of folding-back and averaging-out were repeatedly applied until the expected values of benefit and cost are eventually calculated at the first decision-node. RESULTS: Comparing Tc to Tc, we obtained the incremental cost and benefit for (1-p1)(p1) + (1-p2)(p2) (Ca – Cb) and p(1-p) (Ea – Eb), respectively. Then, dividing the former by the latter we obtain the incremental ICER = (1-k) x ICER, where k = (1-p1)(1-p2). It implies that the risk-adjustment corrects the underestimation of ICER since it takes a positive value. Hence, the efficiency frontier defined by a series of ICERs transformed into an interior position, compared to the original one. CONCLUSIONS: The ICER can correct an underestimate of the standard ICER and will be useful in risk-sensitive evaluation using ICERs including the efficiency frontier.

PMC2

A STANDARDIZED EVIDENCE BASED APPROACH TO ASSESS NON-TRADITIONAL OUTCOME MEASURES FOR USE IN HEALTH CARE DECISION MAKING: THE DIABETES EXAMPLE

Bultas X1, Vieta A1, Sacristán JA2

HECR IMS Health, Barcelona, Spain. Clinical Research Department Lilly, Madrid, Spain.

OBJECTIVES: Non-traditional outcomes (NTOs), those related with patient reported outcomes (PROs), economic and non-traditional clinical outcomes, are frequently being used to assess health interventions. We propose a standardized approach to assess the utility of NTO measures for use in health care decision making. METHODS: A systematic review of NTOs in Type 2 Diabetes Mellitus (T2DM) was conducted. Inclusion and exclusion criteria, data sources, search strategy, and data extraction and quality assessment of the studies and NTOs were defined. The degree of recommendations of variation in CE of smoking cessation support (SCS), at different thresholds for the willingness-to-pay per QALY (WTP). METHODS: A model-based study compared the cost-effectiveness of SCS between countries. For several values of WTP, we investigated the impact of between-country differences in nine factors on the incremental net monetary benefit (INMB). The factors were demography, smoking prevalence, mortality and incidence and costs of smoking-related diseases, resource use and unit costs of SCS, utility weights and discount rates. RESULTS: Currently, SCS is not reimbursed in Greece, corresponding to a WTP of €0. With a WTP below €100, the factors most responsible for between-country differences in INMB are resource use and unit costs of SCS and costs of smoking-related diseases. Utility values have little impact. At a threshold above €100, between-country differences are primarily due to different discount rates, utility weights and epidemiology of smoking-related diseases (incidence and mortality). Costs of smoking-related diseases have little impact above €20,000. At all thresholds, demography has little impact. CONCLUSIONS: When judging the transferability of a CE study to another jurisdiction, we should consider the between-country differences in threshold values per QALY.

PMCS

MEASURING AND MONITORING THE REAL-WORLD COST-EFFECTIVENESS OF NEW TECHNOLOGIES IN HOSPITALS

Neuroth S1, Weiss R1, Glasebrook R1, Munich, Germany

OBJECTIVES: Due to setting specific characteristics the economic attractiveness of new technologies might vary between hospitals. We compared classical and statistical process control (SPC) methods for measuring and monitoring the real-world cost-effectiveness of new technologies in hospitals. METHODS: A systematic literature review was performed in PubMed in April 2009 to identify studies applying classical and SPC methods for investigating the cost-effectiveness of changes in inpatient health care processes. Both methodologies were compared using a predefined set of criteria such as accuracy, flexibility, informativeness, suitability and user-friendliness. RESULTS: Classical statistical methods based on “time static” (cross-sectional) statistical analysis with aggregated data are widely used. With the ability to detect statistical significant differences classical methods may provide higher accuracy. They are characterized by large one-time data collections to evaluate the impact of a process change for a pre-specified time period, limiting their flexibility. SPC methods which analyze time series data by monitoring a process over time have been used rarely but their application is increasing. They combine time series analyses with a graphical representation of the data. Patterns in time series data can be important in identifying other methods which rely on averages (or other summary statistics) could mask. By providing continuous feedback SPC is capable not only of detecting the results of process changes earlier but also of monitoring the process sustainability. SPC can be applied to routine data easier as it is typically less sensitive to statistical issues. Furthermore, the graphical representation of the data has advantages because statistical methods such as P-values are often poorly understood and misinterpreted. CONCLUSIONS: Both methodologies are suitable for measuring the (cost-)effectiveness of changes in health care processes. SPC seems to be the preferred methodology under real-world conditions to support decision-making although it commonly does not achieve the accuracy of classical statistical methods.

PMCS

THE NATURE AND SCALE OF INADEQUATE REPORTING OF CONTINUOUS OUTCOMES FROM FOUR SYSTEMATIC REVIEWS

Singh N1, Ommar S1, Mahajan A1, Agrawal R1, Uddhavaya BS2, Narvikar P2, Bhanderi M2

1Health Care Private Ltd, Chandigarh, India. 2Hera Health Pty Ltd, Charnley, Australia.

OBJECTIVES: Inadequate reporting of continuous outcomes is a major problem while performing meta-analysis. The objective of this study is to estimate the nature and scale of inadequate reporting of continuous outcomes. METHODS: Rating quality of continuous outcomes (baseline, endpoint and change from baseline data) was analysed across four disease area reviews conducted in lipid disorder, overactive bladder, multiple sclerosis and rheumatoid arthritis. Reporting quality was considered inadequate when either number of patients analysed (N) was missing/could not be calculated from the reported statistics. Analyses were conducted using STATA 9.2. RESULTS: In total 12,236 reported outcomes across the four systematic reviews were included in the analysis. Inadequate reporting of continuous outcomes was frequent and observed for 3912 (31.97%) outcomes. The estimate of inadequate reporting varied across selected reviews and ranged from 27.50% to 45.77% in lipid disorder and overactive bladder, respectively. Of the outcomes reported inadequately, number of patients analysed (N) was missing for 8.82% whereas effect term was missing or could not be calculated for 91.18% outcomes. When the reporting quality was analysed by the outcome type, it was observed that change from baseline data were often reported inadequately (49.63%) compared to baseline & endpoint data (25.00% and 24.51%, respectively). CONCLUSIONS: Inadequate reporting of continuous outcome was frequently observed among the selected reviews especially for the change from baseline outcomes. The results demonstrated that for majority of the outcomes, the effect term was either missing or could not be calculated from the given statistics. This inadequacy of reporting could have a significant impact on the results of meta-analysis. Our results are indicative of outcome reporting bias which needs to be investigated further.