
Ain Shams Engineering Journal (2014) 5, 285–291
Ain Shams University

Ain Shams Engineering Journal

www.elsevier.com/locate/asej
www.sciencedirect.com
ENGINEERING PHYSICS AND MATHEMATICS
On solutions of nonlinear time-space fractional

Swift–Hohenberg equation: A comparative study
Najeeb Alam Khan *, Fatima Riaz, Nadeem Alam Khan
Department of Mathematical Sciences, University of Karachi, Karachi 75270, Pakistan
Received 5 June 2013; revised 4 August 2013; accepted 1 September 2013

Available online 15 October 2013
*

E-

m

Pe

20

ht
KEYWORDS

Swift–Hohenberg (S–H)

equation;

Reisz derivative;

Caputo derivative;

Fractional variational itera-

tion method;

Homotopy analysis method
Corresponding author. Tel.:
mail addresses: njbalam@ya

ail.com (F. Riaz), ak.nadeem

er review under responsibilit

Production an

90-4479 � 2013 Production

tp://dx.doi.org/10.1016/j.asej
+92 333
hoo.com

15@yaho

y of Ain

d hostin

and hosti

.2013.09.0
Abstract In this paper, a comparison for the solutions of nonlinear Swift–Hohenberg equation

with time-space fractional derivatives has been analyzed. The two most promising techniques, frac-

tional variational iteration method (FVIM) and the homotopy analysis method have been chosen

for the comparison. The two different definitions of fractional calculus are considered to solve

time-fractional derivative separately for the considered approaches. Also, the space fractional deriv-

ative is described in the Reisz sense. Analytical and numerical solutions for various combinations of

the parameters are obtained. Numerical comparisons have been made for different values of param-

eters and depicted.
� 2013 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

During the past few decades, the focus of fractional order dif-
ferential equations [1–5] which has gained mounting interest
for some time due to its demonstrated applications in numer-
ous diverse and wide spread, in particular in relation to contin-

uum mechanics, viscoelastic and viscoplastic flow and
anomalous diffusion (superdiffusion, non-Gaussian diffusion).
The intensive development and constructions of the theory of

fractional calculus played an important role for its applications
in various fields of sciences such as: electrical circuits, control
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theory, image processing, viscoelasticity, biology and many
other applications. Swift and Hohenberg were first who intro-

duced the mathematical model for the Rayleigh–Benard con-
vective instability of the fluid with thermal fluctuations [6].
The vast field of S–H equation is utilized from hydrodynamics

of fluids in physics and engineering problems to the formation
of complex patterns [7–10]. The notable applications attract
the growing interest of researchers to discover the solutions

for time and space fractional equations governed by S–H equa-
tions to study the history of the pattern or flow, Akyildiz et al.
analyzed the solutions of S–H equations analytically [11],
Khan et al. [12] provided the analytical methods for solving

the time-fractional Swift–Hohenberg (S–H) equation, Vishal
and others examined the approximate analytical solutions of
the nonlinear Swift Hohenberg equation with fractional time

derivative via homotopy analysis method [13], the fractional
variational iteration method (FVIM) with modified Rie-
mann–Liouville derivative has been employed to obtain the

approximate solutions of time-fractional Swift–Hohenberg
(S–H) equation by Merdan [14], Youshan and Jizhou obtained
in Shams University.
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the solutions using a shooting method for the Swift–Hohen-
berg equation [15].

In the present study, the solutions of nonlinear Swift–

Hohenberg equation with time-space fractional derivatives
has been found analytically and numerically by employing
fractional variational iteration method and the homotopy

analysis method. The Reisz definition is used to explain the
space factional derivative respectively, as it deals with the
derivative of trigonometric and hyperbolic function that can-

not be explained by Caputo and Jummarie definitions. While
for the time-fractional derivative, Jummarie’s definition has
been used for FVIM and Caputo’s definition for the HAM.
Numerical solutions have been analyzed for several combina-

tions of pertaining parameters, i.e., a, L, a and k. Numerical
results have been compared by illustrating graphs and tables.

2. Basics of fractional calculus

There are several definitions of a fractional derivative of order
a > 0 e.g Riemann–Liouville, Caputo Riesz and Jumarie’s

fractional derivative. Here, some basic definitions and proper-
ties of the fractional calculus theory which can be used in this
paper are presented.

Definition 2.1. Caputo’s definition of the fractional order
derivative is given as

DK
t fðtÞ ¼

1

Cðn� KÞ

Z t

a

fðnÞðnÞ
ðt� nÞKþ1�n

dn; n� 1 < ReðKÞ

6 n; n 2 N; t > 0; ð1Þ

where the parameter K is the order of the derivative and is al-
lowed to be real or even complex, a is the initial value of func-
tion f. In the present work only real and positive values of K
are considered. For the Caputo’s derivative we have

DK
t C ¼ 0 ðwhere C is a constantÞ ð2Þ

DK
t t

c ¼
0; ðc 6 K� 1Þ;

Cðcþ1Þ
Cðc�Kþ1Þ t

c�a; ðc > K� 1Þ:

(
ð3Þ

Definition 2.2. The Caputo time-fractional derivative opera-

tor of order K > 0 is defined as

DK
t uðx; tÞ¼

1
Cðm�KÞ

R t

a
1

ðt�nÞKþ1�m
@muðx;nÞ
@nm dn; m�1<K<m;m2N;

@muðx;nÞ
@nm ; K¼m2N:

8<
:

ð4Þ

For establishing our results, we also necessarily introduce
following Riemann–Liouville fractional integral operator.

Definition 2.3. The Riemann–Liouville fractional integral
operator of order a is defined as

Ja
t fðtÞ ¼

1

CðaÞ

Z t

0

ðt� nÞa�1fðnÞdn; a > 0; t > 0: ð5Þ

For a P � 1, a,b P 0, c P � 1, we have
J0t fðtÞ¼ fðtÞ; Ja
t J

b
t fðtÞ¼ Jaþb

t fðtÞ; Ja
t t

c¼ Cðcþ1Þ
Cðcþaþ1Þ t

cþa ð6Þ

Da
t J

a
t fðtÞ¼ fðtÞ; Ja

t D
a
t fðtÞ¼ fðtÞ�

Xm�1
k¼0

fðkÞð0þÞ t
k

k!
; t> 0: ð7Þ

Definition 2.4. The Riesz fractional derivative Rk
x is defined as

[16,17]

Rk
xuðxÞ ¼ �

Dk
þuðxÞ þDk

�uðxÞ
� �

2Cosðkp=2Þ ; 0 < k < 2; k–1 ð8Þ

where Dk
þuðxÞ and Dk

�uðxÞ are the Weyl fractional derivatives

Dk
�uðxÞ ¼

� d
dx
I1�k
� uðxÞ; 0 < k < 1;

d2

dx2
I2�k
� uðxÞ; 1 < k < 2;

(
ð9Þ

Ik� denote the Weyl fractional integrals of order k > 0, and gi-

ven by

IkþuðxÞ ¼
1

CðkÞ

Z x

�1
ðx� gÞk�1uðgÞdg; ð10Þ

Ik�uðxÞ ¼
1

CðkÞ

Z x

�1
ðx� gÞ�k�1

uðgÞdg; ð11Þ

and when k = 0 the Weyl fractional derivative degenerates
into the identity operator

D0
�uðxÞ ¼ IuðxÞ ¼ uðxÞ: ð12Þ

For continuity, we get

D1
�uðxÞ ¼ �

d

dx
uðxÞ;D2

�uðxÞ ¼
d2

dx2
uðxÞ: ð13Þ

Obviously, in case k = 2, the Riesz fractional derivative
takes the form of the second order derivative operator

R2
xuðxÞ ¼

d2

dx2
uðxÞ: ð14Þ

For the case k = 1 we have

R1
x

d

dt
HuðxÞ ¼ d

dx

1

p

Z 1

�1

uðgÞ
g� x

dx: ð15Þ

where the Hilbert transform and the integral are understand in

the Cauchy principal value sense in order to carry out with
iterative steps in series solution.

For k 2 (0,2), k „ 1,

Ra
xðeikxÞ ¼ �kaeikx: ð16Þ

Ra
x sinðkxÞ ¼ �ka sinðkxÞ: ð17Þ

Ra
x cosðkxÞ ¼ �xa cosðkxÞ: ð18Þ

In addition, we want to give the following some properties of
the Jumarie’s fractional derivative.

Definition 2.5. The Jumarie’s fractional derivative [18–20] is
defined as:

0D
t
afðxÞ ¼

1

Cðn� aÞ
dn

dtn

Z t

0

ðt� sÞn�aðfðsÞ � fð0ÞÞds; ð19Þ
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where t 2 [0,1], n � 1 6 a < n, and n P 1.

Let f(t) denotes a continuous function [18–20] then the
solution is defined as:

y ¼
Z t

0

fðsÞðdsÞa ¼ a
Z t

0

ðt� sÞa�1fðsÞds; 0 < a < 1: ð20Þ

For example f(x) = xb in Eq. (24) one obtains,

Z x

0

sbðdsÞa ¼ Cðbþ 1ÞCðaþ 1Þ
Cðaþ bþ 1Þ tbþa; 0 < a < 1: ð21Þ
3. Generalized space-time-fractional Swift Hohenberg equation

The Swift–Hohenberg (S–H) equation is

Da
t uðx; tÞ � auþ ð1þrkÞ2uþ u3 ¼ 0; X 2 R; t > 0: ð22Þ

Thus, writing the S–H equation in a more general form, we

consider the problem with time-fractional derivative

Da
t uþ 2Rk

xuþ R2k
x uþ ð1� aÞuþ u3 ¼ 0;

0 < a 6 1; 1 < k 6 2; ð23Þ

with boundary conditions

u ¼ 0; uxx ¼ 0 at x 2 ð0; lÞ for all t > 0; ð24Þ
uðx; 0Þ ¼ hðxÞ; for all 0 < x < l: ð25Þ
4. Implementation of the methods

4.1. Solution of the problem by fractional variational iteration
method (FVIM)

Fractional variational iteration method was first proposed by
Wu and Lee [21,22] and successfully implemented to solve

various problems.
Fig. 1 Profile of u(x, t) vs. x by (a) VIM (b) HAM (for

⁄ = �0.4).
According to the FVIM, we can build a correct functional
formula for Eq. (23) as follows:

unþ1ðx; tÞ¼ unðx; tÞ
þ Ia kðx; tÞ Da

t unþ2Rk
xunþR2k

x unþð1�aÞunþu3n
� �� �

;

ð26Þ

to identify the multiplier, we write (26) in the form

unþ1ðx; tÞ¼ unþ
1

CðaÞ

Z t

0

ðt�sÞa�1kðx;sÞ Da
t ~unþ2Rk

x~unþR2k
x ~unþ

ð1�aÞ~unþ ~u3n

 !
ds:

ð27Þ

Using Eq. (20), we obtain a new correction functional:

unþ1ðx; tÞ¼ unþ
1

Cðaþ1Þ

Z t

0

kðx;sÞ Da
t ~unþ2Rk

x~unþR2k
x ~unþ

ð1�aÞ~unþ ~u3n

 !
ðdsÞa:

ð28Þ

It is obvious that the approximations un, n P 0 can be
established by determining k, a general Lagrange’s multiplier,

which can be identified optimally with the variational theory.
The function ~un is a restricted variation which means d~un ¼ 0
Therefore, we first designate the Lagrange multiplier that will

be identified optimally by the use of integration by parts. The
straightforward approximations un+1 (x Æ t), n P 0 of the solu-
tion u(x Æ t), will be willingly obtained upon using the obtained

Lagrange multiplier and by using any selective function u0.
Accordingly, the exact solution may be acquired by

uðx; tÞ ¼ limn!1unðx; tÞ: ð29Þ

By taking the initial approximation as:

u0ðx; tÞ ¼
1

10
Sin

px
L

� �
ð30Þ
Fig. 2 Profile of u(x, t) vs. x by (a) VIM (b) HAM (for

⁄ = �0.4).



Fig. 3 Profile of u(x, t) vs. x by (a) VIM (b) HAM (for

⁄ = �0.4).
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The successive iteration can be obtained as:

u1ðx; tÞ ¼
1

10
Sin

px
L

� �
�

taSin px
L

� �
10C 1þ að Þ þ

ataSin px
L

� �
10C 1þ að Þ

þ
1
L

� �k
p2taSin px

L

� �
5Cð1þ aÞ �

1
L

� �2k
p2ktaSin px

L

� �
10Cð1þ aÞ

�
taSin px

L

� �3
1000Cð1þ aÞ ð31Þ
Fig. 4 Profile of u(x, t) vs. x by (a) VIM (b) HAM (for

⁄ = �0.4).
The solution obtained by next iteration is large enough that
only two iterations of FVIM have been done. It can be ob-
served from Eq. (31) that if we replace the space fractional

derivative k = 2 and simplify it, we can easily accomplish
the solution of Merdan [14].

4.2. Solution of the problem by HAM

The homotopy analysis method first introduced by Liao
[23,24] efficaciously employed to solve nearly all kinds of inte-

ger and fractional order nonlinear differential equations
[25,26].

Hence, to solve Eq. (23) by HAM, we choose the initial

approximation as:

u0ðx; tÞ ¼
1

10
sin

px
L

� �
; ð32Þ

and the linear operator,

L½uðx; t; qÞ� ¼ @
auðx; t; qÞ
@ta

; ð33Þ

with the property

L½c� ¼ 0; ð34Þ

where c is integral constant. Furthermore, for Eq. (23), we
define a nonlinear operator as

N½u� ¼Da
tuðx; t; qÞ þ 2Rk

xuðx; t; qÞ þ R2k
x uðx; t; qÞ

þ ð1� aÞuðx; t; qÞ þ u3ðx; t; qÞ: ð35Þ

Now, we construct the zeroth-order deformation equation

ð1� qÞL½uðx; t; qÞ � u0ðx; tÞ� ¼ q�hN½uðx; t; qÞ�: ð36Þ

Obviously, when q = 0 andq = 1

uðx; t; 0Þ ¼ u0ðx; tÞ uðx; t; 1Þ ¼ uðx; tÞ ð37Þ
Fig. 5 Profile of u(x, t) vs. x by (a) VIM (b) HAM (for

⁄ = �0.4).



Fig. 6-b The three dimensional surface of u(x, t) by HAM (for ⁄ = �0.4).

Fig. 6-a The three dimensional surface of u(x, t) by VIM.

On solutions of nonlinear time-space fractional Swift–Hohenberg equation: A comparative study 289



Table 1 Numerical values of function u(x, t) by HAM (in brackets) and by FVIM for different values of a and k keeping L = 3, t= 1,

x= 1, M= 0.2 and ⁄ = �0.55 (for HAM).

k/a 0.4 0.6 0.8 1 1.2

2.0 (0.107350) (0.106697) (0.105369) (0.103652) (0.101754)

0.107334 0.106774 0.105503 0.103806 0.101902

1.75 (0.107626) (0.106963) (0.105615) (0.103873) (0.101948)

0.107612 0.107041 0.105751 0.104029 0.102098

1.50 (0.107863) (0.107190) (0.105825) (0.104062) (0.102113)

0.107849 0.107270 0.105963 0.104219 0.102266

1.25 (0.108060) (0.107380) (0.106000) (0.104219) (0.102251)

0.108048 0.107461 0.106140 0.104378 0.102405

Fig. 7 Plot of u(x, t) vs. ⁄.
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Expanding u(x, t;q) in Taylor series with respect to q, one can
find

uðx; t; qÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞqm;

umðx; tÞ ¼
1

m!

@muðx; t; qÞ
@qm

����
q¼0

ð38Þ

If the auxiliary linear operator, the initial guess and the
auxiliary parameter ⁄ are properly chosen, the above series is
convergent at q = 1, the series form becomes:

uðx; tÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞ: ð39Þ

The mth order deformation equation is

L½umðx; tÞ � vmum�1ðx; tÞ� ¼ �hRmðu
*

m�1ðx; tÞÞ; ð40Þ

where

Rmðu
*

m�1ðx; tÞÞ¼
Da

t um�1þ2Rk
xum�1þR2k

x um�1þ 1�að Þum�1þXm�1
i¼0

Xi

j¼0
ujui�j

 !
um�1�i

0
BB@

1
CCA

ð41Þ

The values of um(x, t) for m = 1, 2, 3,. . .. can be obtained

from Eq. (40).
The first component of the function u(x, t) by HAM is

found as

u1 ¼
�htaSin px

L

� �
10Cð1þ aÞ �

�hataSin px
L

� �
10Cð1þ aÞ �

�h 1
L

� �k
p2taSin px

L

� �
5Cð1þ aÞ

þ
�h 1

L

� �2k
p2ktaSin px

L

� �
10Cð1þ aÞ þ

�htaSin px
L

� �3
1000Cð1þ aÞ ð42Þ
As specified by Liao, homotopy analysis method provides
the auxiliary parameter ⁄ to choose the convergence region

of the obtained solution. The form of series is obtained
through sixth order of approximation.

It is examined by Liao that HPM is the special case of

HAM and if the value of parameter ⁄ is replaced by ⁄ = �1,
it represents the same solution as obtained through HPM.
Here, for the considered problem if we put ⁄ = �1 and
k = 2 in Eq. (42), the solution obtained by Khan et al. [12]

can be recovered.
5. Results and conclusion

In this paper, the nonlinear time-space fractional Swift–
Hohenberg equation has been solved and compared employing
the HAM with time-fractional Caputo derivative and FVIM

with time-fractional Jumarie derivative, whereas the Reisz def-
inition has been used for space fractional derivative in both
approaches.

Following results have been obtained which provide the in-
sight into the function, they are compared through Figs. 1–6
(a- by FVIM and b- by HAM) for various values of related

parameters.

� Table 1 provides the insight into the influence of space frac-
tional derivative k and time-fractional derivative a on the

function u(x, t). It can be observed that the function u(x, t)
is the increasing function of k and decreasing function of a.
� In Fig. 1(a and b), the profile gives the variation in the func-

tion u(x, t) on space co-ordinate x with respect to time t.
The graph predicts that, with the increase in time the func-
tion u(x, t) is also increasing.

� The effect of space fractional derivative k on the function is
displayed in Figs. 2 and 3(a and b) (2- for the constant
parameter a = 0.3, 3- for the constant parameter

a= 0.9). It shows the slight increase in the function u(x, t)
with the decrease in k.
� The time histories of the function u(x, t) are displayed in
Fig. 4, and it gives the previous path of the function at dif-

ferent stages of time.
� Fig. 5 is plotted with the large length of the domain for the
change in the space fractional derivative which shows two

periods of the function.
� The three dimensional surfaces have been displayed for var-
ious values of space fractional derivative in Fig. 6.
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� Fig. 7 provides the convergence range of the solution

obtained through HAM by 6th order of approximation.

It can be seen from the obtained results that both the

methods are efficient in solving time-space fractional Swift–
Hohenberg equation. With the use of Reisz derivative for
space function, the generalized analytic solution can be
obtained by employing both the techniques. The comparison

made, proves the existence and uniqueness of solution. Also,
both the methods are in good agreement with the previous
results.
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