if B is honest, and

@A[rolei
A(σ)] ⇒

∨
C∈Intr

@C [P◦ send(σ(M), A)], if B is dishonest,

assuming that the protocol stepq requires that aj sends the message M to ai.
Note that if we consider only one dishonest principal, as is usual, this distinc-
tion vanishes, but our formalization is more general and we will make use of
this generality later (see Proposition 5.3 below). We should therefore require
authi,j,q

A,B(σ) to hold whenever step q is considered essential for authentication.

As before, we sometimes write authi,j,q
A,B(σ(ā), σ(n̄)) instead of authi,j,q

A,B(σ).

In the case of the NSPK protocol, assuming for the moment that only one
dishonest principal exists, we could specify for honest A acting as initiator, the
authentication of the responder at step 2 using authInit,Resp,2

A,B (A, B′, N1, N2):

@A[roleInit
A (A, B′, N1, N2)] ⇒ @B[P◦ send({N1; N2}KA

, A)] ,

and for honest B acting as responder, the authentication of the initiator at
step 3 using authResp,Init,3

B,A (A′, B, N1, N2):

@B[roleResp
B (A′, B, N1, N2)] ⇒ @A[P◦ send({N2}KB

, B)] .

This last property fails in the man-in-the-middle attack on NSPK [10], as we
show in [3,4].

5 Metalevel analysis of the model

Our protocol analysis framework is based on a logic that is not specifically
tailored to security protocols, and we are thus not bound to any assumptions
about the underlying protocol model. Rather, we can use our logic to specify
and reason about different assumptions, proving different metalevel proper-
ties of security protocol models, as well as the correctness of different model
simplification techniques, within one and the same formalism in a uniform

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–8980



way. We develop our proofs in the context of the general network model we
have defined above, with explicit asynchronous communication through the
channel, and where intruders are modeled as agents within the system.

In this section, we give three substantial examples of formally reasoning
about simplification techniques for protocol models. These examples are in-
teresting in their own right. Moreover, they also illustrate how our approach
can help to clarify a number of underlying concepts that are often left implicit,
or neglected, when considering such simplifications within other approaches.

5.1 Secret data

The following lemma is an example of the kind of metalevel property that any
suitable network model should enjoy. Let S ⊆ Msg be a set of secret atomic
messages (names, nonces, and keys), and denote by MsgS the set of S-secure

messages, i.e. all messages where items from S can only appear if under the
scope of an encryption with a key whose inverse is also in S. It should be clear
that MsgS contains precisely the messages that can be securely circulated in
the network without danger of compromising any of the secrets in S. Indeed,
synth(analz(MsgS)) = MsgS and MsgS ∩ S = ∅.

More specifically, the following lemma states that under the assumption
that no principal in G will ever send an S-insecure message and that all the
nonces in S are freshly generated among the principals in G, if at some point
the S-insecure data is unknown outside of G, then it will forever remain so.

Lemma 5.1 (Secret Data) Assume that G ⊆ Princ is a group of princi-

pals, µ is a network model such that µ �
∧

A∈G @A[¬ send(M, C ′)] for every

M /∈ MsgS and every name C ′, and µ �
∨

A∈G @A[∗⇒ F nonce(N)] for every

nonce N ∈ S. If

µ, ξ �
∧

B∈Princ\G @B[¬ knows(M)] for every M /∈ MsgS,

then also

µ, ξ �
∧

B∈Princ\G @B[G◦ ¬ knows(M)] for every M /∈ MsgS.

Proof. By induction on configurations ξ′ ⊇ ξ. Assuming the base case, as
given, it suffices to prove that, given ξ′ ⊇ ξ, if µ, ξ′ � @B[¬ knows(M)] for
every M /∈ MsgS and every principal B /∈ G, and ξ′ ∪ {e} ∈ Ξ, then also
µ, ξ′ ∪ {e} � @B[¬ knows(M)] for every M /∈ MsgS and B /∈ G.

Suppose, by absurdity, that µ, ξ′∪{e} � @B[knows(M)] for some M /∈ MS

and B /∈ G. Then it must be the case that e ∈ EvB and so the local config-
uration of all other principals does not change. Moreover, αB(e) cannot be a
sending action since this would not change the local state of B. If αB(e) is ei-
ther rec(M ′′) or spy(M ′′) then it must be the case that M ′′ /∈ MsgS, but, since

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–89 81



it had to have been previously sent to the channel, this is impossible. Indeed,
by assumption, principals in G never send such messages, and no other prin-
cipal could have sent it before. Hence, it must be a nonce(N) action for some
N ∈ S. But this contradicts the fresh nonce axioms because, by assumption,
N is generated by some principal in G. Thus, µ, ξ′ � @B[¬ knows(M)] for
every M /∈ MS , B /∈ G and ξ′ ⊇ ξ, and the result follows. �

Note that the set Msg \MsgS of S-insecure messages forms precisely what
has been called an ideal in the context of strand spaces [17], whereas the set
MsgS of S-secure messages is the corresponding coideal, in the terminology
of [7,12]. In fact, Lemma 5.1 is a general result about the flow of data in the
network, which is independent of protocols. The result can of course be used
to reason about secrecy properties in protocol models, providing a result that
is very similar to those found in [7,12]. Indeed, under reasonable conditions,
the secrecy of generated nonces can be easily seen to hold.

Proposition 5.2 (Secrecy) A given protocol guarantees secrσ(F )(σ) for an

instantiation σ with only honest participants σ(a1) = A1, ..., σ(aj) = Aj,

provided that all the messages ever sent by A1, . . . , Aj in any protocol run are

({K−1
A1

, . . . , K−1
Aj

} ∪ σ(F ))-secure.

Proof. The result follows by an application of the Secret Data Lemma 5.1,
using G = {A1, . . . , Aj} and S = {K−1

A1
, . . . , K−1

Aj
}∪σ(F ). Let µ be a protocol

model, ξ a global configuration, and assume that µ, ξ �
∧j

i=1 @Ai
[P◦ rolei

Ai
(σ)].

The assumption that A1, . . . , Aj will only send S-secure messages is the first
precondition for the application of the lemma. The second precondition of
the lemma follows immediately from the fact that all the corresponding roles
of the protocol have been completed and therefore all the nonces in S are
generated in µ among the principals in G.

Take the initial configuration ∅. Clearly, no principal outside G initially
knows S-insecure messages. For the nonces it is trivial as they are gen-
erated in the model; for the keys it follows from the axioms (Key1) and
(Key2). By the lemma, we conclude that µ, ∅ � @B[G◦ ¬ knows(M)] for
every B ∈ Princ \ G and M /∈ MsgS. In particular, we have that µ, ξ �∧

B∈Princ\{A1,...,Aj}

∧
N∈σ(F ) @B[¬ knows(N)]. �

Note that our assumption here that all the messages ever sent by A1, . . . , Aj

in any protocol run are ({K−1
A1

, . . . , K−1
Aj

} ∪ σ(F ))-secure is essentially equiva-

lent to discreetness in the terminology of [7,12].

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–8982



5.2 One intruder is enough

In the following, we distinguish between one-intruder and many-intruder pro-
tocol signatures and models, depending on whether Intr is a singleton or not.
Indeed, most approaches to protocol analysis only consider one-intruder mod-
els. Below, we show that this simplification is adequate. We achieve this by
postulating a unique intruder Z who controls the activity of all dishonest prin-
cipals, by making Z inherit the initial knowledge of all of them and perform,
in some compatible sequential order, all the actions each of them performed.
Of course, this transformation should be transparent to honest agents.

Proposition 5.3 (One intruder is enough) The restricted class of one-

intruder models is fully representative in the following sense: any attack on a

protocol in a many-intruder model can be mapped to a corresponding attack in

a one-intruder model.

Proof. Let cpΣ = 〈Hon, Intr,Name〉 be a many-intruder signature and as-
sume that an attack on the security goal γ happens at configuration ξ of
µ = 〈λ, α, π〉. Consider the one-intruder signature cpΣ′ = 〈Hon, {Z},Name′〉,
with Name′Z =

⋃
A∈Intr NameA, and build µ′ = 〈λ′, α′, π′〉 as follows: µ′

A =
µA for every A ∈ Hon; µ′

Ch = µCh; and λ′
Z = 〈EvZ ,→Z〉 where EvZ =⋃

A∈Intr EvA and →Z is the successor relation associated to some discrete lin-
earization 〈EvZ ,→∗

Z〉 of 〈EvZ ,→∗〉 that has
⋃

A∈Intr ξ|A as a local configu-
ration, α′

Z(e) = αA(e), where A ∈ Intr is the unique principal such that
e ∈ EvA, and π′

Z(∅) =
⋃

A∈Intr πA(∅). It is straightforward to check that µ′ is
a one-intruder model of the protocol and ξ is still a configuration. We now
show that:

(i) µ, ξ � @A[ϕ] iff µ′, ξ � @A[ϕ], for every A ∈ Hon and every ϕ ∈ LA that
does not include communication subformulas; and

(ii) µ, ξ �
∨

A∈Intr @A[P◦ act ] iff µ′, ξ � @Z [P◦ act ], for every action act .

Property (i) is an immediate consequence of the fact that µ′
A = µA for every

A ∈ Hon, if we note that, by definition, the satisfaction of a local formula with-
out communication subformulas only depends on the local life-cycle. Prop-
erty (ii) follows directly from the fact that EvZ =

⋃
A∈Intr EvA, and for each

e ∈ EvZ , α′
Z(e) = αA(e) where A ∈ Intr is the unique principal such that

e ∈ EvA. Clearly, these two properties imply that if γ is an authentication
property then the attack must also appear at ξ in µ′. Indeed, if γ ≡ authi,j,q

A,B(σ)

with honest A, then it follows from (i) that the antecedent @A[rolei
A(σ)] of the

main implication in γ still holds at µ′ and ξ since rolei
A(σ) ∈ LA does not in-

clude communication subformulas. As for the consequent, if B is honest then
@B[P◦ send(σ(M), A)] must also fail at µ′ and ξ, again by using (i), given that

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–89 83



ξ








. . .Z1 •
send . . . •

spy1
. . . . . . ��•

nonce1 . . .

. . .Z2
. . . •

nonce2 . . . •
rec

. . . ��•
spy2

. . .

. . .Ch •
in

. . . •
leak1

•
out

. . . ��•
leak2

. . .

can be reduced to

ξ











. . .Z ��•
send

•
spy1

•
nonce1

•
nonce2

•
rec

•
spy2

. . .

. . .Ch ��•
in

•
leak1

•
out

•
leak2

. . .

Fig. 5. The one-intruder reduction.

P◦ send(σ(M), A) ∈ LB does not have communication subformulas. If B is
dishonest then the failure of

∨
C∈Intr @C [P◦ send(σ(M), A)] at µ and ξ implies

the failure of @Z [P◦ send(σ(M), A)] at µ′ and ξ, according to (ii). Note that

(iii) if µ, ξ �
∨

A∈Intr @A[knows(M)] then µ′, ξ � @Z [knows(M)],

follows easily from (ii) and condition (K). Hence, an attack on a secrecy
property can be shown to appear at ξ in µ′. If γ ≡ secrσ(F )(σ) with all roles

played by honest principals then the antecedent
∧j

i=1 @Ai
[P◦ rolei

Ai
(σ)] of the

main implication in γ still holds at µ′ and ξ, according to (i). To show that
the consequent

∧
B∈Princ\{A1,...,Aj}

∧
N∈σ(F ) @B[¬ knows(N)] also fails at µ′ and

ξ it now suffices to use either (i), for honest B, or (iii) for dishonest B. �

Fig. 5 provides a visual example of this transformation. Note that in this
case we chose a linearization where nonce1 happened before nonce2, but any
other possibility would be fine, as long as the initial causal restrictions are
met, namely, nonce1 must occur after spy1, and nonce2 must precede the
occurrence of rec. Note that the other initial causal restrictions, such as the
fact that send must precede spy1, are automatically met since the channel is
preserved.

The one-intruder reduction is an intuitive and widely used simplification,
but its proof can be enlightening. In fact, not only can the disjunctive view
of the many dishonest principals be seen as a kind of “group intruder”, but
the translation also caters for the one intruder as controlling all of them, for
which our characterization of authentication in the presence of many intruders
was essential. The result is similar to part of the one obtained in [6]. There,
however, the intruder was modeled as an abstract entity, with an obvious
counterpart on the way security properties were expressed. Our result takes
this same view from inside the system since we model the intruder as a concrete
entity, namely one (or several) of the principals.

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–8984



5.3 The predatory intruder

Among the possible one-intruder models of a given protocol, many will feature
a rather passive intruder. Any attack that can happen under these circum-
stances should certainly also be achievable by a more effective intruder. In the
following, we show that we can restrict attention to models where the intruder
Z is relentlessly and effectively committed to his task, namely:

• he spies every message sent by an honest agent immediately after it arrives
to the channel, and that is all the spying he does:

@Ch[@Z [spy(M)] ⇔ Y

∨
A∈Hon

@A[
∨

B′∈Name

send(M, B′)]] ;

• he never bothers receiving messages (he has already spied them):

@Z [¬ rec(M)] ;

• he only sends messages to honest agents, and he manages to send every
message just immediately before the honest agent gets it:

@Z [¬ send(M, Z ′)] and @Z [send(M, A) ⇒ @Ch[X @A[rec(M)]]] .

We call any one-intruder model fulfilling these requirements a predatory in-

truder protocol model. To show that this restriction is adequate, we need to be
able to transform every one-intruder model into an attack-preserving preda-
tory intruder model. The transformation amounts to purging all the (possibly
erratic) old interactions of the intruder, and introducing new timely interac-
tions according to the predatory intruder requirements, while not changing
anything from the point of view of honest agents.

Proposition 5.4 (The predatory intruder) The restricted class of preda-

tory intruder models is fully representative in the following sense: any attack

on a protocol in a one-intruder model can be mapped to a corresponding attack

in a predatory intruder model.

Proof. Let cpΣ = 〈Hon, {Z},Name〉 be a one-intruder protocol signature and
assume that an attack on the security goal γ happens at ξ of µ = 〈λ, α, π〉.
Consider the sets Old = EvZ ∩ EvCh, Succ =

⋃
A∈Hon{e ∈ EvA | αA(e) =

send( )}, Orig(M, B′) = {e ∈ EvCh | αCh(e) = in(M, B′)} with M ∈ Msg and
B′ ∈ Name, Pred =

⋃
A∈Hon{e ∈ EvA | αA(e) = rec(M), {e′ ∈ Orig(M, A) |

e′ →+
Ch e} ⊆ Old}, and New = {s(e) | e ∈ Succ} ∪ {p(e) | e ∈ Pred}. Define

the model µ′ = 〈λ′, α′, π′〉 as follows:

• µ′
A = µA for every A ∈ Hon;

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–89 85



• λ′
Ch = 〈Ev′

Ch,→
′
Ch〉 with Ev′

Ch = (EvCh \ Old) ∪ New and →′
Ch the

successor relation obtained from →∗
Ch by letting e →′

Ch s(e) for every
e ∈ Succ, and p(e) →′

Ch e for every e ∈ Pred, α′
Ch(e) = αCh(e) for

e ∈ EvCh \ Old, α′
Ch(s(e)) = leak and α′

Ch(p(e)) = in(M, A) if αCh(e) =
out(M, A);

• λ′
Z = 〈Ev′

Z ,→′
Z〉 with Ev′

Z = (EvZ \ Old) ∪ New and →′
Z any successor

relation compatible with →′
Ch on New that guarantees that every e ∈

EvZ \ Old with αZ(e) = nonce(N) precedes any p(e) with αCh(e) =
out(M, A) and N occurring in M , α′

Z(e) = αZ(e) for e ∈ EvZ \ Old,
α′

Z(s(e)) = spy(M) if αCh(e) = in(M, B′) and α′
Z(p(e)) = send(M, A) if

αCh(e) = out(M, A), and π′
Z(∅) = πZ(∅).

It is straightforward to check that µ′ is a predatory intruder model of the
protocol. Take now the global configuration ξ′ ∈ Ξ′ such that ξ′|A = ξ|A for
every A ∈ Hon, ξ′|Ch \ New = ξ|Ch \ Old and ξ′|Z \ New = ξ|Z \ Old, plus
ξ′ ∩ New = {p(e) | e ∈ ξ ∩ Pred} ∪ {s(e) | e ∈ ξ ∩ Succ}. We now show that:

(i) µ, ξ � @A[ϕ] iff µ′, ξ′ � @A[ϕ], for every A ∈ Hon and every ϕ ∈ LA that
does not include communication subformulas; and

(ii) µ, ξ � @Z [P◦ send(M, A)] if µ′, ξ′ � @Z [P◦ send(M, A)], for every A ∈
Hon and message M .

Property (i) follows from the fact that µ′
A = µA for every A ∈ Hon. Property

(ii) results from the fact that the only send actions of the predatory Z are on
p(e) events. Therefore, it must be the case that e ∈ ξ ∩ Pred is an out event
preceded by a corresponding in event e′ ∈ ξ. Clearly, e′ is an origination event
for the message and so, by definition of Pred, e′ ∈ Old. Therefore e′ ∈ EvZ

and αZ(e′) is the send action we were looking for. Using the two, we can show
that if γ is an authentication property then the attack also appears at ξ′ in
µ′. If we also prove:

(iii) if µ, ξ � @Z [knows(M)] then µ′, ξ′ � @Z [knows(M)],

then an attack can be shown to appear at ξ′ in µ′ also in the case that γ is a
secrecy goal. Property (iii) follows from the facts that the initial knowledge
of the predatory intruder is exactly the same, he does exactly the same nonce

actions, and he spies every message at least as early as the original intruder
received or spied it. �

Fig. 6 provides a visual example of the transformation. The old events are
represented by ◦ in the first model, whereas the new events are represented
by � in the second model. Clearly both inA and inZ are successor events, but
only outN is a predecessor event since outA is preceded by inA, coming from
an honest principal. Note also that nonceN could be ordered in other ways,

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–8986



ξ











. . .Z ��•
nonceN

◦
sendN

◦
sendM

◦
spyM

◦
recM

◦
spyA

◦
recZ

◦
spyA

. . .

. . .Ch ��•
inA

◦
inN

◦
inM

◦
leak

•
inZ

◦
outM

•
outA

◦
leak

◦
outZ

◦
leak

•
outN

. . .

. . . . . . . . . . . .

can be reduced to

ξ′











. . .Z ���
spyA

�
spyZ

•
nonceN

�
sendN . . .

. . .Ch ��•
inA

�
leak

•
inZ

�
leak

•
outA

�
inN

•
outN

. . .

. . . . . . . . . . . .

Fig. 6. The predatory intruder reduction.

but always before sendN .

The predatory intruder reduction is a first step towards formally justifying
the linearization of distributed communication that underlies the inductive
trace models of protocols (see [14] and also [2], for example). The remaining
step, which we do not include here for brevity, involves abstracting away the
communication channel by “replacing” it with the intruder: this amounts to
identifying the two lines Z and Ch in the bottom half of Fig. 6. A nice side-
effect of the predatory intruder reduction is that the sending actions of the
intruder can really be bound by the possible shapes of messages that honest
principals can receive in protocol roles, as is commonly assumed.

Corollary 5.5 The restricted class of one-intruder models where the intruder

only ever sends messages according to the protocol description is fully repre-

sentative.

6 Discussion

Communication and distribution are the essential ingredients of protocols.
These are the main concepts underlying our logic. Through the choice of
different signatures and axioms, we can define theories for formalizing and
reasoning about different application domains, as shown here in the case of
security protocol models and their properties. It is worth noting in this regard
that many of the problems with security protocols arise out of problems with
communication, as opposed to problems with the underlying cryptographic
algorithms (which are abstracted away with the black-box, perfect cryptogra-
phy approach). While some of the results presented here, mutatis mutandis,
have already been shown using other formalisms, our logic provides a means

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–89 87



for proving them in a general and uniform way, which provides a basis for
further general investigations.

Event structures, which are the underlying models of our logic, are compa-
rable with strand spaces, as explained in [8]. A comparison to other formalisms
for reasoning about communicating processes can be found in [9]. It is worth
emphasizing some of the advantages of our approach. To begin with, our
approach provides not just a language for describing models (as in process
algebras, for example) but also a logic for reasoning about them. Reasoning
about local temporal properties of agents in a distributed system could also
be performed in a linear temporal logic over linearizations of the distributed
models. However, this would come at the price of readability and simplicity,
as the locality dimension is lost. In contrast, our distributed logic is simple
and robust in the sense that formulas are invariant with respect to different
linearizations. We have taken advantage of this in the proofs of both the
one-intruder and the predatory intruder reductions.

We have begun applying our logic to other metatheoretical investigations,
such as developing appropriate partial-order techniques that may reduce the
(potentially infinite) state-space exploration involved in model-checking pro-
tocol properties (cf. [2]). This is work in progress and the first results are
promising. Further work is the application of our logic for reasoning about
protocol composition, as well as the development of a calculus for the logic.

References

[1] A. Armando and L. Compagna. Abstraction-driven SAT-based Analysis of Security
Protocols. In Proc. SAT 2003, LNCS 2919. Springer-Verlag, 2003. Available at
http://www.avispa-project.org .

[2] D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-Checker for Security
Protocol Analysis. In Proc. ESORICS’03, LNCS 2808. Springer-Verlag, 2003. Available at
http://www.avispa-project.org .

[3] C. Caleiro, L. Viganò, and D. Basin. Distributed Temporal Logic for Security Protocol Analysis.
In preparation, 2004.

[4] C. Caleiro, L. Viganò, and D. Basin. Towards a Metalogic for Security Protocol Analysis
(extended abstract). In Proc. Comblog’04, 2004.

[5] Y. Chevalier and L. Vigneron. Automated
Unbounded Verification of Security Protocols. In Proc. CAV’02, LNCS 2404. Springer-Verlag,
2002. Available at http://www.avispa-project.org.

[6] H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. In Proc.
ESOP’2003, LNCS 2618. Springer-Verlag, 2003.

[7] V. Cortier, J. Millen, and H. Rueß. Proving secrecy is easy enough. In Proc. CSFW’01. IEEE
Computer Society, 2001.

[8] F. Crazzolara and G. Winskel. Events in security protocols. In Proc. of CCS’01. ACM Press,
2001.

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–8988

http://www.avispa-project.org
http://www.avispa-project.org
http://www.avispa-project.org


[9] H.-D. Ehrich and C. Caleiro. Specifying communication in distributed information systems.
Acta Informatica, 36:591–616, 2000.

[10] G. Lowe. Breaking and Fixing the Needham-Shroeder Public-Key Protocol Using FDR. In
Proc. TACAS’96, LNCS 1055. Springer-Verlag, 1996.

[11] G. Lowe. A hierarchy of authentication specifications. In Proc. CSFW’97. IEEE Computer
Society Press, 1997.

[12] J. Millen and H. Rueß. Protocol-independent secrecy. In Proc. 2000 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2000.

[13] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol
analysis. In Proc. CCS’01. ACM Press, 2001.

[14] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer
Security, 6:85–128, 1998.

[15] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and Analysis of
Security Protocols. Addison Wesley, 2000.

[16] D. Song, S. Berezin, and A. Perrig. Athena: a novel approach to efficient automatic security
protocol analysis. Journal of Computer Security, 9:47–74, 2001.

[17] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman. Honest ideals on strand spaces. In
Proc. CSFW’98. IEEE Computer Society, 1998.

[18] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7:191–230, 1999.

[19] G. Winskel. Event structures. In Petri Nets: Applications and Relationships to Other Models
of Concurrency, LNCS 255. Springer-Verlag, 1987.

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 125 (2005) 67–89 89


	Introduction
	Distributed temporal logic
	The network model
	Modeling security protocols
	Honesty
	Security goals

	Metalevel analysis of the model
	Secret data
	One intruder is enough
	The predatory intruder

	Discussion
	References



