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The aim of this workwas to study the regulation of respiration and energy fluxes in permeabilized oxidative and
glycolytic skeletal muscle fibers, focusing also on the role of cytoskeletal protein tubulin βII isotype inmitochon-
drial metabolism and organization. By analyzing accessibility of mitochondrial ADP, using respirometry and py-
ruvate kinase–phosphoenolpyruvate trapping system for ADP, we show that the apparent affinity of respiration
for ADP can be directly linked to the permeability of themitochondrial outermembrane (MOM). Previous studies
have shown that MOM permeability in cardiomyocytes can be regulated by VDAC interaction with cytoskeletal
protein, βII tubulin.We found that in oxidative soleus skeletal muscle the high apparent Km for ADP is associated
with low MOM permeability and high expression of non-polymerized βII tubulin. Very low expression of non-
polymerized form of βII tubulin in glycolytic muscles is associated with high MOM permeability for adenine
nucleotides (low apparent Km for ADP).

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Striated muscles such as cardiac and skeletal muscles have a com-
mon contractile unit named sarcomere and similar mechanism of con-
traction based on the conversion of free energy of ATP hydrolysis in
ATPase reaction into mechanical energy for contraction. In cardiac
cells, structural and functional organization of metabolism allowing
connection of ATP-consuming sites such as sarcomere, sarcoplasmic re-
ticulumand subsarcolemmal ion pumpswithATP-synthesizing systems
was named intracellular energetic units (ICEUs) [1–3]. In mitochondria
the energy transfer is carried out by mitochondrial interactosome (MI)
supercomplex [1,4]. This complex is situated at the contact sites of the
outer and inner mitochondrial membranes (MIM) and is composed of
ATP synthasome (including ATP synthase, coupled to the respiratory
chain complexes, adenine nucleotide translocase (ANT) and inorganic
phosphate carrier), mitochondrial creatine kinase (MtCK) and voltage
dependent anion channel (VDAC), interacting with cytoskeletal protein
Joseph FourierUniversity, 2280,
ce.
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βII tubulin and possibly with some other cytoskeletal proteins [1,4–6].
The restriction of adenine-nucleotides diffusion at the level of MOM
creates a basis for the compartmentalization of energy transfer within
ICEUs [7,8]. The intracellular energy flux within ICEUs is supported by
phosphocreatine/creatine kinase (PCr/CK) pathway and the transfer of
phosphoryl groups mainly occurs via the system of various specifically
localized isoenzymes of CK and other phosphoryl-transferring kinases
[2,7–9].

Thesemechanisms have been shownmostly for cardiac cells, but the
information regarding the regulation of respiration and control of ener-
gy fluxes in various skeletal muscles is still limited. According to the
myofibrillar ATPase activity, enzyme pattern and mitochondrial con-
tent, muscle fibers can be divided into three main groups: ‘slow twitch
oxidative fiber’ (type I), ‘fast twitch oxidative’ (type IIA) and ‘fast twitch
glycolytic’fibers (types IIB, IIX) [10]. Slow twitch oxidativemuscles such
as m. soleus (consisting of about 84% type I and 7% type IIA fibers) dis-
play relatively lowATPase activity and large capacity for oxidative phos-
phorylation with high mitochondrial content (still significantly lower
than in the heart) [11]. They are able to sustain low intensity workloads
for long periods of time. Fast glycolytic muscles, i.e. white portion of rats
m. gastrocnemius (GW) (consisting of about 92% type IIB fibers) display
three- to fivefold higher ATPase activity than oxidative muscles and are
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able to support high intensity workloads for short periods of time
[11,12]. As a general rule, skeletal muscles consist of mixture of oxida-
tive and glycolytic muscle fibers. For example, red portion of gastrocne-
mius muscle (GR) is formed of 51% type I and 35% type IIA fibers [11].
Relative to the cell volume mitochondria occupy about 35% in cardiac
myocytes, about 6–10% in oxidative and only 1% in glycolytic skeletal
muscle cells [13–15]. It has been shown that isolated mitochondria
from oxidative and glycolytic muscles display similar characteristics.
For instance, there are similarmaximal rates of ADP-stimulated respira-
tion per mg of mitochondrial protein and similar activities of isolated
respiratory chain complexes [16,17]. Proteomic analysis of isolated
mitochondria has revealed only few differences of protein contents
between them [17]. However, several experimental studies using cell
permeabilization have indicated distinct patterns of mitochondrial
regulation in oxidative and glycolytic muscle fibers. Major differences
were found in the apparent affinity of oxidative phosphorylation for
ADP. In particular, the apparent Km for ADP in the heart and m. soleus
has been shown to be an order of magnitude higher than that of gly-
colytic muscles [12,18–20]. Several recent studies suggested that it
can be associated with different permeability of MOM for ADP regu-
lated by the binding of heterodimeric αβ tubulin to VDAC [1,21–25].
Our recent immunochemical studies of the distribution of β tubulin
isoforms in cardiomyocytes linked this phenomenon to the presence
of mitochondria-specific isoform of βII tubulin [26,27].

In the present work, we studied: i) the relationship between the ap-
parent Km for ADP and MOM permeability in skeletal muscle fibers by
estimating respirometrically accessibility of mitochondrial ADP in the
presence of excess of PK–PEP trapping system for external ADP, ii)
flux control that different MI complexes exert on the total energy flux
in oxidative and glycolytic permeabilized skeletal muscle fibers and
iii) the dependence of MOM permeability on βII tubulin distribution,
considering polymerization–depolymerization equilibrium of tubulin
and mitochondrial arrangement. We hypothesized that the differences
inmitochondrial affinity for ADP between oxidative and glycolyticmus-
cles might be explained by different distribution pattern and/or by
different free protein content of βII tubulin which may participate in
feedback regulation of mitochondrial metabolism.

2. Material and methods

2.1. Laboratory animals and chemicals

MaleWistar ratsweighing 150–200 gwere used in the experiments.
The animals were housed at constant temperature (22 °C) in environ-
mental facilities with a 12:12 h light–dark cycle. Animal procedures
were approved by “Comité d'éthique pour l'expérimentation animale”
of Grenoble (33_LBFA-VS-01) and National Committee for Ethics in An-
imal Experimentation (Estonian Ministry of Agriculture).

2.2. Preparation of permeabilized fibers

Ratswere anaesthetizedwith sodiumpentobarbital(40–50 mg kg−1)
intraperitoneal injection, decapitated and, the muscles of interest were
placed into a plastic Petri dish containing ice-cold isolation solution A
of the following composition: 10 mM Ca-EGTA buffer (2.77 mM of
CaK2EGTA + 7.23 mM K2EGTA) free concentration of calcium 0.1 μM,
20 mM imidazole, 20 mM taurine, 49 mM K-MES, 3 mM K2HPO4,
9.5 mM MgCl2, 5.7 mM ATP, 15 mM PCr, pH 7.1. Muscle-fiber bundles
were separated from each other using extra-sharp antimagnetic forceps
under amicroscope of a cold light source. To study the regulation ofmi-
tochondrial respiration ofmuscle,fiberswere permeabilized by saponin
treatment (50 μg/mL) keeping the mitochondrial membranes intact
[20,28]. The permeabilization procedure was followed by triple wash
in ice-cold Mitomed solution containing 0.5 mM EGTA, 3 mM MgCl2,
60 mM K-lactobionate, 3 mM KH2PO4, 20 mM taurine, 20 mM HEPES,
110 mM sucrose, 0.5 mM dithiothreitol, 2 mg mL−1 fatty acid free
BSA, pH 7.1. The aim is to wash out saponin and other metabolites,
especially traces of ADP or ATP, and proteases released for damaged lyso-
somes due to the saponin effect. To protect fibers of the proteolytic effect
of lysosomal enzymes during experiments Mitomed is supplemented
with 2 mg mL−1 BSA and leupeptin 1 μM [29]. The studied muscles
are as follows: soleus; red portion of gastrocnemius muscle (GR), white
portion of gastrocnemius muscle (GW), extensor digitorum longus
(EDL), and left ventricle muscle (LV).

Heart mitochondria were isolated as described previously in [30]
using trypsin.

2.3. Measurements of oxygen consumption

The rates of oxygen uptake were determined with a high-resolution
respirometer (oxygraph-2 K, OROBOROS Instruments, Austria) in
Mitomed solution supplemented with 5 mM glutamate and 2 mM
malate. These measurements were carried out at 25 °C and taken the
solubility of oxygen as 240 nmol mL−1 [31]. The respiration rates of
permeabilized cardiomyocytes were expressed in nmol of oxygen
consumed per minute per nmol of cytochrome aa3. The content of
mitochondrial cytochrome aa3 was measured spectrophotometrically
according to the method described previously [4]. Measurements of
cytochrome aa3 content in skeletal muscles were limited by the neces-
sity to increase the amount of the samples because of their lower mito-
chondrial content. As a result, decreased optical density compromised
the quality of cytochrome aa3 measurements in spectrophotometry.
The respiration rates of permeabilized muscle fibers were expressed
in nmolO2 min−1 mg−1 dry weight fibers. Wet fibers were dried at
100 °C for 24 h. Respiration rateswere not compared between different
muscles, but inside each muscle fiber-type between ADP- and Cr-
stimulated respirations.

One of the most reliable quality tests of the intactness of membrane
structures for permeabilized fibers is the cytochrome c test used to
check the integrity of MOM [28]. Measurement of cytochrome c release
from mitochondria in permeabilized cells can be studied qualitatively
by Western blot and quantitatively by spectrophotometry. Western
blot analysis is highly specific for cytochrome c, but it's time-consuming
and requires separate labeling of isolated mitochondrial and cytosolic
fractions. Isolation of mitochondria embedded into muscle fibers cyto-
skeleton gives two fractions: light or damaged mitochondria with
increased MOM permeability and cytochrome c release and intact
mitochondria. Time is also a very important factor because the aim
of the cytochrome c release study is to select permeabilized fibers
with intact mitochondria for the measurements of oxygen consump-
tion. Permeabilized fibers or cells were used for respirometry studies
during the first 3 h after permeabilization. Appaix et al. (2000) develop-
ing method of spectrophotometric measurement of cytochrome c in
permeabilized cells showed that their results were equal to those of
oxygraphic determination of cytochrome c-dependent respiration of
permeabilized cardiomyocytes [32]. This experiment is carried out in
KCl-solution (125 mM KCl, 20 mM HEPES, 5 mM KH2PO4, 3 mM Mg
acetate, 0.4 mM EGTA, 0.3 mM DTT) supplemented with respiratory
substrates (glutamate andmalate) and 2 mM of ADP to get themaximal
rate of respiration. Cytochrome c is a highly soluble hemoprotein of the
respiratory chain that transfers electrons and is loosely associated with
the outer side of the inner mitochondrial membrane. If MOM is
disrupted, cytochrome c leaves mitochondria decreasing maximal respi-
ration rate and consequently, in this situation its addition in presence of
ADP will increase respiration rate. Fig. 1A shows high maximal rates of
ADP-stimulated respiration and high respiration control ratio (RCR)
which is estimated by the ratio between maximal ADP-stimulated
and basal respiration rates (VmaxADP/V0), and indicates preserved flux
through the electron transport chain after saponin permeabilization.
Subsequently, the addition of carboxyatractyloside (CAT) gives us infor-
mation about the integrity of mitochondrial inner membrane (MIM).
CAT inhibits in irreversible way ANT interrupting ATP/ADP exchange
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Fig. 1. Respiration rates and regulation of mitochondrial function in permeabilized skeletal muscle fibers. A) Basal (V0) andmaximal respiration rates stimulated by ADP (VmaxADP) or by
creatine in the presence of ATP (Vmax(ATP + Cr)). In the presence of ATP and creatinemitochondrial respiration can be stimulated by ADP generated from the hydrolysis of ATP in ATPase
reactions and by ADP re-cycled in the activatedMtCK reaction coupled with ANT. B) The apparent Km for ADP of Soleus; EDL, extensor digitorum longus; GR, gastrocnemius red; GW, gas-
trocnemius white and LV, left ventricle is estimated in the absence and in the presence of 30 mM creatine. C)Western blot analysis of mitochondrial creatine kinase (MtCK) in heart and
skeletal muscles reveals the expression of protein in all samples studied. Equal loading (25 μg) of protein was confirmed bymembrane Ponceau staining. The data are representative of at
least three independent experiments.

234 M. Varikmaa et al. / Biochimica et Biophysica Acta 1837 (2014) 232–245
between mitochondrial matrix and intermembrane space. Therefore, if
MIM is intact, addition of CAT decreases oxygen consumption rate
back to initial level. In our experiments only fibers with intact mito-
chondria and with a high maximal rate of respiration were used for ex-
periments. All experiments were performed in the presence of protease
inhibitor in order to avoid the influence of lysosomal proteolysis on
kinetic parameters described by Perrey et al. [29,33].

2.4. Determination of flux control coefficients

Metabolic control analysis (MCA) allows quantitative determination
of the degree of control that a given enzyme exerts on metabolic flux
[34,35]. To understand mechanisms by which a given enzyme exerts
high or low control on metabolic pathway, its flux control coefficient
(FCC) is evaluated. The flux control coefficient is the degree of control
that the rate (v) of a given enzyme i exerts on flux J. Groen in 1982
derived a method to determine experimentally the FCC using titration
curves with specific enzyme inhibitors. As the amount of inhibitor
tends to zero the response of the flux to the inhibitor can be expressed
in MCA terms [34]. The flux control coefficient of enzyme i on flux J is
given by the symbol C J

Vi
and defined according to the equation [35]:

C J
Vi

¼ dJ
dvi

� �
=

J
vi

� �
¼ d ln J

d lnvi

inwhich (dJ/dvi) describes the variation influx (J)when an infinitesimal
change takes place in the enzyme i concentration or activity. In practice,
the infinitesimal changes in vi are undetectable, and hence measurable
noninfinitesimal changes are undertaken. If a small change in vi pro-
motes a significant variation in J, then this enzyme exerts a high flux
control. In contrast, if a rather small or negligible change in the flux is
observed when vi is greatly varied then the enzyme does not exert a
significant flux control. For the case of irreversible specific inhibitor,
an estimation of FCC value is given by Groen et al. (1982) and
Moreno-Sanches et al. (2008) as [34,36]:

C J
vi
¼ Δ J

ΔI

� �
� Imax

J0

� �
where (ΔJ / ΔI) is initial slope of the stepwise inhibition of oxygen res-
piration graph, Imax is the inhibitor concentration giving complete inhi-
bition, and J0 is the initial steady-state flux value. The flux control
coefficients in permeabilized skeletal fibers were determined by using
graphical method described by Fell [35].

The inhibitors used in ourwork and considered as pseudo-irreversible
and non-competitive in these conditions were: carboxyatractyloside
(CAT) for ATP/ADP transporter, oligomycin for ATP synthase, rotenone
for complex I, antimycin-A (ANM) for complex III, sodium cyanide
(NaCN) for complex IV and 1-Fluoro-2,4-dinitrobenzene (DNFB) for
MtCK. The respiration rates were measured in the presence of gluta-
mate, malate and succinate. High quality fiber preparations with re-
spiratory control ratio (RCR = VmaxADP / V0) and acceptor control
ratio (ACR = Vmax(ATP + Cr) / V0) higher than five were used (Table 2).

2.5. Western blot analysis

Free and polymerized tubulins were assessed using Microtubule/
Tubulin In Vivo Assay Kit (Cytoskeleton). Tissue powderwas suspended
in 37 °C microtubule stabilization buffer (5 mM MgCl2, 1 mM EGTA,
0.1 mM ATP, 100 mM PIPES, 30% glycerol, 0.1% Nonidet-P40, 0.1% Tri-
ton X-100, 0.1% Tween-20, 0.1% β-mercaptoethanol, 0.001% antifoam,
0.1% BME, pH 7.4, Complete Protease Inhibitor Cocktail (Roche)), ho-
mogenized using 25G syringe and centrifuged at 37 °C for 5 min at
2000 ×g. Supernatants were centrifuged at 100,000 ×g for 30 min at
37 °C to yield supernatant containing free tubulin and pellet containing
polymerized tubulin. The pellet was resuspended in Brinkley buffer
(80 mM PIPES, 1 mM MgCl2, 1 mM EGTA) containing 4 M urea, incu-
bated on ice for 45 min and centrifuged at 12,000 ×g for 10 min to
remove any insoluble material. The protein concentration was deter-
mined using the Pierce BCA Protein Kit. For assessment ofMtCK expres-
sion, only soluble protein extract was used. Protein samples were
resuspended in 1× SDS sample buffer containing 10% β-ME, heated at
95 °C for 5 min and 50 μg of protein was loaded onto 12% polyacryl-
amide gels. Electrophoresis was performed on the Mini Protean II
from BioRad in the Tris–tricine buffer solution. Blotting of the unstained
gels was performed on the Trans-Blot SD Semi-Dry Transfer Cell
(BioRad) using PVDF membranes (Millipore). The blotting buffer
contained 48 mM Tris, 39 mM glycine, 0.1% SDS and 20% methanol.



Table 1
Respiratory parameters of permeabilized skeletal muscle fibers.

V0 Vmax (ADP) Vmax (ATP + Cr) KmADP KmADP (+Cr) PK–PEP inhibition

nmolO2 min−1 mg−1 dry weight fibers μM %

Soleus 1.55 ± 0.09 10.6 ± 0.4 9.8 ± 0.1 294.2 ± 15.9 66.6 ± 4.7 2.2 ± 0.5
Gastrocnemius red 2.10 ± 0.08 9.1 ± 0.4 9.0 ± 0.3 122.0 ± 16.0 49.5 ± 2.8 52.8 ± 5.2
Gastrocnemius white 0.70 ± 0.01 3.8 ± 0.1 5.3 ± 0.27 4.5 ± 1.8 3.6 ± 0.3 48.6 ± 0.2
Extensor digitorum longus 1.10 ± 0.05 9.1 ± 0.5 9.4 ± 0.2 7.4 ± 1.7 5.2 ± 0.6 49.0 ± 3.0

Respiration of permeabilized skeletal muscle fibers was measured in the presence of 5 mM glutamate and 2 mM malate in Mitomed solution at 25 °C. Values are means ± SEM.
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Equal protein transfer was verified by staining membrane with
Ponceau solution (0.1% Ponceau S in 5% acetic acid). The membranes
were blocked for 1 h in 3% BSA PBS or 0.5% skimmed milk, 0.05%
Tween-20 PBS solution and treated with 1:250 rabbit polyclonal
anti-MtCK (Abcam), 1:250 mouse monoclonal anti-βII tubulin
(Abcam) and 1:500 rabbit polyclonal anti-β-tubulin (Abcam) anti-
bodies 2 h at room temperature. Immunoblots were detected by
1:45,000 anti-mouse or 1:1000 antirabbit secondary antibodies con-
jugated to peroxidase (IgG HRP; Abcam). Detection was conducted
using chemiluminescence kit (SuperSignal West Dura Extended
Duration substrate).
Fig. 2.Measurement of ADP fluxes frommitochondria in situ, in permeabilizedmuscle cells. A)
brane. Exogenous ATP is hydrolyzed by cellular ATPases into extra-mitochondrial ADP and ino
produces endogenous intra-mitochondrial ADP. The system is supplementedwith phosphoenol
by intracellular ATP consuming reactions and continuously regenerate extramitochondrial ATP.
via adenine nucleotide translocase (ANT) due to its functional couplingwithMtCK. B) Respirati
F). Measurements of ADP fluxes from mitochondria in situ in permeabilized soleus (C), gastro
(F) muscle fibers. The left scale and the blue trace indicate the oxygen concentration (nmolO
nmolO2 min−1 nmol−1 cytochrome aa3 for cardiomyocytes (B) and in nmolO2 min−1 mg−1 d
the respiration rates of cardiomyocytes (B) and soleus muscle fibers (C) indicating that intram
inhibits the respiration rates of GR, GW and EDL permeabilized muscle fibers (D–F).
2.6. Immunolabeling of muscle fibers

Labeling of cytoskeletal and mitochondrial proteins was performed
on intact rat skeletal or heart left ventricular muscle fibers in suspen-
sion. Fibers were fixed in 4% paraformaldehyde in PBS at 37 °C for
15 min. For immunolabeling of mitochondrial proteins (VDAC, MtCK)
heat-mediated antigen retrieval was performed by incubating fibers in
Antigen Retrieval Buffer (10 mM Tris, 5% urea, pH 9.5) at 95 °C for
3 min. Afterwashingwith PBS fiberswere permeabilizedwith 1% Triton
X-100 at room temperature for 30 min., washed again with PBS, and
blocked in PBS solution containing 2% BSA (bovine serum albumin) for
Scheme showingmitochondrion in permeabilized cell. MOM—mitochondrial outermem-
rganic phosphate (Pi). Mitochondrial (MtCK) in the presence of creatine and ATP locally
pyruvate (PEP) and pyruvate kinase (PK)which remove extramitochondrial ADP produced
Endogenous intramitochondrial ADP is re-imported into thematrix for re-phosphorylation
on trace of permeabilized cardiomyocytes recorded using high resolution respirometer. C–
cnemius red, GR (D), gastrocnemius white, GW (E) and extensor digitorum longus, EDL
2 mL−1). The right scale and the red trace show the rate of oxygen uptake expressed in
ry weight fibers for skeletal muscle fibers (C–F). Trapping PK–PEP system did not change
itochondrial ADP is not available for PK–PEP system. In contrast, this system effectively
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60 min at 25 °C. Subsequently fibers were incubated overnight with
primary cytoskeletal and mitochondrial antibodies. Monoclonal mouse
anti-tubulin βII(β2) antibody (Abcam, ab28036) at 1:250, mouse anti-
α-actinin antibody (Abcam) at 1:250, and polyclonal rabbit VDAC anti-
body serum (kindly provided Dr. Catherine Brenner, Universite
Paris-Sud, Paris, France) at 1:1000 were used. Next day samples
were rinsed 3 times for 3 min in 2% BSA solution, and stained for
2 h at room temperature with secondary antibody DyLight 488
goat anti-rabbit IgG (Abcam, ab96899) at 1:250 and Dylight 549
goat anti-mouse IgG (Abcam, ab96880) at 1:250. After washing
three times with 2% BSA PBS solution and once with bidistilled
water, fibers were mounted in ProLong® Gold Antifade Reagent
with DAPI (Life Technologies), deposited on glass coverslips and
observed by confocal microscope.

2.7. Confocal microscopy and 3D modeling

The fluorescence images were acquired by Zeiss LSM 510 confocal
microscope (Carl Zeiss) equipped with a Plan-Apofluar 63×/1.30 glyc-
erol objective. Laser excitation 488 nm was used for DyLight 488with
emission detected through a 505- to 530 band-pass filter, DyLight549
was excited at 561 nm and detected through 575- to 615 nm band-
pass filter. Pinhole was adjusted to the optical slice thickness 0.27 μm
for both channels. Processing of all confocal data sets was done with
LSM Image Browser software performing rotation, cropping, linear con-
trast adjustment, channel balancing and addition of scale bar. Images
presented were copy-pasted from LSM Image Browser to Photoshop
CS4 without further modifications. Confocal images were collected at
least 0.5 μm below the sarcolemma. Reconstruction of a 3D-model
was done with Imaris software (Bitplane) using 6–7 image stacks
acquired with z-step 0.27 μm.

3. Results

3.1. Inter relationship between the apparent affinity of mitochondrial
respiration for ADP and MOM permeability

The apparent affinity of mitochondrial respiration for ADP was esti-
mated by measuring ADP concentration reaching half-maximal rate of
Fig. 4.Metabolic flux control analysis of permeabilized soleus muscle fibers. Rates of oxygen co
ration stimulated by the addition of ADP and B) and by the addition of 20mM of creatine in th
comparable under both conditions. The PK–PEP systemwas added to remove the effect of exog
inhibited by stepwise addition of oligomyocin. C) Inhibition titration curves for oligomycin, D)
shown under conditions of respiration stimulated by both ADP and creatine.
respiration (i.e. apparent affinity Michaelis constant, Km). The apparent
Km for ADP in oxidative soleus muscle fibers was high (~300 μM,
Table 1, Fig. 1B) and comparablewith that of cardiomyocytes. Converse-
ly, the apparent Km for ADP in glycolytic GW and EDLmuscle fibers was
very low (~4–7 μM, Table 1, Fig. 1B) and comparable with that of isolat-
ed mitochondria. Red portion ofm. gastrocnemius was characterized by
intermediate KmADP (about 150 μM) due to its mixed composition of
slow- and fast-twitch muscle fibers. It was assumed that different ap-
parent affinity of respiration to ADP could be explained by the restric-
tion of ADP diffusion at the level of MOM.

The permeability of MOM was studied respirometrically measuring
changes of respiration rate induced by the leakage of ADP from mito-
chondria. Fig. 1A summarizes main experimental conditions necessary
for studying the relationship between the affinity ofmitochondria respi-
ration for ADP andMOMpermeability. One of themain conditions is the
equal maximal rate of creatine- (Vmax(ATP + Cr)) and ADP-stimulated
respiration (VmaxADP) measured in the presence of a saturating concen-
tration of ADP. This similarity means that all ADP produced in MtCK re-
action is returned back to matrix to stimulate respiration. As shown in
Fig. 1A and Table 1 the maximal rates of ADP- and creatine-stimulated
respiration are similar for each studied fiber-type. Fig. 2A shows the
experimental protocol for studyingADP-fluxes throughMOM in perme-
abilized cells. The addition of exogenous ATP stimulates mitochondrial
respiration due to the production of endogenous ADP in ATPase reac-
tions. Respiration rate stabilizes because of the establishment of the
steady state between ADP production (in myofibrillar and sarcolemmal
ATPase reactions) and oxidative phosphorylation. The subsequent addi-
tion of creatine in the presence of exogenous ATP enhances respiration
rates due to the additional source of endogenous ADP generated by the
MtCK reaction in intermembrane space. In this case, the respiration rate
is activated and stabilized due to the recycling of ADP in mitochondria
betweenMtCK, ANT and themitochondrialmatrix. In all cases stabilized
respiration rate means steady state. In the absence of PK–PEP system,
ADP issued from ATP hydrolysis in ATPase reactions and from MtCK
reaction is available for mitochondrial matrix. The PK–PEP system can
decrease respiration rate by phosphorylating ADP into ATP. In experi-
ments with permeabilized cardiomyocytes and oxidative soleusmuscle
fibers creatine (Cr) was added concomitantly with ATP (Fig. 2B, C). In
experiments with permeabilized glycolytic GR, GW and EDL muscle
nsumption of permeabilized soleus muscle fibers recorded under conditions of: A) respi-
e presence of 2 mM ATP. The values of maximal respiration rates and initial fluxes (J0) are
enous ADP on the respiration. Respiration of permeabilized soleus fibers was progressively
rotenone, E) carboxyatractyloside (CAT) and F) 1-Fluoro-2,4-dinitrobenzene (DNFB) are
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Table 2
Metabolic control analysis of permeabilized skeletal muscle fiber respiration.

Inhibitor Sample ADP-stimulated respiration Creatine-stimulated respiration

FCC Imax, μM J0,nmolO2 min
−1 mg−1 dw
fibers

RCR FCC Imax, μM J0,nmolO2 min
−1 mg−1 dw
fibers

RCR

ATP/ADP carrier Carboxy-
atractyloside

Soleus m. 0.61 ± 0.04 0.11 ± 0.01 14.1 ± 1.9 6.6 ± 0.8 0.86 ± 0.05 0.12 ± 0.09 14.76 ± 2.80 6.3 ± 0.9
GWm. 0.90 ± 0.05 0.030 ± 0.002 7.56 ± 0.30 3.90 ± 0.05
Cardiomyocytes* 0.20 ± 0.05 0.6 0.92 ± 0.05 0.6

ATP synthase Oligomycin Soleus 0.44 ± 0.03 0.11 ± 0.01 16.17 ± 0.90 7.7 ± 1.1 0.61 ± 0.07 0.12 ± 0.07 18.42 ± 4.10 8.7 ± 2.5
GWm. 0.67 ± 0.02 0.024 ± 0.001 9.53 ± 0.90 5.64 ± 0.61
Cardiomyocytes* 0.065 ± 0.01 0.38 ± 0.05

NADH-CoQ
oxidoreductase,
Complex I

Rotenone Soleus m. 0.69 ± 0.05 0.036 ± 0.001 14.6 ± 1.1 5.3 ± 0.1 0.71 ± 0.02 0.026 ± 0.001 16.8 ± 0.6 7.2 ± 0.4
GWm. 0.54 ± 0.06 0.028 ± 0.001 12.83 ± 1.83 8.67 ± 1.61
Cardiomyocytes* 0.20 ± 0.04 0.1 0.64 ± 0.03 0.1

CoQ cytochrome-c
oxidoreductase,
Complex III

Antimycin A Soleus m. 0.47 ± 0.01 0.025 ± 0.002 15.4 ± 0.2 6.5 ± 0.05 0.61 ± 0.01 0.033 ± 0.003 15.4 ± 0.3 7.3 ± 0.4
GWm. 0.82 ± 0.01 0.0200 ± 0.0004 10.92 ± 0.23 6.81 ± 0.23
Cardiomyocytes* 0.41 ± 0.08 0.40 ± 0.01 0.2

Cytochrome c
oxidase,
Complex IV

NaCN Soleus m. 0.73 ± 0.03 20.0 ± 2.5 15.6 ± 1.2 6.6 ± 0.7 0.94 ± 0.01 13.74 ± 2.9 14.6 ± 0.6 5.7 ± 0.6
GWm. 0.84 ± 0.01 8.05 ± 0.45 10.44 ± 0.22 6.34 ± 0.13
Cardiomyocytes* 0.39 ± 0.09 75 0.49 ± 0.08 75

Mitochondrial
creatine kinase

DNFB Soleus m. 0.76 ± 0.01 0.09 ± 0.01
Cardiomyocytes* 0.95 ± 0.02 40

Sum Soleus m. 3.05 ± 0.06 4.49 ± 0.03
GWm. 3.77 ± 0.02
Cardiomyocytes* 1.33 ± 0.31 3.84 ± 0.29

Respiration of permeabilized skeletal muscle fibers was measured in the presence of 5 mM glutamate and 2 mM malate and 10 mM succinate in Mitomed solution at 25 °C. The ADP-
stimulated respiration means that the respiration is stimulated by exogenous ADP (2 mM). The creatine stimulated respiration means that the respiration is stimulated by endogenous
ADP produced in MtCK reaction within mitochondrial intermembrane space. MtCK reaction is activated by the addition of 20 mM creatine in the presence of 2 mM ATP.
Extramitochondrial ADP is trapped up by system consisting of 20 IU/mL pyruvate kinase (PK) and 5 mM phosphoenolpyruvate (PEP). * — data for cardiomyocytes was taken from
Tepp et al. (2011) for comparison [47]. Imax — inhibitor concentration giving complete inhibition, J0 — initial flux or maximal respiration rate in the absence of inhibitor, GW.m— gastroc-
nemius white muscle. The estimation of the flux control coefficient (FCC) was done with n ≥ 3. Values are means ± SEM.
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fibers creatine was added after the stabilization of respiration rates
in the presence of exogenous ATP (Fig. 2D–F). Separate addition of cre-
atine allowed us to highlight its role in the control of respiration in GR,
GW and EDL muscles characterized by low MtCK expression (Western
blot analysis from Fig. 1C). The addition of PK–PEP to permeabilized
cardiomyocytes and soleus muscle fibers did not inhibit significantly
the maximal rate of creatine-stimulated respiration (Fig. 2B and C). In
contrast, in permeabilized GR, GW and EDL muscle fibers, the addition
of PK–PEP system decreased creatine-stimulated respiration by about
50% (Fig. 2D–F).

Fig. 3 shows the relationship between PK–PEP inhibition of creatine-
stimulated respiration, which is used to bring to evidence the MOM
permeability and the apparent Km for ADP in different permeabilized
muscle fibers and cardiomyocytes in comparison with isolated heart
mitochondria. To compare the inhibition effect of PK–PEP in muscle fi-
bers with different amount of mitochondria and proteins, we expressed
it as a percentage of the maximal Cr-stimulated respiration rate
(Fig. 3A). Very low inhibition of Cr-stimulated respiration by PK–PEP
system in permeabilized cardiomyocytes and oxidative soleus muscle
fibers (about 2–5%, Fig. 3A) is related to high apparent Km for ADP
(Fig. 3B). In contrast, the low app. Km for ADP in GW and EDL muscles
is associated with high ADP-trapping effect of PK–PEP system (Fig. 3A
and B). The red portion of gastrocnemius muscle, due to its mixed
composition of fiber-types, has an intermediate apparent KmADP be-
tween that of oxidative and glycolytic fiber-types and a high PK–PEP
inhibition.

3.2. Study of energy fluxes in permeabilized skeletal muscle fibers using
metabolic control analysis

The quantitative study of the control that the respiratory chain
complexes (I, III, IV), ANT and ATP synthase exert on the energy flux
in oxidative soleus and glycolytic GW permeabilized muscle fibers
was performed using metabolic control analysis under conditions of
ADP-stimulated respiration. Additionally, the role ofMtCK in the control
of energy flux in soleus permeabilized muscle fibers was studied using
experimental setting described in Fig. 2A (i.e. Cr-stimulated respira-
tion). We could not apply the same protocol to GW muscle fibers
because of the inhibitory effect of PK–PEP on creatine-stimulated respi-
ration. After the addition of PK–PEP system, the resulting lower level of
creatine — in comparison with ADP — stimulated respiration did not
allow us to compare the flux control coefficients of the same complexes
measured under both conditions.

Fig. 4A and B shows two respirometry traces and Fig. 4C summarizes
statistics of the oligomycin stepwise inhibition of ADP- (Fig. 4A) and Cr-
stimulated respiration (Fig. 4B) in permeabilized soleus muscle fibers.
The inhibition of the initial (J0) flux in the presence of activated MtCK,
which was faster and induced with lower amounts of oligomycin, indi-
cates to the higher control that ATP synthase exerts on the flux when
respiration is controlled by Cr in comparison with direct control by
ADP (Fig. 4A–C, Table 2). Similarly higher FCC in the presence of activat-
ed MtCK in comparison with ADP-stimulated respiration was found for
ANT (Fig. 4E, Table 2). High flux control coefficients of respiratory com-
plexes (I, III, IV) indicate their relevance in the control of the metabolic
flux (Fig. 4, Table 2). Table 2 additionally shows flux control coefficients
of all studied complexes for permeabilized soleus and GW muscle fi-
bers. Concentrations of rotenone, antimycin and oligomycin neces-
sary to achieve the maximal rates of inhibition of ADP-stimulated
respiration were in good agreement with previously published data
(Table 2) [12,37–40]. Flux control coefficients of ATP synthase and
ANT estimated for soleus muscle fibers were also consistent with
previously reported results. Conversely, flux control coefficient
of complex IV (NaCN titration) estimated for m. soleus fibers was
higher than that reported in literature [41]. This difference can be ex-
plained by higher initial flux (J0) due to the utilization of respiratory
substrates for complexes I and II. The strong dependence of control
coefficients on the flux was previously described by Kunz et al.
[39]. The sum of flux control coefficients in both muscle-types and
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under ADP- and Cr-stimulated respiration largely exceeding unity
suggests organization of the respiratory chain complexes I, II, IV,
ATP synthase and ANT into supercomplex (Table 2).
3.3. The expression and distribution of βII tubulin in striated muscle fibers

According to several recent reports the MOM permeability for ade-
nine nucleotides is governed by the interaction of VDAC with heterodi-
meric tubulin [21–27]. The expression of free and polymerized βII
tubulin was assessed by Western blot analysis. The content of free βII
tubulin was highest in oxidative heart and soleus muscles, whereas in
mixed-type GR and glycolytic EDL and GWmuscles its levels are mark-
edly lower (Fig. 5A). To assess the content of polymerized βII tubulin,
extraction of cold-insoluble tubulin in up to 2 mM CaCl2 or 4 M urea
containing resuspension buffer was tested. In both cases, no polymer-
ized βII tubulin was detected in skeletal muscles and only minor levels
were observed in heart muscle (Fig. 5A). Similar observation was
reported earlier for nerve axons, where large amounts of tubulin were
left unextracted with high concentration of urea, Ca2+, colchicine,
and nocodazole [41]. Of note, βII tubulin isoform accounts for over
50% of total β-tubulin present in nerve axons [42]. Since quantitative
estimation of polymerized to free βII tubulin ratio of was not possible
due to its scarcity in glycolytic muscles, we analyzed additionally the
content of total β tubulin. Both forms of free and polymerized β
tubulin were higher in heart and oxidative soleus muscles than in
GR, EDL and GW (Fig. 5A). The densitometric analysis showed that
polymer to dimer ratio of total β tubulin is almost equal across mus-
cle fiber types with estimated values as follows: heart 0.06 ± 0.015;
soleus 0.074 ± 0.03; GR 0.043 ± 0.007; EDL 0.066 ± 0.01 and GW
0.034 ± 0.005 (Fig. 5B).
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Fig. 5. Western blot analysis of free and polymerized βII tubulin and total β tubulin in rat hea
tubulin and total β tubulin in soluble and insoluble muscle extracts prepared under microtubu
β-tubulin in the soluble and insoluble fractions. Equal proportion of free and polymerized sam
sample. The data shown are representative of 3–4 independent experiments. Statistical compa
Intracellular localization of βII tubulin relative to mitochondria was
studied using co-immunolabeling of fixedmuscle fibers with antibodies
for βII tubulin and for mitochondrial protein VDAC, and assessed their
localization by confocal microscopy. The presence of βII tubulin was
detected in all studied muscle fiber types, including EDL and GW. In
heart and soleus muscle fibers βII tubulin appeared as thick segregated
bundles aligned closely to mitochondria between Z-lines as shown in
Fig. 6A–C, D–F and further highlighted in higher magnification image
of heart fibers in Fig. G–I. In gastrocnemius and EDL muscle fibers
(image shownonly for GWmuscle fibers)βII tubulin is seen as thin con-
tinuous filaments situated at Z-lines and similarly to heart and soleus
covered by mitochondria (Fig. 8A–C, E–G, D, H, I).

Co-immunolabeling of β-tubulin and α-actinin showed that in oxi-
dative muscles β-tubulin is concentrated entirely at the area between
Z-lines, similarly to βII isoform, while in GW and EDL (image shown
only for GW) two subpopulations of β-tubulins are present (Fig. 9).
One at the level of Z-lines, similarly to βII tubulin, and second at the
level of A-band, as in oxidative muscles.

All together these results lead us to believe that differences in MOM
permeability for ADP stem from the variances in expression levels of βII
tubulin relative to mitochondria.
4. Discussion

The apparent Km for ADP in permeabilized cardiomyocytes and oxi-
dative soleus muscle fibers is an order of magnitude higher than in gly-
colytic GW and EDLmuscles (Table 1, Fig. 1B) [12,43].We hypothesized
that the differences inmitochondrial affinity for ADP between oxidative
and glycolytic muscles might be explained by different distribution pat-
tern and/or by different free protein content of βII tubulin.
EDL GW

rt and skeletal muscles. (A) Upper panel shows immunoblot of free and polymerized βII
le stabilizing conditions. (B) Lower panel shows densitometric quantification of the total
ples were loaded onto the lanes and an equal amount (35 μg) of protein for each muscle
rison was done by one-way ANOVA and results represent means ± SEM. P b 0.05.
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Fig. 6. Confocal microscopy images of mitochondria and βII tubulin arrangement in adult cardiac muscle fibers. Optical slices of fibers co-immunolabeled for VDAC (A) and α-actinin
(B), and for VDAC (D) andβII tubulin (E) are obtained at least 0.5 μmbeneath sarcolemma and specimens are all oriented so that the long axis of thefiber is directed longitudinally. Images
show that bothmitochondria and βII tubulin are arranged regularly between Z-lines. Scale bar 2 μm. I) Three-dimensional reconstruction of confocal image represented in Fig. 5H). Heart
fibers immunolabeled for VDAC and βII tubulin were scanned at 0.27-μm intervals along the z-axis (maximum 10 planes, depending on the signal intensity) and 3D surface model was
reconstructed by Imaris software (Bitplane). Scale bar, 2 μm. Image is oriented so that the long axis of the fiber is directed along y-axes.
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4.1. Inter relationship between the apparent affinity of mitochondrial respi-
ration for ADP and MOM permeability

The dependence of the apparent affinity of respiration for ADP on
the MOM permeability was previously hypothesized based on kinetic
analysis of respiration control by ADP [12]. We studied ADP fluxes
throughMOMin permeabilizedfibers using PK–PEP systemwhich com-
petes with oxidative phosphorylation for ADP produced in mitochon-
drial intermembrane space by activated MtCK reaction [44]. In
glycolytic gastrocnemius and EDL muscles, characterized by low appar-
ent KmADP the addition of PK–PEP system decreased Cr-stimulated res-
piration by about 50% of Vmax(ATP + Cr) (Fig. 3B). Effect observed in
glycolytic muscles can be due to neither saponin permeabilization nor
low MtCK expression. MOM intactness was confirmed by the absence
of stimulatory effect of exogenous cytochrome c on the maximal ADP-
stimulated respiration rate. Using electron microscopy it was shown
that 100 μg/mL of saponin used to permeabilize cells for 30 min did
not alter MOM connections with cytoskeleton [45]. However, taking
into account that by removing cholesterol from lysosomal membranes,
saponin hypothetically could increase cytoskeleton proteolysis, all ex-
periments were lead in the presence of protease inhibitors [29,33].
Low MtCK expression in glycolytic muscles is another factor capable of
influencing Cr-stimulated respiration. However, it was shown that the
low expression ofMtCK inm. gastrocnemius is related to the lowvolume
that mitochondria occupy in this muscle fibers [46]. Fig. 1A shows that
the maximal rate of Cr-stimulated respiration was identical for each
muscle fiber-type with themaximal rate of ADP-stimulated respiration.
This means that activated MtCK efficiently stimulates respiration in the
absence of trapping system for ADP.

Fig. 3B shows that isolated heartmitochondriawith low apparent Km
for ADP (i.e. high apparent affinity of respiration for ADP) display high
PK–PEP inhibition. In spite of saponin permeabilization, cardiomyocytes
have high apparent Km for ADP (i.e. low apparent affinity of respiration
toADP) and also lowPK–PEP inhibition. In permeabilized cardiomyocytes
and oxidative soleus muscle fibers the addition of PK–PEP inhibited Cr-
stimulated respiration by only 2–5% of Vmax(ATP + Cr) (Fig. 3B). Very low
inhibition of Cr-stimulated respiration in the presence of trapping system
for ADP can be explained by restricted diffusion of adenine nucleotides at
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Fig. 7. Confocal images of mitochondria and βII tubulin arrangement in fixed soleus muscle fibers. Optical slice of soleus fiber co-immunolabeled for VDAC (A) and α-actinin (B), and for
VDAC (E) and βII tubulin (F). Images show that mitochondria and tubulin βII structures are arranged regularly between Z-lines. Higher magnification image highlights mitochondria (in-
dicated by arrows) extending across the A-band. Optical sections presented here are obtained at least 0.5 μmbeneath sarcolemma and specimens are oriented so that the long axis of the
fiber is directed diagonally in upper-panel image longitudinally in the bottom-panel image. (Inset) Higher magnification image highlights mitochondria stalks (indicated by arrows) ex-
tending across the A-band. Scale bar 2 μM.
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the level ofMOM. These results confirm the hypothesis linking the appar-
ent Km for ADP and MOM permeability.

4.2. Study of energy fluxes in permeabilized skeletal muscle fibers using
metabolic control analysis

Restricted diffusion of adenine nucleotides at the level of MOM in
permeabilized cardiomyocytes increasesmitochondrial compartmenta-
tion and control of respiration by creatine [1,2,4,7,12,19,30,47]. The role
of MOMpermeability in the distribution ofmitochondrial energy flux in
skeletal muscle fibers was studied using the method of metabolic
control analysis [34–40]. The metabolic control analysis allows the esti-
mation of the flux control coefficients that each metabolic pathway
component exerts on the metabolic flux [34–36].

In oxidative soleus muscle fibers flux control coefficients of ATP syn-
thase and ANT were higher under Cr- than ADP-stimulated respiration
(Table 2). The increase of flux control coefficients under Cr-stimulated
respiration was described previously for permeabilized cardiomyocytes
and explained by the ADP-recycling in MtCK reaction [47]. In this case
respirationwas supported by small amounts of ADP continuously regen-
erated by MtCK within the intermembrane space which can be favored
by two factors:MtCK-ANT functional coupling allowingdirect ADP trans-
fer to ATP synthase and adenine nucleotide micro-compartmentation
due to their restricted diffusion throughMOM.Due to highMOMperme-
ability, initial flux of Cr-stimulated respiration of permeabilized GW
muscle fibers measured after the addition of PK–PEP was lower than
that of ADP-stimulated respiration making impossible comparison of
flux control coefficients between both conditions for this muscle-type.

In the case of a linear metabolic pathway, the sum of FCCs does not
exceed a unit [48,49]. In our experiments the sum of flux control coeffi-
cients of respiratory complexes (I, III and IV), ANT and ATP synthase
estimated under conditions of ADP-stimulated respiration was higher
than 1 in both permeabilized soleus and GW muscle fibers (Table 2).
According to Lenaz et al., the sum of FCC exceeding unity can be
explained by the spatial organization of respiratory complexes as supra-
molecular associations rather than randomly dispersed complexes in
mitochondrial inner membrane [48,49]. According to the 3D molecular
reconstruction of complexes I, III and IV, the ubiquinone and cyto-
chrome c binding sites are facing each other favoring direct electron
channeling [50,51]. Additional association of ATP synthase, ANT and
phosphate carrier to the respiratory chain supercomplex was proposed
by many authors [51–53] and used to explain the regulation of mito-
chondrial energy fluxes in cardiomyocytes [1,4]. One of the main prop-
erties of supramolecular assemblies is assumed to be the direct electron
channeling between complexes resulting in the increase of oxidative
phosphorylation efficiency, prevention of the excessive oxygen radical
formation and stabilization of individual complexes by supramolecular
assembly [51,53,54]. The supercomplex formation with direct electron
flow between protein-bound CoQ instead of the lateral diffusion of
CoQ is highly dependent on the properties and composition of mem-
brane [55]. In spite of saponin permeabilization, there is no risk of
supercomplexe formation due to the alteration of MIM fluidity. Saponin
removes cholesterol from membranes due to its hydrophobic steroid
core. The main constituent lipid of MIM is cardiolipin which cannot be
removed by saponin. Otherwise inhibition of ADP-stimulated respira-
tion up to V0 by atractylosydewas used to confirm the integrity of mito-
chondrial inner membrane.

4.3. Role of cytoskeletal proteins in regulation of respiration in skeletal
muscle fibers

In spite of broadly similar structure and embedment ofmitochondria
into cytoskeleton in oxidative and glycolytic striated muscle fibers, the
apparent affinity of mitochondrial respiration for ADP is different
(Fig. 1B, Table 1). This difference, as we have shown above, depends
on MOM permeability. Based on our previous results showing tubulin-
dependent increase of the apparent Km for ADP in isolated heart mito-
chondria [21–25], we hypothesized that MOM permeability in skeletal
muscles could also be regulated by βII tubulin.

Bernier-Valentin was the first to show in 1982 that heterodimeric
tubulin binds to VDAC decreasing MOM permeability to ADP in isolated
heart mitochondria [56]. Further evidence for direct tubulin–mitochon-
dria interaction came from co-immunoprecipitation experiments with
different non-cancerous and cancerous cell lines evidencing complexa-
tion between tubulin and VDAC [57]. Finally, the influence of free tubu-
lin on mitochondrial metabolism was showed in experiments with
depolymerization of tubulin in cancerous hepatoma cells which in-
creased mitochondrial membrane potential [58].
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Fig. 8. Confocal images of mitochondrial and βII tubulin arrangement in fixed gastrocnemius whitemuscle fibers. Optical slices of GW fiber co-immunolabeled for VDAC (A) andα-actinin
(B), and for VDAC (E) and βII tubulin (F) are obtained at least 0.5 μmbeneath sarcolemma and specimens are all oriented so that the long axis of the fiber is directed longitudinally. Scale
bar, 2 μm. Images show that mitochondria and βII tubulin are arranged close to Z-lines. Mitochondria highlighted in inset rarely extend across the A-band level. I) Three-dimensional re-
construction of confocal image represented in Fig. 7H. Fibers immunolabeled for VDAC and βII tubulinwere scanned at 0.27 μm intervals along z-axis (maximum10 planes, depending on
the signal intensity) and 3D surfacemodel was reconstructed by Imaris software (Bitplane). Scale bar, 2 μm. Image is oriented so that the long axis of the fiber is directed along y-axes and
show continuous filaments of βII tubulin running along x-axis of image.
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In our experiments, the expression of the total β tubulin accounting
for non-polymerized and polymerized forms is in line with the results
observed earlier, being higher in oxidative and lower in glycolytic mus-
cles [59]. The expression of non-polymerized βII tubulin is high in heart
and oxidative soleus muscle, low in the red portion ofm. gastrocnemius
and very low in the white portion of gastrocnemius and in EDL muscles
(Fig. 5A, B). We hypothesized that free non-polymerized βII tubulin
may participate in the regulation of MOM permeability in oxidative
muscle fibers, while polymerized form of βII tubulin could be involved
in mitochondrial organization. Evidence for the preferential expression
of βII tubulin in tissues with oxidative phenotype has been reported al-
ready before. In addition to its abundance in heart and oxidative skeletal
muscles, high expression of βII tubulin was found in brain and testis
[60–62]. High expression of βII tubulin in synaptosomes was associated
with high apparent Km for ADP (about 110 μM in synaptosomes and
about 10 μM in isolated brain mitochondria) [22]. Moreover the addi-
tion of heterodimeric tubulin increased the apparent Km for ADP of iso-
lated brain mitochondria as previously described in the case of isolated
heart mitochondria [22].

Assessment of intracellular distribution of βII tubulin using immu-
nofluorescent labeling revealed its presence in all studied muscles, in-
cluding GW and EDL characterized by a very low level of the free βII
tubulin expression (Figs. 6–8). In all studied muscles the distribution
of βII tubulin followed that of mitochondria. In soleus muscle fibers βII
tubulin and VDAC immunofluorescent labelings were seen between Z-
lines (Fig. 7), while in GW muscle fibers they were seen at the level of
Z-lines (Fig. 8). The close proximity of βII tubulin tomitochondria in ox-
idative and glycolytic skeletal muscles regardless of their affinity to ADP
(KmADP) suggests that the intracellular distributionof this protein is not
the main factor regulating the MOM permeability. The regulation of
MOMpermeability could bedependent on the expression of thedimeric
fraction of βII tubulin.

How different muscle types achieve compartment specific targeting
of mitochondria is to our knowledge largely uncovered. However it is
well known that higher eukaryotes use predominantly microtubule
(MT) tracks to distributemitochondria. To realize location specificmito-
chondrial organization, a subset of MTs is exploited that distinguishes
by their isoform composition, dynamic stability and post-translational
modifications [63]. Thereforewe hypothesized thatβII tubulin subcellu-
lar arrangement could be associated with muscle type specific localiza-
tion of mitochondria. To test this hypothesis, we compared localization
of overall β-tubulin relative to α-actinin in soleus and in GWmuscle fi-
bers (Fig. 9A). We found that in soleus muscle fibers β-tubulin is con-
centrated in the area between Z-lines similarly to that of βII tubulin
(Fig. 7F). Whereas in GW muscle fibers the two subpopulations of β-
tubulins can be seen, one at the level of Z-lines, similarly to that of βII
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Fig. 9.Comparison of overallβ-tubulin distribution relative to Z-lines in oxidative soleus and glycolyticGWskeletalmusclefibers. Optical slices of soleus (A–C) andGW(D–F)musclefibers
co-immunolabeled for VDAC (A, D) and α-actinin (B, E). In heart muscle fibers, transversely aligned β-tubulin stretches are located between Z-lines. In glycolytic GW muscle fibers, β-
tubulin is present both between and along Z-lines. Scale bar 2 μm.
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tubulin and second at the level of A-band (Fig. 9D). Thus, despite the
presence of significant part of β-tubulin at the level of A-band in GW
muscle fibers, mitochondria reside at the level of Z-lines (aligned
along βII tubulin). These results support the idea that mitochondria po-
sition is defined by subset of microtubules that correlate in bothmuscle
fiber types with organization of βII tubulin.

In live cells restriction of the adenine nucleotides diffusion through
MOM is overcome by free diffusion of PCr which carries intracellular
energy flux via the system of compartmentalized CK iso-enzymes
[1,5,7,64]. Conversely, purified and reconstituted into planar phospho-
lipid membrane VDAC in its closed state is impermeable for ATP, ADP
and PCr [25]. Similar results were shown for isolated mitochondria
from hematopoietic pro-B cell lines [65]. The selective permeability of
VDAC depends on many factors, among which are the cell-specific pat-
tern of VDAC iso-forms; VDAC interactionwith different proteins (tubu-
lin, HKII, MAP2, plectin, desmin …) regulated by distinct signaling
cascades (growth factor or energy cascades); cell-specific pattern of
intracellular proteins capable to interact with VDAC and their functional
state (polymerization state or post-translational modifications, PTMs);
biophysical properties of the channel itself, molecules going through
the channel and MOM phospholipids [66]. All these aspects are compo-
nent parts of the structural and functional organization of cellular energy
metabolism oriented to support specific intracellular energy demanding
processes such as the sarcomere contraction in highly differentiated
cardiomyocytes or biosynthesis in actively growing and dividing cancer
cells.

Differences in MOM permeability for ADP across muscle fiber types
could stem from distinct expression patterns of VDAC isoforms. Striated
muscles express three isoforms of VDAC [67]. According to Anflous-
Pharayra et al., VDAC2 is mainly expressed in heart of wild-type murins
and its deletion is embryologically lethal [68,69]. The decrease of the
apparent affinity for ADP in permeabilized cardiac muscle fibers of
VDAC1−/− mice and VDAC3−/− mice indicates the possible role of
VDAC2 in the restriction of adenine nucleotide diffusion [68–70]. Inter-
action of microtubule-associated protein (MAP2) with VDAC2 [71]
reinforces our belief that βII tubulin binds to VDAC2 regulating its
permeability for phosphometabolites.

Glycolytic gastrocnemius muscle (mixture of red and white por-
tions) of wild-type murins over-expresses VDAC1 [68] and VDAC3
[69] isoforms. VDAC1 and VDAC3 are permeable to ATP/ADP and this
could be linked to the control by HKII [70,72]. VDAC1/3 null cells do
not contain HKII bind to VDAC [73]. More studies are necessary to ad-
dress the mechanism of regulation of the VDAC selective permeability.

Based on these results, we can link MOM permeability regulation
with non-polymerized βII tubulin. Nevertheless it cannot be excluded
that other β-tubulin or α-tubulin isoforms could also bind to VDAC and
influence its conductance. At present the distribution of α-tubulins in
muscle cells is totally uncovered and it is also unclear whether tubulin
post-translational modifications could influence the interaction of tubu-
linwith VDAC. The elucidation of thesemodification patterns in different
skeletal muscles, could give an important contribution to unravel the
complex interplay between microtubular network, metabolism,
mitochondria dynamics and muscle contraction.
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