Effects of warm up on hemodynamic responses to submaximal exercise after myocardial infarction

J.F. Aupetit, J.N. Alligier, M. Ferrini, F. Roche, J. Boutarin, B. Ritz, O. Greiner. StrJoseph and St-Luc Hospital, Lyon, France

We studied the influence of warm up on hemodynamic characteristics during exercise in 14 patients (pts) (aged 25-59 years) 6-20 weeks after uncomplicated myocardial infarction. Pts underwent invasive hemodynamics at baseline (RI) and during two similar consecutive submaximal rectangular supine bicycle exercise (E1 and E2) (25 Watts workload during 10 min) separated by a 10 min rest period (R2).

Results: 1) Comparing RI versus R2 hemodynamic parameters were not significantly different. 2) Comparing E2 versus E1 heart rate, systolic and diastolic arterial pressures, cardiac index, systemic and pulmonary vascular resistances, oxygen consumption, arterial blood lactate concentration, left ventricular stroke work were not significantly different whereas during E2 there is a significant decrease (p < 0.05) of mean pulmonary capillary wedge pressure (from 16.5 ± 10.5 to 9.7 ± 8.5 mm Hg), of mean pulmonary arterial pressure (from 24.8 ± 12.2 to 18.9 ± 10 mm Hg) and of right ventricular stroke work (from 13.3 ± 6.8 to 12.5 ± 7 gm.mm).

Conclusion: Warm up exerts beneficial "limite-like" hemodynamic effects during submaximal exercise and improved exercise tolerance after myocardial infarction: it might be thus considered as an effective non pharmacological treatment.

Effects of Exercise Intensity on Short-Term Exercise Training in Patients With Acute Myocardial Infarction


To examine whether the intensity of exercise training (TR) following acute myocardial infarction (AMI) influence the predischarge exercise response, 86 uncomplicated patients (pts) were studied. Seventy-four pts were divided into 2 groups according to TR intensity: 70% of peak VO2 after AMI (group A) and 50% of peak VO2 (group B, n = 30). Remaining 12 pts were restricted to minimal activity program as a control (group C). All the pts performed cardipulmonary exercise testing before and after 3 week period. Before TR, there were no significant differences in exercise capacity, and hemodynamic and metabolic responses among the 3 groups. Heart rate, plasma norepinephrine levels, and arterial lactate concentration decreased significantly (all p < 0.05) at submaximal exercise after TR in group A (136 ± 124 bpm, 1220 ± 986 pg/ml, 40 ± 36 mg/dl, respectively) and in group B (132 ± 125 bpm, 1066 ± 945 pg/ml, 37 ± 33 mg/dl, respectively), but these indices were unchanged in group C. Peak cardiac output, stroke volume and VO2 increased significantly (all p < 0.001) after TR in group A (9.1 ± 9.0 L/min, 58.1 ± 62.9 ml, 20.7 ± 22.5 ml/min/kg, respectively), but these variables were unchanged after 3 weeks in groups B and C. Conclusion: Short-term TR at 50% of peak VO2 after AMI improved sympathetic and metabolic responses to submaximal exercise, whereas TR at 70% of peak VO2 improved exercise capacity and hemodynamic indices as well as sympathetic and metabolic responses to submaximal exercise.

Aerobic Capacity, Parasympathetic Modulation And Orthostatic Tolerance in Young Athletes

D. Kosinski, S.A. Frederick, B.P. Grubb, F. Andres, H. Hahn. The Medical College of Ohio and the University of Toledo, Toledo, OH, USA

We investigated the relationship between aerobic capacity, parasympathetic modulation, and orthostatic tolerance in 10 athletes. The subjects (N = 10; 7 male; 3 female) VO2 maximum or maximal oxygen consumption (ml/kg·min−1) was determined by treadmill testing (low maximal oxygen consumption <40 ml/kg·min−1; moderate >40-<55 ml/kg·min−1; high ≥55 ml/kg·min−1) and frequency and time domain heart rate variability (HRV) analysis were used as indicators of parasympathetic modulation. Orthostatic tolerance was assessed by head upright tilt table (HUTT) testing. Results: Aerobic capacity groups; low; N = 2, moderate; N = 4, high; N = 4. The mean age was 25 ± 1 year. The frequency domain parameters; very low frequency (VLF), low frequency (LF), high frequency (HF), and the total of all frequency bands (TF) were significantly higher or had a greater rate of change in the high aerobic capacity group (p < 0.05, < 0.01, < 0.02, < 0.01), respectively. Time domain variables; the standard deviation of the mean of successive normal R-R intervals (SDNN), root mean square of the difference of successive R-R intervals (RMSSD), and percentage of successive normal R-R intervals greater than 50 msec (pNN50) were also significantly higher in the high aerobic capacity group (p < 0.006, < 0.02, < 0.05, respectively. A moderately-high correlation was determined to exist between time domain parameters and the HF component of frequency domain HRV analysis (r = 0.82). The correlation between VO2 maximum and pNN50 was significant (p = 0.62). HUTT testing provoked two positive (20%) responses, one from the low and high aerobic groups. Conclusions: 1) Increased resting parasympathetic activity was a linear function of aerobic capacity. 2) Evidence exists for HRV analysis as a method for estimating aerobic capacity. 3) TR will exert beneficial effects existed between aerobic capacity and the ability to withstand an orthostatic challenge. This information may be valuable in interpreting tilt test results in young athletic individuals.

Extreme Athletic Competition Does Not Induce Myocardial Injury

L. Laslett, E. Eisenbud. The University of California, Davis, Medical Center, and Western States Endurance Run, Sacramento, CA, USA

In a recent ultramarathon, 500 participants were studied and all developed elevations in serum levels of cardiac troponin T (cTnT) suggestive of myocardial injury, using the Boehringer-Mannheim ELISA (first generation) assay. To determine if this elevation was due to actual myocardial injury or represented cross-reactivity of the cTnT assay with skeletal muscle TnT (sTnT). The current study was performed using a revised assay (Boehringer-Mannheim Enzymun) which exhibits minimal cross-reactivity between cTnT and sTnT. The Western States Endurance Run involves an arduous 100 mile continuous run through the wilderness of the Sierra Mountains, including severe