Note

Balancing Unit Vectors

JOEL SPENCER

Department of Mathematics,
State University of New York, Stony Brook, New York 11733

Communicated by the Managing Editors

Received August 12, 1980

Given any family u_1, \ldots, u_m of vectors in Euclidean n-space of Euclidean norm at most unity it is shown that at least one of the sums $\pm u_1 + \cdots + \pm u_m$ has norm at most $n^{1/2}$. Probabilistic techniques are used.

Theorem. Let $u_1, \ldots, u_m \in \mathbb{R}^n$, all $|u_i| \leq 1$. Then there exist $\epsilon_1, \ldots, \epsilon_m = \pm 1$ so that

$$|\epsilon_1 u_1 + \cdots + \epsilon_m u_m| \leq n^{1/2}.$$

This result is not new though we have not found a specific proof in the literature. Our proof makes essential use of the probabilistic method.

Lemma. Let $u_1, \ldots, u_n \in \mathbb{R}^n$, all $|u_i| \leq 1$. Let

$$v = \alpha_1 u_1 + \cdots + \alpha_n u_n$$

with $|\alpha_i| \leq 1$ for all i. Then there exist $\epsilon_1, \ldots, \epsilon_n = \pm 1$ so that

$$|\epsilon_1 u_1 + \cdots + \epsilon_n u_n - v| \leq n^{1/2}.$$

Proof. Let $\epsilon_1, \ldots, \epsilon_n$ be independent random variables with distributions

$$\text{Prob}[\epsilon_i = +1] = (1 + \alpha_i)/2 \quad \text{and} \quad \text{Prob}[\epsilon_i = -1] = (1 - \alpha_i)/2$$

so that ϵ_i has expectation α_i and variance $1 - \alpha_i^2$. Then $\epsilon_1 u_1 + \cdots + \epsilon_n u_n$ has expectation v and the expected value of $|\epsilon_1 u_1 + \cdots + \epsilon_n u_n - v|^2$ resembles a variance. Set $u_j = (a_{i_1}, \ldots, a_{i_n})$ and $v = (b_1, \ldots, b_n)$. For each coordinate j
\begin{align*}
E[(\epsilon_1 a_{ij} + \cdots + \epsilon_n a_{nj} - b_j)^2] \\
= \text{Var}(\epsilon_1 a_{ij} + \cdots + \epsilon_n a_{nj}) \\
= \sum_{i=1}^{n} \text{Var}(\epsilon_i a_{ij}) = \sum_{i=1}^{n} (1 - a_i^2) a_{ij}^2.
\end{align*}

Expanding

\[|\epsilon_1 u_1 + \cdots + \epsilon_n u_n - v|^2 = \sum_{j=1}^{n} (\epsilon_1 a_{1j} + \cdots + \epsilon_n a_{nj} - b_j)^2\]

and applying the linearity of expected value

\[E(|\epsilon_1 u_1 + \cdots + \epsilon_n - v|^2) = \sum_{j=1}^{n} \sum_{i=1}^{n} (1 - a_i^2) a_{ij}^2 \]

\[= \sum_{i=1}^{n} (1 - a_i^2) |u_i|^2 \leq n\]

since \(1 - a_i^2 \leq 1\) and \(|u_i| \leq 1\). For some specific \(\epsilon_1, \ldots, \epsilon_n\) the expectation is not exceeded and

\[|\epsilon_1 u_1 + \cdots + \epsilon_n u_n - v| \leq n^{1/2}.
\]

The theorem quickly follows. A linear algebra argument yields \(\alpha_1, \ldots, \alpha_m\) satisfying \(\alpha_1 u_1 + \cdots + \alpha_m u_m = 0\) such that all \(|\alpha_i| \leq 1\) and \(\alpha_i = \pm 1\) for all but at most \(n\) \(i\)'s. Reordering vectors for convenience we have

\[\alpha_1 u_1 + \cdots + \alpha_n u_n + \epsilon_{n+1} u_{n+1} + \cdots + \epsilon_m u_m = 0,\]

where \(\epsilon_i = \pm 1\) and \(|\alpha_i| \leq 1\). The lemma gives \(\epsilon_1, \ldots, \epsilon_n\) so that

\[|\epsilon_1 u_1 + \cdots + \epsilon_m u_m| = |(\alpha_1 u_1 + \cdots + \alpha_n u_n) - (\epsilon_1 u_1 + \cdots + \epsilon_n u_n)| \leq n^{1/2}.
\]