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Objectives:  To  compare  two Gaussian  diffusion-weighted  MRI (DWI)  models  including  mono-exponential
and  bi-exponential,  with  the  non-Gaussian  kurtosis  model  in  patients  with  pancreatic  ductal  adenocar-
cinoma.
Materials  and  methods:  After  written  informed  consent,  15  consecutive  patients  with  pancreatic  duc-
tal  adenocarcinoma  underwent  free-breathing  DWI  (1.5T,  b-values:  0,  50,  150,  200,  300,  600  and
1000  s/mm2).  Mean  values  of  DWI-derived  metrics  ADC,  D, D*, f, K and DK were  calculated  from  mul-
tiple  regions  of  interest  in all tumours  and  non-tumorous  parenchyma  and  compared.  Area  under  the
curve  was  determined  for all  metrics.
Results:  Mean  ADC  and  DK showed  significant  differences  between  tumours  and  non-tumorous

parenchyma  (both  P < 0.001).  Area  under  the  curve  for ADC,  D, D*, f, K, and  DK were  0.77,  0.52,  0.53,
0.62,  0.42,  and  0.84,  respectively.
Conclusion:  ADC  and  DK could  differentiate  tumours  from  non-tumorous  parenchyma  with  the  latter
showing  a higher  diagnostic  accuracy.  Correction  for kurtosis  effects  has  the  potential  to  increase  the
diagnostic  accuracy  of  DWI  in patients  with  pancreatic  ductal  adenocarcinoma.

© 2016  The  Authors.  Published  by  Elsevier  Ltd. This  is an  open  access  article  under  the CC  BY-NC-ND
. Introduction

Diffusion-weighted MR  imaging (DWI), a modality that is based
n the thermally driven random motion of water molecules (Brow-
ian motion) within tissues, has been used increasingly for the
valuation of a wide variety of solid lesions in the abdomen [1].
romising results for improved detection and monitoring of thera-

eutic effects, in terms of prediction and early response assessment,
ave been reported, amongst others, for the liver [2–10], pancreas
11–13], kidneys [14] and prostate [15,16].
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oundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
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ikolaos.papanikolaou@fundacaochampalimaud.pt (N. Papanikolaou).
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352-0477/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article u
http://creativecommons.org/licenses/by-nc-nd/4.0/).
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

The typical DWI  workflow in the clinical practice comprises:
(i) qualitative assessment, by visually depicting restricted dif-
fusion in the area of interest compared to the surroundings
at different b-values in conjunction with the corresponding
apparent diffusion coefficient (ADC) maps, and (ii) quantitative
assessment, by measuring various DWI  derived biomarkers like
ADC, in the organ or area of interest [17]. For the quantita-
tive approach, the two most commonly used models are the
mono-exponential-based calculation of ADC and, recently more
frequently, the bi-exponential-based estimation of the intravoxel
incoherent motion (IVIM)-derived metrics, such as true diffusion
coefficient (D), pseudo-diffusion coefficient (D*) and perfusion frac-

tion (f) [18]. The mono-exponential model (monoExp) is more
simple to implement, requiring the acquisition of a few b-values
and a straightforward linear regression algorithm to fit the data
[19]. It is faster to calculate and is provided automatically by the MRI
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Fig. 1. 65-year-old male patient wth a ductal adenocarcinoma (arrow) at the pancre-
atic tail. (A– D), Axial DWI  images with a b-value of 300 s2/mm. Multiple regions of
interest (ROIs) were carefully drawn on tumour (continuous line) and downstream
0 N. Kartalis et al. / European Jour

endors while the bi-exponential model (biExp) is technically more
ophisticated requiring multiple b-values (especially in the low b-
alue range, i.e. 0–200 s/mm2) and the use of additional software
or analysis of data. However, it allows for differentiation of pseudo-
iffusion effects and true diffusion effects that are both contributing

n the ADC values. Although there is no general consensus regarding
he number of b values that needed for IVIM analysis, the suggested

inimum number is at least 4, thus making such acquisitions more
ime-consuming, compared to the 2–3 b-values that are needed for

ono-exponential ADC quantification [18].
Although both models, are based on the assumption that the

robability displacement function of the water molecules fol-
ows a Gaussian distribution, it was observed that in brain DWI
pplications (reportedly at b-values higher than 1000 s/mm2), this
ssumption is not valid [20,21]. Similar findings were recently
eported for the liver, kidney, and prostate [22–25]. This is hypoth-
sised to be the result of the interaction of water molecules
ith membranes and other microstructural components, which

n turn reduces the actual diffusion distance compared to free
ater. The non-Gaussian kurtosis (NGK) model has been shown

o take into account tissue heterogeneity and two relative imaging
iomarkers namely, the kurtosis coefficient (K) and the corrected
iffusion coefficient DK can be quantified. This approach is techni-
ally demanding, time-consuming and requires the acquisition of
igh and very high b-values [21].

To the best of our knowledge, no studies exist on the applica-
ion of the non-Gaussian kurtosis model in patients with pancreatic
ancer. Therefore, the aim of this prospectively designed study was
o compare the three different DWI  models, namely the two Gaus-
ian, i.e. mono-exponential (monoExp) and bi-exponential (biExp),
nd the non-Gaussian kurtosis (NGK) models, for the differentia-
ion of tumours from non-tumorous parenchyma in patients with
ancreatic ductal adenocarcinoma (PDAC).

. Materials and methods

.1. Study population

This prospectively designed study was approved by the regional
thics review board and written informed consent was  obtained
rom all patients. Within the framework of a different study pub-
ished elsewhere [26], 16 consecutive patients fulfilled − between

ay  2010 and May  2011–the following inclusion criteria: a. high
uspicion of PDAC, based on clinical history and imaging findings,
. multidisciplinary tumour board decision for surgical treatment
ith curative intent, c. no history of previous chemo- or radiation

herapy, and d. no contraindication for MRI  examination.
All patients were enrolled on a preliminary basis. After the

xclusion of one patient, whose tumour was histopathologically
roven to be other than PDAC (namely gallbladder carcinoma), the
nal study population comprised 15 patients [mean age ± standard
eviation (SD): 64 ± 7 years; age range: 54–77 years; male/female:
/7] with histopathological proof of PDAC. The lesions had a mean
±SD) diameter of 3.2 ± 0.6 cm and, of them, 12 were located in the
ead, one in the body and two in the tail of the pancreas.

.2. MRI  technique

All examinations were performed at a clinical 1.5T scan-
er (Magnetom Avanto, Siemens Healthcare, Erlangen, Germany)
ith a 12-channel body and spine matrix coil combination. All

atients underwent free-breathing single-shot spin-echo echo-
lanar DWI  of the pancreas with 8 different b-values (0, 50, 100,
50, 200, 300, 600 and 1000 s/mm2). The diffusion gradients were
pplied in 3 orthogonal axes (tetrahedral scheme), parallel imaging
parenchyma (dashed line) at all levels (A: most cranial level—D: most caudal level).
All ROIs were then copied and pasted on all other b-value image series (please see
Fig. 2).

factor was  2 and the spectral selective fat saturation pulse was  used.
The DWI  acquisition time was 9 min  and 02 s. Details of the MRI
protocol parameters are presented in Table 1. In order to main-
tain sufficient signal-to-noise ratio, 5 averages were chosen for
all b-value acquisitions. Coronal, navigator-triggered, T2-weighted
HASTE images were obtained before the DWI  sequences for opti-
mal  slice positioning. No intravenous contrast agent was used. For
clinical purposes (preoperative staging and surgical planning), all
patients had undergone an additional, dedicated, pancreatic proto-
col multi-detector CT (MDCT) examination.

2.3. Post-processing and image analysis

The post-processing analysis was  performed using the open-
source image analysis software OsiriX version 5.6 [27] and the
UMMDiffusion plug-in version 0.1 [28,29].

One radiologist (NK) with 6 years’ experience in pancreatic
imaging carefully drew multiple free-hand regions of interest
(ROIs) at all slice levels, in order to encompass as much of the
tumour and non-tumorous parenchyma as possible, both upstream
and downstream (i.e. to the left and right of the tumour, respec-
tively), avoiding the outmost margins of the lesions/parenchyma
in order to minimise partial volume averaging (Fig. 1). There was
an effort to avoid the inclusion of vessels and areas of necro-
sis/cystic changes. The DWI  sequence chosen for ROI drawing
was the b-value image series where the tumour was  best visu-
alised; ROIs were then pasted at all other b-value image series
(Fig. 2). For optimal ROI drawing, apart from DWI, all other avail-
able images (i.e. T2-weighted HASTE and MDCT) were taken into
consideration to account for the relatively low spatial resolution
of DWI  images and, thus, minimise partial volume effects in the
calculations. In that way  (i.e. multiple ROIs in both tumour and
parenchyma per patient), essentially the whole volume of the
tumour as well as both upstream and downstream parenchyma,
when possible, was measured in all patients. In total, 85 ROI mea-
surements were performed, of which 36 were tumorous and 49
non-tumorous (21 downstream and 28 upstream). Mean (±SD)

ROI size in tumours, upstream, and downstream parenchyma were
4.4 ± 2.5, 8.1 ± 4.1, and 6.4 ± 3.7 cm2, respectively. Upstream and
downstream non-tumorous parenchyma were evaluated sepa-
rately in order to account for potential differences between these
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Table  1
Imaging parameters.

Sequence Imaging plane Voxel size (mm)  Slice thickness/gap (mm) TE (ms) TR (ms) Averages

T2-weighted HASTE Coronal 2.3 × 1.8 × 4 4/0 87 1000 1
T1-weighted in/opposed phase Axial 2.0 × 1.4 × 4 4/0 5.05/2.37 126 1
DWI  Axial 2.1 × 2.1 × 5 5/0 75 2400 5

Abbreviations: TE = excitation time, TR = repetition time.

Fig. 2. 65-year-old male patient wth a ductal adenocarcinoma at the pancreatic tail (same patient as in Fig. 1). A–H, Axial DWI  images with b-values from 0 A to 1000 s/mm2 H
show  restricted diffusion of the tumour (arrow) compared to the adjacent parenchyma. Due to the high number of averages obtained (5), the signal-to-noise ratio in the high
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-value images was  acceptable (SNRtumour = 8; SNRparenchyma = 4). I, Axial multidector
or  optimal ROI positioning in tumour (continuous line) and in non-tumorous par
sed  in conjuction with DWI  images A–H in order to compensate for the inherent lo

wo areas secondary to the presence of changes of obstructive pan-
reatitis, which is often encountered in the upstream parenchyma
nd which may  alter the microscopic structure, and thus the diffu-
ivity of the tissues [30].

The DWI  metrics that were quantified and the corresponding
ormulae used for the calculation were:

(i) ADC from the monoexponential fit, according to:

(b) = S0 exp(−bADC)

(ii) D, D* and f from the biexponential fit, according to:

(b) = S0[(1 − f) exp(−bD) + f exp(−bD∗)]

See Ref. [31].
(iii) K and DK from the non-Gaussian kurtosis fit, according to:

(b) = S0 exp(−bDK + b2D2
KK/6)

See Ref. [21],whereas S(b) is the signal intensity (SI) at a
iven b-value, S0 the SI without any diffusion weighting gradi-
nt (b-value = 0), ADC the apparent diffusion coefficient, D the
rue diffusion coefficient, D* the pseudo-diffusion coefficient, f the

icro-perfusion fraction, DK is the diffusion coefficient corrected
or kurtosis, and K the kurtosis coefficient. The kurtosis coefficient

xpresses the grade of deviation from the Gaussian distribution
nd is a unitless parameter, whose value may  be either 0 (express-
ng perfect Gaussian distribution) or higher. Kurtosis effects were
lassified as minimal (K < 0.5), intermediate (0.5 < K < 1) or substan-
DCT) image shows the tumour as a relatively well-demarcated hypovascular area.
ma (dashed line), both MDCT I and T2-weighted HASTE images (not shown) were
olution of DWI  images.

tial (K > 1). Apart from the ADC maps provided automatically by the
scanner’s console, no other maps were created and no map  analysis
was performed.

All the aforementioned models were implemented in the
UMMDiffusion plugin. No noise thresholding or similar was per-
formed during the calculation of the parameters and neither was
motion correction applied for post-processing purposes. The plu-
gin calculates the mean value within the ROI  at each b-value and
fits the signal intensity curve to the respective model. For nonlin-
ear least square fitting, the Levenberg-Marquardt algorithm was
implemented in the plugin [32,33].

In order to evaluate if the SNR at the images with a b-value of
1000 s/mm2 was sufficient, SNRb1000 was  calculated by using the
formulae:

SNRtumour = SItumour/noise and SNRparenchyma = SIparenchyma/noise,

whereas SItumour is the SI of the tumour, SIparenchyma is the SI of the
parenchyma and noise is the standard deviation of the SI of the
background air measured outside the body.

2.4. Statistical analysis
Descriptive statistics were used to describe the data. Multi-
ple comparisons of continuous data were performed by analysis
of variance (ANOVA) and, if there was a statistically significant
result, the comparisons were made using the post-hoc Bonferroni
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Table 2
DWI  metrics of the Gaussian mono-exponential and bi-exponential models as well as the non-Gaussian kurtosis model in tumours and non-tumorous (down- and upstream)
parenchyma and their analysis of variance (ANOVA).

DWI  metrics Regions Number of ROIs Mean value Standard deviation P-value (ANOVA)

ADC
(10−3 mm2/s)

Tumour 36 1.435 0.15 <0.0001
Downstream 21 1.586 0.21
Upstream 28 1.663 0.24

D
(10−3 mm2/s)

Tumour 36 0.955 0.31 0.35
Downstream 21 0.909 0.32
Upstream 28 1.045 0.39

D*
(10−3 mm2/s)

Tumour 36 17.76 17.66 0.63
Downstream 21 22.35 21.38
Upstream 28 17.63 19.29

f Tumour 36 0.30 0.15 0.32
Downstream 21 0.35 0.12
Upstream 28 0.35 0.16

K Tumour 36 1.070 0.16 0.15
Downstream 21 1.091 0.19
Upstream 28 1.003 0.17

DK

(10−3 mm2/s)
Tumour 36 2.161 0.48 <0.001
Downstream 21 2.685 0.49
Upstream 28 2.752 0.72

Abbreviations: ADC = apparent diffusion coefficient, D = true diffusion coefficient, D* = pseudo-diffusion coefficient, f = perfusion fraction, K = kurtosis coefficient, DK = corrected
diffusion coefficient.

Table 3
Comparison of the DWI  metrics ADC and DK, which showed statistical significance in the analysis of variance (Table 2), between tumours and downstream and upstream
non-tumorous parenchyma.

DWI  metrics Comparison of regions Mean difference Standard error P-value (Bonferroni)

Upstream parenchyma vs. tumour 0.23 0.05 <0.0001
ADC (10−3 mm2/s) Downstream parenchyma vs. tumour 0.15 0.05 0.007

Upstream vs. downstream parenchyma 0.08 0.06 0.72

Upstream parenchyma vs. tumour 0.59 0.15 <0.001
D (10−3 mm2/s) Downstream parenchyma vs. tumour 0.52 0.13 <0.001
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Fig. 3. Diagram representing the receiver operator curve analysis for the DWI
metrics’ apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-
diffusion coefficient (D*), perfusion fraction (f), kurtosis coefficient (K) and corrected
diffusion coefficient (DK) for the differentiation of tumours from non-tumorous
K

Upstream vs. downstream parenchyma 

bbreviations: ADC = apparent diffusion coefficient, DK = corrected diffusion coeffic

r Tukey’s studentized Range (HSD) analysis. Receiver operator
urve (ROC) analysis was performed to determine the area under
he curve (AUC) and optimal thresholds for the various DWI  metrics
or the differentiation of tumours from non-tumorous parenchyma.
oodness-of-fit for each of the three models was assessed using the

educed Chi2 test. For the calculation of the reduced Chi2, the mean
hi2 value was divided by the number of degrees of freedom for
ach model (number of data points − number of parameters). For
onoExp, biExp, and NGK the degrees of freedom were 7, 5, and 6,

espectively. All statistical analyses were carried out using the SPSS
ersion 20 package (SPSS Inc., Chicago, IL) and a P-value lower than
.05 was considered significant.

. Results

All tumours were visualised on DWI  series. In tumours, kurtosis
as substantial in 26/36 (72%) and intermediate in 10/36 (28%) of
easurements. In non-tumorous parenchyma, substantial kurto-

is was present in 27/49 (55%) and intermediate in 22/49 (45%) of
easurements. Mean ADC and mean DK were the only DWI  met-

ics allowing for the differentiation of tumours from non-tumorous
arenchyma (Tables 2 and 3). Results of the ROC curve analysis are
resented in Tables 4 and Fig. 3 . DK showed highest diagnostic accu-
acy with an area under ROC curve of 0.84. For a DK threshold value
f 2.37 × 10−3 mm2/s, the sensitivity and specificity were 81% and

6%, respectively. Mean (±SD) of reduced Chi2 for the monoExp,
iExp, and NGK were 0.020 ± 0.011, 0.004 ± 0.01, and 0.008 ± 0.008,
espectively, for tumorous ROIs (P < 0.05, for all pairwise compar-
sons). For non-tumorous ROIs, mean (±SD) of reduced Chi2 for the
parenchyma. The DK had the larger area under the curve and, together with ADC,
reached statistical significance.

monoExp, biExp, and NGK were 0.059 ± 0.035, 0.004 ± 0.007, and
0.02 ± 0.013, respectively (P < 0.05, for all pairwise comparisons).
In all patients, plotting the log SI of the original data vs. all b-values
used turned triexponential curves. The segment with the steepest
SI decay corresponded to the low b-value range, whereas the seg-

ment with the least steep SI decay of the three corresponded to
the high b-value range. Diagrams of the fitting of the curves of the
three models in a patient with a tumour in the pancreatic tail are
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Fig. 4. Diagrams representing the fitting of the curves derived from the three models, i.e. the two Gaussian [mono-exponential (monoExp) and bi-exponential (biExp)] and
the  non-Gaussian kurtosis (NGK), from a tumour located in the pancreatic tail (same patient as in Figs. 1 and 2). The green line corresponds to the measured signal (original
data,  identical in all three diagrams) and the red line to the corresponding fitting model. T
close  to each other, and do not represent the measured signal. The UMMDiffusion plugin c
curve  to the respective model. (For interpretation of the references to colour in this figure

Table 4
Calculation of area under the curve (AUC) for the DWI  metrics ADC, D, D*, f, K, and
DK for the differentiation of tumours from non-tumorous parenchyma.

DWI  metrics AUC Standard error P-value

ADC 0.77 0.05 <0.0001
D  0.52 0.06 0.804
D*  0.53 0.06 0.698
f  0.62 0.06 0.072
K  0.42 0.06 0.218
DK 0.84 0.05 <0.0001
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bbreviations: ADC = apparent diffusion coefficient, D = true diffusion coefficient,
* = pseudo-diffusion coefficient, f = perfusion fraction, K = kurtosis coefficient,
K = corrected diffusion coefficient.

hown in Fig. 4. Mean values (median, SD, and range) of SNR of
he tumours were 9 (9, 2, and 6–14) while of the non-tumorous
arenchyma were 6 (6, 2, and 4–11).

. Discussion

The results of our study, as presented in Tables 2 and 3,
howed that for the differentiation of tumours from non-tumorous
arenchyma in patients with PDAC, the only DWI  metrics show-

ng statistical significance were mean ADC and DK. Both metrics
ere significantly lower in tumours compared to non-tumorous

issue. DK which represents the diffusion coefficient that takes into
ccount kurtosis effects was the DWI  metric with the highest diag-
ostic accuracy for differentiation of tumours versus non-tumorous
arenchyma with an area under the ROC curve of 0.84. In agreement
ith other published reports on both healthy individuals and onco-

ogical patients, the mean value of DK was higher compared to the
ono-exponentially-based calculations of ADC [34,35].
The mean values of the IVIM-derived biexponential metrics

 and f were higher in the non-tumorous parenchyma than the
umours. However, the differences were not statistically signifi-
ant. These findings are contradictory to previously reported data.
oncia et al. showed that D was significantly higher and f signif-

cantly lower in tumours compared to non-tumorous areas and,
hus, they were able to differentiate between them [12]. Possi-
le explanations for this inconsistency include differences between

he two studies in terms of the histopathological characteristics of
ncluded tumours, the number and levels of the acquired b-values
nd software used for the calculation of the various DWI  metrics
nd, finally, methodological variations in the acquisition of the ROI
he markers on the red line are for visualisation purposes, in case the curves are too
alculates the mean value within the ROI at each b-value and fits the signal intensity

 legend, the reader is referred to the web version of this article.).

measurements. Considering the latter, multiple ROI measure-
ments were performed in our study essentially encompassing the
whole volume of both the tumour and, wherever feasible, the
non-tumorous parenchyma, compared to fewer measurements in
tumour and healthy parenchyma performed in the study by Con-
cia et al. [12]. Our results probably indicate that in patients with
PDAC differentiation of tumorous from non-tumorous pancreatic
tissue based on biomarkers that are sensitive to a combination of
micro-perfusion and diffusion effects may  be more accurate com-
pared to those sensitive to micro-perfusion or diffusion effects
separately. Several previous reports have shown that f could dif-
ferentiate between patients with PDAC from healthy volunteers
[36–39]. However, a direct comparison of the results of these
reports with our results is not possible, as our study design was
different and no healthy volunteers were enrolled.

Furthermore, in all ROI measurements in our study, K had val-
ues greater than 0.5, meaning that kurtosis effects were present in
both the tumorous and the non-tumorous ROIs. Substantial kurtosis
effects (i.e. K > 1) were detected in 72% of tumorous and 55% of non-
tumorous ROIs. Interestingly, the mean K value of the downstream
non-tumorous parenchyma was  higher compared to both the
tumours and the upstream non-tumorous parenchyma (Table 2);
however, these differences were not statistically significant. This
tendency indicates that microstructural heterogeneity depicted as
kurtosis effects is observed not only in tumours but also – to a vary-
ing degree – in non-tumorous tissues. A possible explanation for
the differences between downstream and upstream non-tumorous
parenchyma may  be the presence of upstream obstructive pancre-
atitis [30].

Higher diagnostic accuracy of biomarkers sensitive to the com-
bination of micro-perfusion and diffusion effects, as well as, the
presence of at least intermediate kurtosis effects in all ROI mea-
surements may  prove to be of importance and need to be addressed,
if the role of DWI-derived potential biomarkers is to be explored
in further research applications. Such applications include the
differentiation of pancreatic adenocarcinoma from mass-forming
chronic pancreatitis, the prediction of tumour grade and, finally,
the prediction and early assessment of tumour response following
neoadjuvant or palliative oncological therapy. Particularly for the

differentiation of PDAC from mass-forming chronic pancreatitis,
the reported data on the role of mono-exponential-based ADC cal-
culations are contradictory [40,41]. Interestingly, the IVIM-derived
perfusion fraction f was shown to be able to differentiate between
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he two entities [37]. Contradictory results in the literature exist
lso regarding the ability of mono-exponential-based ADC calcula-
ions to predict adenocarcinoma tumour grade [42,43]. Therefore,
or all of the above applications, the use of more sophisticated DWI-
erived biomarkers may  seem to be useful.

Regarding the comparison of the goodness-of-fit analysis, there
ere statistically significant differences of the mean values of

educed Chi2 between the three models. The biExp model provided
ith the highest fitting performance, followed by NGK and, finally,

y monoExp. This is in line with previously reported data [23,24]
nd supports our hypothesis that kurtosis effects exist in our data
lthough acquired with a maximum b value of only 1000 s/mm2.
n general, very high b-values are recommended for the evaluation
f NGK in brain applications [44]. However, in abdominal appli-
ations, due to lower SNR and lower T2 relaxation times of the
arious organs compared to the brain, very high b-values are not
sually applied. Recently, various authors have shown that kurtosis
ffects could be detectable in abdominal and whole-body applica-
ions even when using maximum b-values of 800 s/mm2 or less
t 3T [23,24]. We  applied multiple b-values with a maximum of
000 s/mm2 that, coupled with the use of a parallel imaging fac-
or of 2 and 5 averages, resulted in images with acceptable SNR
t 1.5T (Figs. 1 and 2). In tumorous and non-tumorous ROIs, mean
NR at the image series with a b-value of 1000 s/mm2 were 9 and
, respectively. The resulting curves of plotting log SI vs. b-values
ere shown to be triexponential in all patients, where the least

teep segment of SI decay of the three corresponded to the high
-value range. The latter might be indicative of the presence of
urtosis effects, even at b-values not exceeding 1000 s/mm2 that is
n agreement with the aforementioned published data [23,24].

Our study has several limitations. Firstly, the study population
as relatively small. Despite that, we were able to detect statisti-

ally significant differences for the metrics ADC and DK. Secondly,
he effect of inter-reader variation in the ROI positioning was  not
nvestigated. However, it has been shown that this variation is not
ignificant in cases of whole-volume measurements, as is the case in
ur study [45]. Furthermore, motion correction between different
-values was not performed due to software limitations, which may

nfluence the accuracy of the calculations and the cut-off value in
he ROC analysis was not defined prospectively, which may  falsely
ncrease the accuracy of the results. Finally, the inclusion of patients
olely with PDAC precluded the comparison of the three models
egarding the differentiation of the various pancreatic pathologies.

In conclusion, the metrics ADC and DK could differentiate PDAC
rom non-tumorous parenchyma with the latter showing a better
iagnostic accuracy. Correction for kurtosis effects has the potential
o increase the diagnostic accuracy of DWI  of pancreas in patients
ith PDAC.
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