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Inverse source problem and active shielding for composite domains
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Abstract

The problem of active shielding (AS) for a multiply connected domain consists of constructing additional sources of the field
(e.g., acoustic) so that all individual subdomains can either communicate freely with one another or otherwise be shielded from
their peers. This problem can be interpreted as a special inverse source problem for the differential equation (or system) that governs
the field. In the paper, we obtain general solution for a discretized composite AS problem and show that it reduces to solving a
collection of auxiliary problems for simply connected domains.
c© 2006 Elsevier Ltd. All rights reserved.

Keywords: Multiply connected domain; Inverse source; Active shielding; Control of sound; Calderon’s projection; Difference potentials method

1. Introduction

The classical inverse source problem is a problem of enabling a desired alteration in the solution of a given
differential equation by means of appropriately modifying its source terms, or equivalently, by adding new
sources. This problem has been studied extensively over the past three decades, both from the standpoint of
physics/engineering, see, e.g., [1,2], as well as from the standpoint of mathematics, see, e.g., [3]. A particular type
of alteration that may be desired in the solution is shielding of a given subdomain from the effect of the sources on
the complementary domain. This problem is important for many applications. For example, in acoustics one is often
interested in protecting a given region of space from the unwanted sound (i.e., noise) that originates from the sources
outside of this region. As the protection, or shielding, is rendered by the specially constructed additional sources of
sound (rather than, say, by insulation), it is called active shielding (AS).

In the acoustics literature, the AS problem is often referred to as the problem of active control of sound. The first
theoretical publications on the subject belong to Jessel [4], Malyuzhinets [5], and Fedoryuk [6]. Several monographs
and collection volumes have appeared over the years that provide a comprehensive review of the discipline [7–9].
Most theoretical approaches developed to date presume a fairly detailed knowledge of the sources of noise and of the
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properties of the sound-conducting medium, e.g., [10,11]. There are many methods that provide for a reduction of
noise either at a collection of discrete locations, e.g., [12–15], or along some predetermined directions, e.g., [16,17].

In our previous work, we obtained a general solution of the AS problem in both continuous [18] and finite-
difference formulation [19], see also [20,21]. Our approach employs the Calderon boundary projection operators and
the difference potentials method [22]. In contradistinction to all other methods available in the literature, it requires
minimum a priori information — only the knowledge of the overall solution (total acoustic field) on the boundary of
the protected region. No information on either the actual distribution of the sources or the properties of the medium
is needed. Moreover, one does not need to know the Green’s function of the governing equation either, unlike, e.g.,
in [5], where the Green’s function of the Helmholtz equation is required. In [23], we generalized our technique and
obtained the continuous and discrete solution of the AS problem in the form of surface potentials. Further extensions,
including optimization problems, are introduced and studied in [24–26].

The foregoing AS solution [18,19,23–26] was constructed for a simply connected region. In this paper, we extend
it to the case of a composite (i.e., multiply connected) protected region. Moreover, we introduce a key new element
into the formulation. Namely, the overall domain of the solution is arbitrarily split into a collection of subdomains,
and the latter are selectively allowed to either communicate freely with one another or otherwise be shielded from
their peers. In doing so, no reciprocity is assumed, i.e., for a given pair of subdomains one may be allowed to hear the
other, but not vice versa.

In the core of the current paper, a fundamental theorem is proven that provides a general solution of the composite
AS problem with a predetermined communication pattern between subdomains. It turns out that this solution can only
be obtained in two stages. The preprocessing stage requires solving special auxiliary problems, which translates into
additional computations and/or measurements in the practical context. Altogether, the solution of the composite AS
problem is reduced to the solution of a series of subproblems that can all be addressed by our original methodology [18,
19].

2. Continuous formulation of the problem

Let the field u be a solution to the following linear boundary value problem:

Lu = f, x ∈ D, (1)

lu|∂ D = 0. (2)

In particular, u may be acoustic pressure, in which case L is the Helmholtz operator; u may also be a vector field with
the acoustic pressure and velocity as components. For simplicity, the quantity u will hereafter be called sound.

Assume that the domain D consists of nonintersecting subdomains Di , D̄ = ∪D̄i , i = 1, 2, . . . , I . Introduce an
I × I matrix α with the entries equal to either 0 or 1. If αi j = 1, then the field due to the sources on D j is allowed
on Di . Otherwise, the field originating in D j is considered adverse on Di . Naturally, αii = 1. At the same time, no
reciprocity is assumed so that the matrix α is not necessarily symmetric. This problem will be referred to as the α–AS
problem. It admits the following mathematical formulation.

Introduce a new boundary value problem similar to (1) and (2):

Lν = f + g, x ∈ D, (3)

lν|∂ D = 0, (4)

and a set of problems for u(i)(x) — the total allowable field on Di :

Lu(i) = f (i), x ∈ D, (5)

lu(i)|∂ D = 0, (6)

where f (i)(x) = αi j f (x) if x ∈ D j , j = 1, 2, . . . , I . The function g is called an active α-control if on every Di ,
i = 1, 2, . . . , I , the solution of problem (3) and (4) coincides with the solution of the corresponding problem (5) and
(6):

ν(x) = u(i)(x) if x ∈ Di , i = 1, 2, . . . , I. (7)
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Thus, the α–AS problem is reduced to constructing such additional sources g(x) that would eliminate the unwanted
(i.e., adverse) sound for each domain Di . Next, we consider a finite-difference formulation of the α–AS problem.

3. Discrete formulation of the problem

First, we introduce a finite-difference counterpart of problem (1) and (2):∑
n∈Nm

amnun = fm, m ∈ M, (8)

un ∈ UN . (9)

Here, M is the grid for the right-hand side fm ; Nm is the stencil associated with every node m ∈ M; amn , m ∈ M ,
n ∈ Nm , are the coefficients of the scheme; N = ∪Nm , m ∈ M , is the grid domain of the solution; UN is a linear
space of grid functions un , n ∈ N , such that the solution of problem (8) and (9) exists and is unique. Inclusion (9)
approximates boundary condition (2).

Let the set M consist of I ≥ 2 nonintersecting subsets M+
i , M = ∪M+

i , i = 1, 2, . . . , I . Also, for every
i = 1, 2, . . . , I let: M−

i = M\M+
i , N+

i = ∪Nm (m ∈ M+
i ), N−

i = ∪Nm (m ∈ M−
i ), and γi = N+

i ∩ N−
i .

The set γi is called the grid boundary between N+
i and N−

i , and the set γ = ∪γi , i = 1, 2, . . . , I , is the overall grid
boundary. Hereafter, we will assume that the solution un is known on γ . For example, the acoustic pressure can be
measured by microphones.

It is clear that each point n ∈ N\γ may only belong to one grid subdomain N+
i ⊂ N . Otherwise, if n ∈ γ ,

it belongs to more than one subdomain. We will always assign each point n ∈ N to one and only one subdomain
N+

i . When n ∈ γ , the subdomain can be selected either arbitrarily or based on some additional information that
characterizes a given application.

Let N̄+
i be the set of nodes assigned to N+

i , i = 1, 2, . . . , I . Consider problems∑
n∈Nm

amnz(i)
n = αi j fm if m ∈ M+

j , i = 1, 2, . . . , I, (10)

z(i)
n ∈ UN . (11)

Each problem (10) and (11) differs from (8) and (9) only by the right-hand side. For n ∈ N , define the grid function

zn = z(i)
n if n ∈ N̄+

i , i = 1, 2, . . . , I. (12)

Similarly to the continuous case, we introduce the discrete active α-controls.

Definition 1. A grid function gm , m ∈ M , is said to be an active α-control if the solution νn of the problem∑
n∈Nm

amnνn = fm + gm, m ∈ M, (13)

νn ∈ UN , (14)

coincides with the function zn of (12):

νn = zn . (15)

To build an active α-control gm , we will need to know zn of (12) for n ∈ γ ; other values of zn will not matter. In other
words, we will need an additional procedure for solving problems (10) and (11), i = 1, 2, . . . , I .

For every i = 1, 2, . . . , I , we will now introduce two new subsets of grid nodes:

M+[i ] def=
⋃

αi j =1

M+
j , M−[i ] = M \ M+[i ],

i.e., M+[i ] is a sum of all those sets M+
j , j = 1, 2, . . . , I , which contain the sources of the field admissible on the

i -th subdomain (αi j = 1), and M−[i ] is its complement. In addition, we define the following sets:

N+[i ] =
⋃

m∈M+[i]
Nm , N−[i ] =

⋃
m∈M−[i]

Nm , γ [i ] = N+[i ]
⋂

N−[i ].
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Then, problem (10) and (11) can be equivalently re-formulated as:

∑
n∈Nm

amnzn[i ] =
{

fm , if m ∈ M+[i ],
0, if m ∈ M−[i ], (16)

zn[i ] ∈ UN . (17)

It was proven in work [19] that the solution of problem (16) and (17) at the nodes n ∈ N+[i ] for a given i coincides
with the solution of the following problem:∑

n∈Nm

amnνn[i ] = fm + gm[i ], m ∈ M, (18)

νn[i ] ∈ UN , (19)

where gm[i ] are the auxiliary control sources defined as

gm[i ] =
⎧⎨
⎩

0, if m ∈ M+[i ],
−

∑
n∈Nm

amnwn, if m ∈ M−[i ], (20)

and wn is a special auxiliary function:

wn =
{

un, if n ∈ γ [i ],
0, if n 
∈ γ [i ]. (21)

Thus, by adding the sources gm[i ] to the right-hand side fm of the original problem (8) and (9), we can compute the
values of νn[i ] = zn[i ] at the nodes n ∈ N+[i ], and in particular, at n ∈ γi , because γi ⊂ N+

i ⊂ N+[i ]. Indeed,
problem (8) and (9) is assumed uniquely solvable and problem (18) and (19) only differs from it by the right-hand
side. Once this process is repeated for all i , we obtain zn[i ], n ∈ γi , i = 1, 2, . . . , I . Then the following theorem
holds.

Theorem 1. Consider a specific zn ∈ UN defined by formula (12). There is a unique active α-control gm, m ∈ M, in
the sense of Definition 1:

gm =
∑

n∈γ∩Nm

amn(zn |γ − zn[i ]) for m ∈ M+
i , where zn |γ = zn[ j ] if n ∈ γ ∩ N̄+

j . (22)

Proof. Recall that according to formula (12) the function zn is composed of the fragments of individual functions
z( j )

n [formulae (10) and (11)] defined on the grid subsets N̄+
j . Let m ∈ M+

i for a particular i (i = 1, 2, . . . , I ). Then,
substituting zn into the left-hand side of (8), we obtain:

I∑
j=1

∑
n∈Nm ∩N̄+

j

amnz( j )
n =

I∑
j=1

∑
n∈Nm∩N̄+

j

amn

[
z(i)

n +
(

z( j )
n − z(i)

n

)]

=
∑

n∈Nm

amnz(i)
n +

I∑
j=1

∑
n∈Nm ∩N̄+

j

amn

(
z( j )

n − z(i)
n

)

= fm +
I∑

j=1

∑
n∈Nm ∩N̄+

j

amn

(
z( j )

n − z(i)
n

)
= fm + gm.

The last equality holds because on the one hand, there is obviously no contribution into the sum from the term j = i ,
and on the other hand, if m ∈ M+

i and j 
= i , then we may only have z( j )
n − z(i)

n 
= 0 for those n ∈ Nm ∩ γ that also
satisfy n ∈ Nm ∩ N̄+

j , i.e., gm is indeed given by (22). Uniqueness of the α-control gm (22) is a direct implication of
the unique solvability of problem (8) and (9). �

By construction, to build an active α-control one only needs to know uγ and the solutions of problems (18) and
(19) on γ [i ]. Besides, by analyzing formulae (20)–(22) one can see that they do not change when the given sources
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fm , m ∈ M , the space UN , or the coefficients amn (for n 
∈ Nm ∩ γ ) undergo changes. All those changes may only
affect the input for formulae (20)–(22), namely, the values of un |γ measured at the boundary and the values of zn|γ
calculated on γ . Recall that the values of zn|γ also depend only on un|γ . Finally, it is important to note that to obtain
an active α-control one does not need to know the whole solution of every problem (10) and (11); only the fragments
on the corresponding subsets N̄+

j are required.

4. Conclusions

The problem of active shielding has been formulated for composite domains. This problem can be interpreted as
an inverse source problem of a particular type. Its general solution was obtained in the finite-difference formulation.
This solution allows all individual subdomains to either communicate freely with one another or otherwise be shielded
from their peers. In doing so, no reciprocity is assumed, i.e., for a given pair of subdomains one may be allowed to
hear the other but not necessarily vice versa. Moreover, the general solution requires no information about the sources
of the field. To construct this general solution, one only needs to measure the field itself at the boundaries of the
subdomains, and to solve some additional AS problems in the standard single domain formulation.
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[24] J. Lončarić, S.V. Tsynkov, Optimization of acoustic source strength in the problems of active noise control, SIAM J. Appl. Math. 63 (4)

(2003) 1141–1183.
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