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Abstract 

In combinatorial problems it is often worthwhile simplifying the problem, using 
operations such as consistency, before embarking on an exhaustive search for solutions. 
Neighbourhood substitution is such a simplification operation. Whenever a value x for a 
variable is such that it can be replaced in all constraints by another value y, then x is 
eliminated. 

This paper shows that neighbourhood substitutions are important whether the aim is to 
find one or all solutions. It is proved that the result of a convergent sequence of 
neighbourhood substitutions is invariant modulo isomorphism. An efficient algorithm is 
given to find such a sequence. It is also shown that to combine consistency (of any order) 
and neighbourhood substitution, we only need to establish consistency once. 

1. Neighbourhood substitution 

In a CSP (constraint satisfaction problem) on y1 variables, constraints are given 
in the form of relations C(P,), . . . , C(P,) on subsets P,, . . . , P, of the n 
variables. C(P,) is the set of legal labellings for the set of variables P,. It may be 
given as an explicit list of labellings or in implicit closed form. The set of n-tuples 
satisfying all the constraints is simply the join of the constraints C(P,), . . . , C(P,). 
The domain of variable i is denoted by Ai. Many problems, such as school- 
timetabling, scheduling, line-drawing labelling, sketch-map interpretation and 
circuit design can be expressed in a natural way as CSPs. For example, in the 
graph colouring problem, in which the aim is to assign a colour to each node of a 
given graph G so that no two adjacent nodes are assigned the same colour, there 
is a binary constraint 
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CC{4 u>> = {(-G y>: X, y different colours} , 

for each edge (u, V) in G. In the case of binary constraints, we use the shorthand 

C,, for C(+, 4). 
Unfortunately, determining whether a constraint satisfaction problem has at 

least one solution is NP-complete [8]. Consistency is a well-known operation on 
CSPs which renders the information in the constraints more explicit: tuples are 
eliminated from constraints when it is discovered that they cannot be part of any 
globally consistent labelling. In general, the more explicit the constraints are, the 
less search is required to find one or all solutions. Arc consistency is very effective 
in certain problems, such as line-drawing labelling [12] and scheduling. However, 
in other problems, one example being the g-queens problem, arc consistency 
produces no eliminations and so does not reduce the combinatorial explosion. 

Freuder [5] defined a new reduction operation for binary CSPs: label a E A, is 
neighbourhood substitutable for label b EA, at variable i if for all constraints C,, 
and for all values xEAj, 

A straightforward generalisation to higher-order constraints is given in the 
following section. If the label b is eliminated, then the reduced CSP will have a 
set of solutions which may be a proper subset of the set of solutions to the original 
CSP. However, an important property is preserved: the reduced CSP has a 
solution iff the original CSP has a solution. Thus substitution operations are 
clearly useful when searching for a single solution. We will show in Section 6 that 
they are, in fact, equally useful when searching for all solutions. Local substitu- 
tion operations, such as neighbourhood substitution, propagate in the same way 
that local consistency operations propagate [7]. 

Substitution operations can be applied to certain CSPs in which consistency 
would be of no help. Tsang [ll] points out that consistency is useful in highly 
constrained problems but much less so in loosely constrained problems. We would 
hope to be able to profitably apply substitution in both types of problems, but 
especially in problems with a sparse constraint graph. 

As an example, consider the graph colouring problem of Fig. l(a). Here the 
constraint graph is a 5 by 5 grid. The list of possible colours for each node is given 
in the form of the initial letters of the colours. Thus, for example, the set of 
possible labels for the top right-hand node is {red, green, blue}. The problem is to 
colour each node, so that adjacent nodes are assigned different colours. This CSP 
is loosely constrained and arc consistency produces no eliminations of labels. 
Neighbourhood substitution, on the other hand, produces many eliminations. 
Consider the top right-hand node. The label green is neighbourhood substitutable 
for both red and blue, since green is consistent with all labels at the two adjacent 
nodes. Thus both red and blue can be eliminated at this node by neighbourhood 
substitution. 

Unlike consistency operations, applying substitution operations until conver- 
gence (i.e. until no more eliminations are possible) does not always produce the 
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Fig. 1. The results of applying two different convergent sequences of neighbourhood substitutions to 
the graph colouring problem in (a) arc shown in (b) and (c). 

same result. Two distinct convergent sequences of neighbourhood substitution 
operations applied to the problem of Fig. l(a) produce the two distinct graph 
colouring problems shown in Figs. l(b) and l(c). In both cases, however, the 
reduced CSP is clearly easier to solve than the original CSP, since most variables 
are left with only one possible label. 

It should be mentioned that what makes neighbourhood substitution so 
effective in this particular pseudo-random graph colouring problem is the fact that 
the domains Ai for each variable i are distinct. In a colouring problem on a 
connected graph, with identical domains Ai for all i, no neighbourhood substitu- 
tions are possible. 
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It is clear that the two reduced problems in Figs. l(b) and l(c) are very similar. 
Let CSP(b) and CSP(c) denote these two problems, and let A,(b) and Ai 
represent the domains in CSP(b) and CSP(c). The constraints Cii are identical in 
the two problems. CSP(b) and CSP(c) are isomorphic, in the sense that, for each 
node i, there is a bijection 

h: Ai -+ Ai 

satisfying 

(x, Y) E cii @ (A(x), J(Y)) E 'lj. 

We will show in the following section that two convergent sequences of 
neighbourhood substitutions applied to two copies of the same CSP always 
produce isomorphic CSPs. The definition of an isomorphism between arbitrary 
CSPs is given below (Definition 2.4). 

2. Invariance of the result of neighbourbood substitutions 

To simplify the notation in the following proofs, we assume that labels at 
different nodes are distinct. When we say that x is a label, we mean implicitly that 
x is a (label, node) pair (a,, i,) such that a, EAix. This should not lead to any 
confusion, since the substitution of x by y is only possible if i, =i,. It simply 
avoids having to specify the node for each label. 

Definition 2.1. Given two labels x,yEA, for variable i, the label y is neigh- 
bourhood substitutable for x if for all constraints C(P) such that iEP = 
{i, i,, . . . , i,_,} 

{(z,, . . . , z~_~) E Ail x * . . x Aik_,: (x, zl, . . . , z,+~) E C(P)}, 

c {(z,, . . .,~~-~)EA~,x...xA~~_~:(y,z~ ,..., z~_~)EC(P)}. 

We use the notation x ---, y to represent the corresponding neighbourhood 
substitution operation, which can be read as “x is eliminated because it can be 
substituted by y”. 

An algorithm which eliminates substitutable labels may also update constraints 
C(P) by eliminating all labellings (x, z1 , . . . , z~_~) when the label x is eliminated. 
However, such eliminations are superfluous, in the sense that they cannot create 
new neighbourhood substitutions. This is because, in Definition 2.1, we never 
consider tuples (x, zi, . . . , z~_~) in which some zi or x has been eliminated from 
the corresponding domain. Furthermore, in many constraint satisfaction prob- 
lems, constraints are given implicitly in the form of equations or inequalities, such 
as ui>ui+uk. Such constraints do not easily lend themselves to updating. For 
these reasons we assume that neighbourhood substitution operations update only 
the domains Ai and not the constraints C(P). 
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Let E be a sequence (e,, e2, . . . , e,) of neighbourhood substitutions applied to 
a CSP. Each neighbourhood substitution ek has the form x + y, for some labels x 
and y. We say that E converges if no more neighbourhood substitutions are 
possible in the CSP resulting from the application of the sequence of substitutions 
E. As an example, consider the CSP shown in Fig. 2(a), consisting of three 
variables and two constraints C,, and C,,. 
(x, y)EC,. Th 

A line joins label XEA, and yEAi if 
ere are three convergent sequences of neighbourhood substttu- 

tions: 

(1) (e-4 b+a), 
(2) @-+a, c-,4, 
(3) (b+a, d+e). 

The resulting CSPs are shown in Fig. 2(b) for sequences (1) and (2), and in Fig. 
2(c) for sequence (3). Although the CSPs are different, they are clearly 
isomorphic. 

If there exist labels a,, u2, . . . , LZ~_~ such that E contains as a subsequence 

(eil,e;,, . . . . e~,)=(~~~~~~]~~~~...,“k-~~uk-l~uk-l~y)~ 

then we will write as a shorthand “x + ... y in E”, or more explicitly 

x -+ a, --+ u2 + * *. + uk_l + y. 

1 2 3 

(a) 

(b) 

(d a C 

V 

f 

g 

e 

Fig. 2. (a) The consistency graph of a 3-variable CSP; (b), (c) two isomorphic CSPs which result from 
applying different convergent sequences of neighbourhood substitution operations to this CSP. 
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Note that E will often contain substitutions at different nodes, but that x, 

. . > uk_, , y must all be labels for the same node. For example, if the CSP 
zktains the single constraint shown in Fig. 3(a), then E = (f + d, c -+ b, b - a, 
d + e) is a convergent sequence of neighbourhood substitutions which results in 
the CSP shown in Fig. 3(b). In E, f + . . . e and c --+ . . . a (subsequences of length 
2), as well asf+*..d, c--+..-b, b+***a and d-+..-e (subsequences of length 
1). We consider x + ** ax to be true for all X; this corresponds to a sequence of 
length 0. 

We write x H . .. y in E if x -+ ... y in E and y is not eliminated in E. 

Lemma 2.2. Let C(P) be a constraint in a CSP and E a sequence of neighbourhood 
substitutions that can be applied to the CSP. If (ul, . . . , uk) E C(P) and ui H ... xi 
in E, for i=l,. . . , k, then (x,, . . . ,x~)EC(P). 

Proof. Let E, denote the prefix (e,, . . . , tj) of E =(e,, . . . , e,), with E, defined, 
by default, as the empty sequence. Consrder as inductive hypothesis Hi: 

if(u,, . . . ,u,)EC(P)andz+ H ..-xiinEj,fori=l,. . . ,k, 

then (xr, . . . , xk) E C(P). 

H, is clearly true, since ui H a.* ui in E,, the empty sequence. We will prove, by 
contradiction, that H, + H,, 1. The only way that Hi could be true and Hi+, false is 
if, for some (ur,. . . , u~)EC(P) such that u, H “*xi in E,, for i= 1, . . . , k, 

(x,, . ’ . rXh-l,Xh,Xh+l,. . . ,X,)EC(P) 

and 

(a) 

(b) a 

\ e 

Fig. 3. (a) The consistency graph of a single-constraint CSP; (b) the result of the sequence of 
neighbourhood substitutions (f + d, c + b, b -+ II, d + e). 
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where ej+i is the substitution x,, ++ ... XL. This contradicts Definition 2.1 of 
neighbourhood substitution, given our assumption that none of the labels xi, 
(i=l,...,k) h ave been eliminated from their domains in E,. Therefore, 

Hj+Hj+, 3 and by induction we can deduce H,,,, which is exactly the result we set 
out to prove, since E, = E. 0 

The lemma would become false if ui - . . . xi were to be replaced by ui + . . . xi. 
For example, in the sequence of substitutions 

E = (f -+ d, c -+ b, b -+ a, d -+ e) 

that can be applied to the CSP of Fig. 3(a), we have c -+ .. . b and f + 1.. f. 
However, denoting the single constraint of this CSP by Ciz, (c, f)E C,, does not 
imply (b, f)EC,,. This is due to the fact, that when b is substitutable for c, f has 
already been eliminated from the domain A,. 

Let x + y be a substitution which can be applied to a CSP. Consider a 
convergent sequence F of neighbourhood substitutions applied to the same CSP. 
Since extra eliminations of labels cannot prevent neighbourhood substitutions, we 
can deduce that if x is not eliminated in F, then y must be. The following lemma 
extends this result by considering a subsequence x + * *. y of eliminations within a 
sequence E, instead of a single substitution x -+ y, and shows not only that y is 
eliminated but also that y H **a x in F. 

Lemma 2.3. Let E and F be two sequences of neighbourhood substitutions for the 
same CSP, and suppose that F is convergent. If x + .. . y in E and x is not 
eliminated in F, then y H ... x in F. 

Proof. If x + ... + z + y in E where z + y is the pth substitution in the 
sequence E, then we say that the subsequence x - ... y ends at position p. We 
prove the lemma by induction on p. This gives the following inductive hypothesis. 

H,: Let E and F be two sequences of neighbourhood substitutions for the 
same CSP, where F is convergent. If x + ... y in E,, the prefix of E 
ending at position p, and x is not eliminated in F, then y H ... x in F. 

H,, is trivially true, since x -+ a*. x in E, and F for all x. 
Suppose that H,_, is true, where p 2 1. Consider a subsequence of E, x + ... 

* z + y, which ends at position p, where x is not eliminated in the convergent 
sequence F. To demonstrate the truth of H,, we must show that y H *s-x in F. 
Suppose that y - ... u in F. Note that we do not discount the possibility that 
u =y. 

Consider (x, zl,. . . ,z,_,)EC(P). W e will show that, if none of z, , . . , z~_~ 
are eliminated in F, then (u, zi , . . . , zk_ 1)~ C(P). 

Suppose that, for each t = 1, . . . , k - 1, z, t+ . . . w, in E,, the prefix of E ending 
at position p (the position at which z + y). We do not exclude the possibility that 
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w,=z,. Since (x, zr, . . . , zk_r)EC(P), x I-+ *a* y in E,, and z, H ... W, in Ep, we 
can deduce by Lemma 2.2 that 

(Y, Wl, . . . > Wk-,I E W). (1) 

This is illustrated in the left-hand side of Fig. 4 in the case of binary constraints. 
Vertical arrows represent subsequences of neighbourhood substitutions: x I--+ . . . y 
and .zr H... wr in E, ; horizontal lines represent constraint membership: 

(x3 z1)3 (Y, w*)EC(P). 

Each z, -+ . . . w, is a subsequence of E which ends before position p. This is 
because z -+ y is the substitution at position p, and w, cannot be equal to y since 
they are labels for different nodes. By our inductive hypothesis, applied to each of 
z,-+ *.. w, in Ep_l, we deduce that either 

(a) at least one of zr , . . . , zk_, is eliminated in F, or 
(b) none of zr, . . . , zk_, is eliminated in F and, for each t= 1, . . . , k- 1, 

w, H . . . z, in F. 
Consider case (b). (y, wr, . . . , w~_~)EC(P) by (l), y H **+u in F by definition 

of u, and W,H “*z, in F for each t=l,. . . , k- 1. Therefore, by Lemma 2.2, 

( u, zl, ’ . . , zk-1 > E w>. 

This is illustrated in the right-hand side of Fig. 4. Thus we have shown that if 

? 2”. . 

. , zk_ 1) E C(P) and none of zr , . . . , zk_ 1 is eliminated in F, then 
u, zr, . . . , Zk-l)EC(P). 

Hence, in the CSP which results from the sequence of substitutions F, 

(noneofz,, . . . , zk_r eliminated) A (x, zr, . . . , z~_~) E C(P) + 

( u,zl,...,zk&, ) E C(P). 

This implies, from Definition 2.1 of neighbourhood substitution, that x could be 
substituted by u, which contradicts the fact that F is convergent, unless u=x. 

Since y H *a. u, in F by definition of u, we have thus shown exactly what was 
required, namely 

YH * * * x in F, 

which completes our proof by induction. 0 

Ep F (case (b)) 

x- Zl Y-W1 

/I i[ 
Y--w1 v-z, 

Fig. 4. In the case of binary constraints, every z, such that (x, z,)EC(P), satisfies (LJ, z,)EC(P) 
provided z1 is not eliminated in F. 
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Definition 2.4. Consider two CSPs with domains Ai and Al (i=l, . . . , n) and 
constraints C(P) and C’(P) (PcN= { 1, . . . , n}). An isomorphism between the 
two CSPs is a bijection 

f: U Ai+- U A;, 
i=l,...,n i=l,. ,n 

such that 
(1) ViE{l,. . . , n> VxEAi (.W+), 
(2) VPGN ((u,, . . . , u~)EC(J’) e (f(ul), . . . > f(+))EC’(P)). 

If no constraint exists on P in a CSP, then C(P) is simply the complete constraint 
(the Cartesian product of the domains of the variables in P). 

In the following theorem the two CSPs have identical constraints but different 
domains. 

Theorem 2.5. If E and F are two convergent sequences of neighbourhood 
substitutions for the same CSP, then the CSPs which result from the application of 
E and F are isomorphic. 

Proof. We use the notation A,(E) to represent the set of labels for node i not 
eliminated by E, and U(E) to represent Ui=t,,,,,n A,(E). 

We define the function f: U(E) + U(F) as follows: 

f(x) = Y wherex H -.*yinF. 

Let x E U(E). Since x -+ --. f(x) in F and x is not eliminated in E, Lemma 2.3 
tells us that f(x) H . ..x in E. f is thus injective, since f(xl)=f(x2)=y implies that 

Y+-+ -**x1 and y - .*a x2 in E, which is clearly only possible if x1 =x2. 
Consider y E U(F), and let x E U(E) be such that y - ... x in E. Then, by 

Lemma 2.3, x H . . . y in F and hence f(x) =y. f is therefore surjective. 
Let u,, . . . , uk E U(E). By definition of f, uj ++ *a- f(uj) in F, for each i = 

1 , . . . 2 k. Therefore, by Lemma 2.2, 

(u,, . . . > &) E W>J(f(u,), * . . 3 f(4)) E C(P). 

Now, f(u;) - -.a ui in E, for each i=l, . . . , k, by Lemma 2.3. Thus, again by 
Lemma 2.2, 

(f(%)T * ’ * , f&J) E C(P) * (u17 . . > +J E cm. 

Thus f is an isomorphism from U(E) to U(F). In particular, (x1, . . . ,x,) is a 
solution to the CSP resulting from the application of E iff ( f(xl), . . . , f(x,)) is a 
solution to the CSP resulting from the application of F. 0 

The major consequence of this result is that there is no point trying to choose 
the best convergent sequence of neighbourhood substitutions operations to apply 
to a CSP since the resulting reduced CSPs are all isomorphic. 
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3. k-consistency and neighbourhood substitution 

We remind the reader of some definitions concerning consistency. For notation- 
al convenience, we consider the domains Ai and the order-l constraints C( {i}) to 
be synonyms. A CSP can thus be represented by a set of constraints %?= 
{C(P): PC/V}, without mention of the domains. 

Given a labelling X, = (xi,, . . . , for a set of variables Q= {i,, . . , i,}cN, 

and a subset P=(jl, . . . , j,)cQ, 
xi,) 

we use the notation Il,X,, to denote X,= 

(x,,, . . , x,,,). We say that Xc! is an extension of X,. 

Definition 3.1. A labelling Xe, for a set of variables Q cN of size k, k-satisfies the 
set of constraints %={C(P): PcN} if, for each PCQ, &X,EC(P). 

Definition 3.2. A set of constraints 9 = {D(P): PLN} is a k-solution to a CSP 
%={C(P): PcN} if 

(1) Pclv such that l<lPlsk, D(P)cC(P). 
(2) (X,ED(P))A(P~Q~N)A(IQI=~)+~~~~~ exists an extension XQ of X, 

such that X, k-satisfies 9. 
(3) There does not exist a set of constraints 8= {E(P): PCN} satisfying 

properties (1) and (2) and such that D(P) CE(P) for some PCN. 
A k-solution to a CSP is strong k-consistent and is unique [3]. 

The result which is proved in this section is that if we wish to apply both 
k-consistency and neighbourhood substitution operations to a CSP, then the best 
strategy is to 

(A) establish strong k-consistency, by finding the k-solution to the original 
CSP, and then 

(B) apply neighbourhood substitution operations until convergence. 
This strategy will be shown to be optimal, in that any other sequence of 
k-consistency and neighbourhood substitution operations produces a CSP which 
is, at best, isomorphic to the result of executing (A) and then (B), above. At 
worst, the CSP produced is less tightly constrained. 

This strategy is valid for all values of k, and, in particular for arc consistency 
(Zconsistency) [2,9] and path consistency (3-consistency) [6, lo]. 

The interaction between consistency and neighbourhood substitution includes 
certain subtleties as illustrated by the following examples. The following example 
shows that applying neighbourhood substitution operations until convergence and 
then establishing strong k-consistency, in other words inverting the order of (A) 
and (B) above, does not always produce as many eliminations. 

Example 3.3. Consider the CSP in Fig. 5(a). No neighbourhood substitutions are 
possible in this CSP. The arc consistent version of this CSP is shown in Fig. 5(b). 
This is thus the result of executing operations (B) and then (A), with k=2. 
However, by first establishing arc consistency, we can then apply the following 
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Fig. 5. (a) A konstraint CSP on 4 variables; (b) the result of applying arc consistency; (c) the result 
of then applying neighbourhood substitutions. 

convergent sequence of neighbourhood substitutions: d -+ e, f + g, c --$ b, 
g + h. The resulting CSP is given in Fig. 5(c). 

Establishing strong k-consistency is an operation which does not have a unique 
result. For example, if a labelling (a, b) is eliminated from C( {i, j}), then strong 
k-consistency does not impose the elimination of (a, b, x) from C({i, j, k}) for all 
XEA,. These eliminations are optional. In a k-solution (for ks3), these 
eliminations are mandatory. Such eliminations are redundant in terms of future 
deletions by consistency operations, but can be useful in allowing neighbourhood 
substitutions which would otherwise be blocked by the presence of (a, b, x) in 

C({i, i, k)). 



12 M.C. Cooper I Artificial Intelligence 90 (1997) 1-24 

Example 3.4. Consider the strong 3-consistent CSP composed of the following 
constraints 

c 123: 1 2 3 

a b c 
a b d 
e b d 

e g c 
e g h 

c,,: 1 2 c,,: 2 3 c,,: 1 3 

a b b c a c 

e g b d a d 

g h e h 

A, = ia, e>, A, = {b, s>, A, = {c, d, h}. 

The labellings (e, b, d) and (e, g, c) in C123 are shown in bold italics since they are 
superfluous; they are not present in the corresponding 3-solution. The presence of 
the labelling (e, g, c) in C,,, blocks the neighbourhood substitution c + d at 
variable 3, and the presence of the labelling (e, b, d) blocks the neighbourhood 
substitution d + c. In other words, the elimination of (e, b, d) and (e, g, c) from 
C,,, allows us to eliminate either c or d from A, by neighbourhood substitution. 
The resulting reduced CSP has only two solutions compared to the three solutions 
of the original CSP, shown above. 

Examples 3.3 and 3.4 show that new neighbourhood substitutions may be 
induced by establishing strong k-consistency and even more may be induced by 
finding a k-solution. The heart of the proof of the main result of this section 
consists in showing that finding a k-solution cannot invalidate eliminations by 
neighbourhood substitution and that a strong k-consistent CSP remains strong 
k-consistent after neighbourhood substitution eliminations. 

In order to prove that finding a k-solution before applying neighbourhood 
substitution operations is the best strategy, we first need to define the basic 
consistency operations which are employed to find a k-solution. Only two 
consistency operations are required [3]: 

upward-propagation : 
if (x1,. . . ,x,)jZC(P) where ]P]<k 
then for all i$ P, for all x E A, 

delete (x1, . . . ,x,, x) from C(PU {i}) 

downward-propagation: 
if, for some iEN and some PGN, such that jP(<k, 

there is no xEA, such that (x1,. . . ,x,, x)EC(PU{i}) 
then delete (x1, . . . , xr) from C(P) 
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As remarked above, Ai and C({i}) are synonyms, which means that all 
deletions from C( {i}) automatically apply to Ai. Unlike neighbourhood substitu- 
tion, the above consistency operations update constraints of order up to k, not 
just the domains. 

It is common practice when establishing arc consistency [2,9] not to store those 
binary constraints which were not present in the original CSP, since this saves 
considerable space and does not incur any loss of the information gained by the 
propagation of constraints, the constraints C, which are not stored being just 
Ai x A,. To simplify the presentation of our proofs we assume that all binary 
constraints are stored when finding a 2-solution, although this is clearly not 
necessary for constraints C,. which are always equal to Ai x A,. 

The neighbourhood substitution operation, corresponding to a substitution 
a + b at node i is given by Definition 2.1: 

ns-elimination: 
if for some a,bEA, 

for all constraints C(P) such that iEP= {i, i, , . . . , i,} 
W,, . . , ,x,)EA;,x...xAiT 

((a, xl, . . . ,x,)EC(P) 3 (b, ~1,. . . ,x,)EC(f’)) 
then delete a from Ai 

Neighbourhood substitution may destroy the property of being a k-solution, 
but, as the following lemma shows, the crucial property of strong k-consistency is 
preserved. 

Lemma 3.5. Let CSP,, be a CSP in which the neighbourhood substitution a -+ b is 
valid at node i, let CSP, be the result of the elimination of label a from Ai, and 
CSP, the result of this elimination and the following updating of all constraints 
C(P) on sets P = {i, i, , . . . , i,} containing i: 

C(P) := C(P) n (Ai x A,, x . . . x A;). 

(a) CSP, and CSP, are isomorphic. 
(b) CSP,, is strong k-consistent + CSP, is strong k-consistent. 
(c) CSP,, is a k-solution 3 CSP, is a k-solution. 

Proof. (a) follows immediately from Definition 2.4 of an isomorphism. An 
isomorphism is a mapping between elements of domains Aj and hence is 
independent of elements (x, , . . , x,) of constraints C({i,, . . . , i,}) for which 
some label x, is not an element of the corresponding domain Ai . 

(b) CSP, can fail to be strong k-consistent only if, for ‘some labelling 

(Yl,. . 3 y,)EC(Q), (a, Y I, . . . 7 Y,) is the only consistent extension of 

(Yl>. . . > y,) to {i} U Q. However, by Definition 2.1 of neighbourhood substitu- 
tion, we know that (b, y,, . . 
(Yl?. . . , 

. , y,) is another consistent extension of 
y,) to {i} U Q. Therefore, CSP, remains strong k-consistent despite the 

elimination of a from A,. 
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(c) CSP, is the result of applying all possible upward-propagation operations to 
CSP, . It is therefore sufficient to prove that no downward-propagation operations 
are possible in CSP,. The elimination of (a, y r, . . . , y,) from C( { i} U Q) cannot 
induce the elimination of (a, y1 , . . . , y,_r , yi+ 1, . . . , y,) from the constraint 

C({iluQ-lil) since this elimination has already been performed. Furthermore, 
the elimination of (a, y,, . . . , y,) from C( {i} U Q) cannot induce the elimination 

of (Yl,. . . , y,) from C(Q), by the same argument as in the proof of (b), 
above. 0 

Lemma 3.6. If CSP, and CSP, are isomorphic, via the isomorphism f, then 
(1) CSP, is strong k-consistent e CSP, is strong k-consistent; 
(2) the neighbourhood substitution a + b is valid at variable i of CSP, iff the 

neighbourhood substitution f(u) + f(b) is valid at variable i of CSP,. 

Lemma 3.6 follows immediately from the definitions. 
Lemma 3.5 tells us that neighbourhood substitutions cannot destroy strong 

k-consistency. The following theorem is a much stronger result. We say that a 
sequence of upward-propagation, downward-propagation and ns-elimination 
operations is convergent if no more such operations are possible in the resulting 
CSP. The resulting CSP is necessarily a k-solution. 

Theorem 3.7. Let S be a convergent sequence of k-consistency and neighbourhood 
substitution operations. The result of applying S is isomorphic to the CSP which 
results from first finding the k-solution and then applying any convergent sequence 
of neighbourhood substitutions. 

Proof. Let S’ be a copy of the sequence S in which each neighbourhood 
substitution is preceded by the operation of finding a k-solution. Finding a 
k-solution is also performed as the final operation in S’. The upward-propagation 
and downward-propagation operations in the original sequence S can be dis- 
carded since they are clearly swallowed up by the new operations of finding a 
k-solution. 

We will now show that all labels eliminated in S are also eliminated in S’. We 
will later show that all but the first determination of a k-solution in S’ are 
redundant. 

S’ may contain substitutions x + y such that x has already been eliminated in 
S’ by consistency operations. Such substitutions are retained in S’, but are 
considered to have no effect. 

We can number the substitutions in S (starting from 1). By CSP, we refer to the 
state of the constraints just before the application of the pth substitution in S. By 
CSPI, we refer to the state of the constraints just before applying the corre- 
sponding substitution in S’. Note that, in both cases, we do not number the 
consistency operations but only the substitution operations. 
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Suppose that the pth substitution in S is a -+ b at node i. This means, by 
Definition 2.1, that in CSP, 

for all constraints C(P) such that i E P = {i, i, , . . . , i,} 

e,, f.. > xr) E Ai, X . . . x Aj 
(aEA,r\(a,x,,.. .,xJEd(P) j bEA,r\(b,x, ,... ,x,)EC(P)). 

(2) 

We show by contradiction that applying consistency operations earlier in S’ 
than in S cannot invalidate neighbourhood substitutions. Let p be the first 
position at which (2) holds in CSP, but not in CSP;. By this choice of p, all 
labellings eliminated by neighbourhood substitution in CSP, are also eliminated in 
CSP;. By the definition of a k-solution, all labellings eliminated by upward- 
propagation and downward-propagation operations in CSP, are also eliminated 
by the same operations in CSPL. Indeed, the premises of these propagation rules 
cannot be invalidated by any extra eliminations in CSP;, and these rules are 
applied as soon as possible in S’. We can deduce that there is a constraint C(P) 
and values x,, . . . ,x, such that 

( a,x,, . . . , x,)EC(P)n(AjXA,,X**.XAir) inCSP,, 

(b,x,, . . . ,x,)EC(P)n(AixAjl X...XA,,) inCSP,, 

( u,x,, . . ., x,)EC(P)n(AiXA,,X...XAi,) inCSPi, 

@,x1,. . . ,x,)$C(P)n(Ai xA,, X -1. XAJ inCSPi. 

(3) 

This must be because (b, x1, . . . , xr) was eliminated by the extra consistency 
operations in CSPL. Among all such constraints C(P) and values x, , . . . , x,, for 
which (3) holds, let (b,xl, . . . , xr) be the first labelling to have been eliminated 
by the extra consistency operations in CSPL. The case r =0 corresponds to the 
elimination of b from Ai. Let CSPkLrM be the state of the constraints just before 
the elimination of (b, x1, . . . ,x,). There are three possible reasons for the 
elimination of (6, x1, . . . , x,) in CSPL,,,: 

(a) gjE{l,. . . , 

(b) (x12 . . 

r} such that (b, x,, . . . ,xj_,, x,+,, . . . ,x,)pfC(P-{i,}), 
. ~~,)~W-{i~), 

(c) 3h$P such that VxEA,((b, x1,. . . ,x,, x)EC(PU{h})). 
(a) and (b) correspond to upward-propagation and (c) corresponds to down- 
ward-propagation. We consider each case separately. 

Case (a). Since (b, x,, . . . , x,) is the first labelling satisfying (3) and eliminated 
by S’, there are three possibilities: 

(i) (b, x1,. . . ,x~_~. x~+~, . . . ,x,)$C(P-{ii}) in CSP, or 
(ii) (a, x,, . . . ,xj_,, x~+~, . . . ,x,)pfC(P-{ii}) in CSP, or 

(iii) (a, x1,. . . ,xj_,, x~+~, . . . ,x,)$C(P-(1,)) in CSP;. 

Since (2) holds in CSP, , we can deduce that 

( a,x,, . . . >xj-l,xj+l>. . * 3X,)EC(P-{ij}) 3 

@, x,,. ,xj_,,xj+l ,..., x,)EC(P-{i,}) in CSP,. 
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Therefore (i) implies (ii), which in turn implies (iii), since, as observed above, all 
labellings eliminated in CSP, are also eliminated in CSPL. Now (iii) implies that 

( o~(~j.. . . , x,)$ZC(P) in CSPL since CSPI, is a k-solution. This is a contradiction 

Case (b). (xi, . . . , x,)$C(P- {i}) in CSPL,,, implies immediately that 

(x1,. . . , x,)eC(P- {i}) in CSPI, and hence that (a, x1, . , x,)@C(P) in CSPI, 
since CSP; is a k-solution. This contradicts (3). 

Case (c). Since (b, x1,. . . ,x,) is the first labelling eliminated in S’ which 
satisfies (3), for each xEA, there are three possibilities: 

(i) (b, xl, . . . ,x,, x)j?iC(PU{h}) in CSP, or 
(ii) (a, x,, . . . ,x,, x)j?iC(PU {h}) in CSP, or 

(iii) (a, xi,. . . ,x,, x)jZC(PU {h}) in CSP;. 
Since b is neighbourhood substitutable for a in CSP,, we know that 

( a,x,, . . ., x,,x)EWU {hl) * 
@,x,, . . . ,x,,x)EC(PU{h}) inCSP,. 

Therefore (i) implies (ii), which in turn implies (iii). Now the fact that (iii) is true 
for all xEA, implies that (a, xi, _ . . , x,)$C(P) in CSPL since CSPI, is k- 
consistent. This again contradicts (3). 

We have thus shown, by contradiction, that (2) holds in CSPA. Therefore, all 
labels a which are eliminated by neighbourhood substitutions in S are also 
eliminated in S’ (either by neighbourhood substitution or by consistency opera- 
tions). 

Given this result, it is relatively easy to show that S and S’ eliminate exactly the 
same set of labellings. We have just shown that all labels eliminated by 
neighbourhood substitution in S are also eliminated in S’. The fact that all labels 
eliminated by neighbourhood substitution in S’ are also eliminated in S is a direct 
consequence of the definition of S’. 

We now consider eliminations by consistency. Let (x1, . . . , x,) be the first 
labelling which is eliminated by strong consistency operations in one of S and S’, 
but not the other. Whether (xi, . . . , x,) was eliminated by upward-propagation or 
downward-propagation, the premise of the same rule will become true at some 
point of the other sequence, by the above result that all labels eliminated by 
neighbourhood substitution in one sequence are also eliminated in the other. 
Since both sequences produce a k-solution, by their respective definitions, 

(x1,. . ’ , x,) will also be eliminated in the other sequence. This contradiction 
shows that S and S’ eliminate exactly the same set of labellings. 

Let S” be a copy of S’ in which we discard all but the first determination of a 
k-solution. In other words, S” is simply the determination of a k-solution followed 
by the sequence of neighbourhood substitutions in S. We know from Lemma 
3.5(c) that a neighbourhood substitution applied to a k-solution can only induce 
eliminations by upward-propagation. Lemma 3.5(a) and Lemma 3.6 tell us that 
these eliminations cannot in turn induce new eliminations by neighbourhood 
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substitution or downward-propagation. The CSPs resulting from the application 
of S’ and S” are thus identical except for updates to constraints of the form 

C(P) := C(P) n (Ai x Ai, x . . . x Ai,), 

and by Lemma 3.5(a), these two CSPs are isomorphic. Theorem 3.7 follows from 
Theorem 2.5 and the transitivity of isomorphism. 0 

4. Local substitution 

Freuder [5] defined the general notion of substitutability as follows: given two 
possible labels a and b for a variable i, a is substitutable for b iff substituting the 
value of a for b at variable i in any solution yields another solution. Jeavons et al. 
[7] generalized substitutability to sets of labellings for sets of variables: given two 
sets of labellings A and B for the set of variables X, A is substitutable for B on 
the set of variables X if each solution whose projection on X is a labelling bEB 
can be converted into another solution by the replacement of b by some labelling 
a EA. This is particularly interesting in the case that X is the scope of a 
constraint, B=C(X) and A=C(X)-{c} for some labelling c. 

Unfortunately, in the worst case, testing for substitutability is as difficult as 
solving the CSP. In the same way that global consistency has local versions which 
can be applied in polynomial time, substitutability has tractable local versions, 
such as neighbourhood substitutability. A more powerful version of local 
substitutability was defined in [7]. Let cl(X) denote the closure of X, the union of 
the scopes Y of constraints C(Y) such that Xn YZB. 

Definition 4.1. The set of labellings A is said to be Zocally substitutubZe for B on 
the set of variables X if, for all bEB, and for each labelling u which satisfies the 
constraints on cl(X) and such that flxu= b, there is another labelling u which 
satisfies the constraints on cl(X) and such that &(x)_xu =Dc,(x)_xu and n,u E A. 

The notation fix, borrowed from relational algebra, denotes the projection 
operation onto the set of variables X. 

Local substitutability is more powerful than neighbourhood substitutability, but 
is potentially much more costly to apply since we need to exhaust over all 
consistent labellings of cl(X). In the worst case this is a combinatorial function of 
the size of cl(X). We would not envisage applying local substitutability to a CSP 
whose constraint graph was the complete graph, since cl(X) would be the set of 
all variables. 

Since applying k-consistency, for .k>2, converts the constraint graph into the 
complete graph, we would not apply local substitution after k-consistency for 
k>2. On the other hand, the concept of local substitutability subsumes arc 
consistency (Zconsistency). For example, a label a for node i which cannot be 
extended to a consistent labelling of the edge (i, j) will be eliminated by local 
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substitutability since there is no labelling of cl(X) in which the node i is labelled 
by a. This shows that no equivalent of Theorem 3.7 exists for local substitution 
since we have no reason to combine it with consistency. 

Theorem 2.5 tells us that two convergent sequences of neighbourhood substitu- 
tions produce isomorphic CSPs. A simple example will suffice to show that two 
convergent sequences of local substitution operations can produce very different 
CSPs. Consider the example of a graph colouring problem, consisting of a single 
constraint, illustrated in Fig. 6(a). Whether X= {l} or {2}, cl(X) is {1,2}. The set 
of all consistent labellings of cl(X) is: 

{(red, green), (red, Hue), (green, blue), (blue, green)}. 

The set of labels {green, blue} is substitutable for {red, green, blue} at node 1, 
which leaves the CSP shown in Fig. 6(b). The set of consistent labellings is 

{(green, blue), (blue, green)}. 

Alternatively we could have chosen to replace the set of labels {red, green, 
blue} at node 1 by {red}. In the resulting constraint {(red, green), (red, blue)}, 
the set of labels {blue} is substitutable for {green, blue} at node 2, leaving the 
CSP shown in Fig. 6(c). The set of consistent labelings is 

{(red, blue)}. 

(a) 1 2 

(b) 1 2 

. . 

lgreen,bW {greeqblue) 

(d 1 2 

ired 1 blue) 

Fig. 6. (a) The constraint graph of a simple graph colouring problem; (b), (c) two non-isomorphic 
problems which result from the application of two different sequences of local substitution operations. 
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The two CSPs in Figs. 6(b) and 6(c) are clearly not isomorphic. Indeed, they have 
a different number of solutions. This implies that heuristics may exist which 
indicate which elements of constraints to eliminate by local substitutions in order 
to minimize the size of the resulting CSP. Theorem 2.5 showed that any such 
heuristic would have no effect in the case of neighbourhood substitutions. 

5. Neighbourhood substitution algorithm 

One way of finding a convergent sequence of neighbourhood substitutions is to 
repeatedly apply the ns-elimination rule (see Section 3): 

NS-1 
repeat 

for i:=l to II do 
for each UEA, do 

for each bE A, such that b#a do 
if for all constraints C(P) such that iE P= {i, i, , . , . , i,} 

for all (x,, . . . ,x,)EAj,x...xAj, 

( u, x1,. . . > X,)EC(P) 3 (b, x1,. . . ,X,)EC(P) 
then 

Record (a + b, i) in sequence of substitutions E; 
Delete a from A,; 

end-if 
until there are no deletions in an iteration 

To avoid both a -+ b and b + a being accepted as neighbourhood substitutions, 
in the case that a and b are interchangeable [5], it is essential that the test b E A i 
be actually performed at each iteration. 

Let k be an upper bound on the order of the constraints in the CSP, and let c 
be the number of constraints. We assume that k is a constant. To calculate the 
worst-case time complexity of NS-1, it is sufficient to count the maximum number 
of constraint accesses. For each of the iterations of the repeat-until loop, the 
number of constraint accesses is 0(u2cuk-’ ). The number of iterations of the 
repeat-until loop is bounded above by the maximum number of label deletions, 
which is O(un). Therefore the worst-case time complexity of NS-1 is 

O(uk+2nc) 

We can make a significant improvement on this worst-case time complexity 
using ideas from Bessiere’s arc consistency algorithm AC-6 [2]. We first need the 
following definition. 

Definition 5.1. For u,bEAj, (x, P) is a block for a+ b at variable i if iEP = 
{i, i,, . . . , i,}, x=(x1, . . . ,x,)EA,, x ..-xAir, (a, x)EC(P) and (b, x)@C(P). 
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Notethatxisatuplex=(x,,.. . , xr), where r + 1 is the degree of the constraint 
C(P), and r30. The existence of (x, P) blocks the elimination of a by the 
neighbourhood substitution a -+ b. 

We assume that, for each variable i, the set of possible blocks (x, P) has been 
assigned an arbitrary total ordering, such as a lexicographical ordering. The 
algorithm NS-2 keeps track of a block for a + b at i, for each variable i and for 
each pair of distinct labels a,b E A,. When this block (x, P), where x = 

(x1,. . . , xr), is no longer valid following the elimination of some xj (1 =~j s r) by 
neighbourhood substitution, NS-2 searches for the next block according to the 
total ordering. If no block remains then the neighbourhood substitution a + b is 
itself accepted. 

When a neighbourhood substitution a + b is accepted it is added to NS_List to 
be processed later. Before it is actually processed, we must verify that neither a 
nor b have already been deleted from A i. 

Blocks is a set of ordered pairs of the form ((x, P), (a + b, i)) where (x, P) is a 
block for the neighbourhood substitution a -+ b at i. After initialization, we will 
find in Blocks exactly one block for each potential neighbourhood substitution 
(a -+ b, i) which has not already been added to NS_List. 

NS-2 
{Initialization} 

NS_List : = 0; 
Blocks : = 0; 
fori:=ltondo 

for all pairs of labels u,bEA, such that b#a do 
begin 

Look for first block (x, P) for (a + b, i); 
if (x, P) exists 
then insert ((x, P), (a -+ b, i)) in Blocks 
else add (a + b, i) to NS_List 

end; 

{Propagation} 
while NS_List #0 do 

Select and delete an element (a + b, i) from NS_List; 
if u,bEA, 
then 

Record (a + b, i) in sequence of substitutions E; 
Delete a from A,; 
{all blocks (y, Q) which used the value a for 

variable i are now invalid and must be replaced} 
for each ((y, Q), (c + d, j))E Blocks such that 

iEQ={j, i, i,, . . ,i,} and ~=(a, y,, . . . ,y,) do 
if c,dEAj 
then 

Delete ((y, Q), (c+ d, j)) from Blocks; 
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Look for next block (y’, Q’) for (c+ d, i); 
if (y ‘, Q’) exists 
then insert ((y’, Q’), (c-+ d, j)) in Blocks 
else add (c-+ d, j) to NS_List 

end-if 
end-if 

end-while 

Blocks contains at most u*n elements. In order to have direct access to each 
element ((x, P), ( a + b, i)) of Blocks through each of the component labels 
(xi, ii) of the block (x, P), where P= {i, i,, . . . , i,} and x=(x,, . . . , xr), a 
suitable data structure is an array of lists, indexed by the component labels (x,, i,). 
Thus ((x, P), (a-+ b, i)) is, in fact, stored r times. We assume that r is a constant, 
since it is bounded above by k- 1, where k is the maximum order of the 
constraints. 

A block (x, P) for the neighbourhood substitution a + b must satisfy 
(a, x)EC(P) and (b, x)j+!!C(P). Th e search for a block for a + b will thus be most 
efficient when constraints are tight (there are few labellings (a, x) E C(P)) or when 
constraints are loose (there are few labellings (b, x)$C(P)). Define m to be the 
maximum value of min{]C(P)], jC(P)‘I} over all constraints C(P), where C(P)’ 
denotes the complement of C(P). 

In NS-2, the total time spent searching for blocks is O(ucm), assuming that in 
tight constraints we exhaust over all x such that (a, X)E C(P) and in loose 
constraints we exhaust over all x such that (b, x)$!C(P). The number of iterations 
of the while loop in NS-2 is bounded above by u*n, the total number of possible 
neighbourhood substitutions. Making the very reasonable assumptions that c4n 
and m 2 a, we can conclude that the worst-case time complexity of NS-2 is 

O(ucm). 

In the worst case, this is 

o(uk+‘c). 

For binary constraints [l], this gives a complexity of O(u3c). The space complexity 
of both Blocks and NS_List is O(u*n), which is independent of the order of the 
constraints. 

6. A novel algorithm to find all consistent labellings 

It is clear that neighbourhood substitutions are potentially useful when 
searching for a single solution. They also turn out to be useful when searching for 
all solutions. Let NS denote any algorithm to detect and eliminate neighbourhood 
substitutable labels until convergence. Let SOLVE denote any algorithm which 
returns the set of all solutions to the CSP passed as a parameter. Then the 
following algorithm finds all solutions to a CSP 8, taking advantage of any 
neighbourhood substitutions. 
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NEIGHBOURHOOD_SOLVE(9): 
begin 

NS(&?“, 5?“, E); (9 ’ is the reduced version of the CSP 9? after 
neighbourhood substitution operations; E is 
the convergent sequence of neighbourhood 
substitutions x -+ y used to eliminate labels} 

Sol : = SOLVE(9’); {Sol is the set of solutions to the CSP 9’} 
RECONSTRUCT(Sol, 9, E); 

end; {Sol is now the set of solutions to the original CSP 9} 

RECONSTRUCT(Sol, 9, E): 
begin 

L := Sol; 
while L #0 do 

Select a solution (x,, . . , X,)E L and delete it from L; 
for i:=l to IZ do 

for each x,’ such that the neighbourhood 
substitution XI -+ xi is in E do 

if x’ = (x1,. . . ,x,_~, XI, xi+ ,... xn) satisfies all 
constraints C(P) such that 1’EP 

then 
if x’j2Sol 

end; 
end; 

then add x’ to L and to Sol; 

6.1. Proof that algorithm finds all consistent labellings 

Let (yl,. . . , y,) be a consistent labelling. Let E be the sequence of substitu- 
tions applied to p to produce 9 ‘. For each node i = 1, . . . , n, there is a 
subsequence of substitutions at node i: yj + ... xi in E such that xi is not 
eliminated in E. 

Let Epref be any prefix of E, and, for each i= 1, . . . , n, let zi be the label such 
that y, H ... zi in Epref. By Lemma 2.2, the fact that (yr , . . . , y,) satisfies all the 
original constraints implies that (z,, . . . , zn) also satisfies all the original con- 
straints. In particular, when Epref = E, we can deduce that (x1, . . . , xn) is a 
solution to 9 ’ since it satisfies all constraints and none of the xi have been 
eliminated. Hence the algorithm will find (x1, . . . , xn). By an easy induction, 
working back from (x1, . . . , xn) to (yr, . . . , y,), we can show that the algorithm 
finds all labellings (z, , . . . , z,,) corresponding to prefixes Epref of E. Hence the 
algorithm finds all consistent labellings ( y , , . . . , y,). 

6.2. Complexity of NEIGHBOURHOOD_SOLVE 

The complexity of NS has already been discussed in detail in Section 5. The 
sequence E is stored as an array of lists E, of all neighbourhood substitutions 
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y -+x in E. The space required is O(an) since each label for each node can be 
eliminated at most once in E. The sets L and Sol can be stored in an u-way tree to 
ensure that the insertion, deletion and test of membership operations can all be 
achieved in O(n) time and O(Nun) space, where N is the total number of 
solutions to 9. 

In this u-way tree, each node at level i corresponds to a prefix x,, . . . , x, of one 
of the N solutions. Direct access to each possible extension xi+, of x1, . . . , x, to 
level i+ 1 requires an array of length a. Minor trade-offs between time and space 
are clearly possible according to the choice of data structure for L and Sol. 

We assume direct access to the set of constraints involving node i, and that, for 
each constraint C(P), the test x’EC(P) is O(1). T o calculate the worst case time 
complexity of RECONSTRUCT(SoZ, P’, E), it is sufficient to count the number of 
accesses to constraints and the number of membership tests of Sol. The number of 
constraint accesses is at most 

N i a . (number of constraints involving i) = O(Nuc), 
i=l 

where c is the number of constraints in 9’. The factor a is very pessimistic; it is an 
upper bound on the number of labels x: such that XI += x, is in E, for a given label 
x;. 

The number of membership tests of Sol is O(k) since each solution 

&:::: 
y,) is generated at most II times. This is because we can only generate 
y,) in RECONSTRUCT(SoZ, P’, E) by replacing xi by yi, for some 

iE(1,. . . , n}, in a solution (y, , . . . , y,_, , xi, y,+, , . . . , y,) where X, is the 
unique label such that y, +x, in E. 

Since a constraint access is an O(1) operation and a membership test of Sol is 
an O(n) operation, the time complexity of RECONSTRUCT(Sol, P’, E) is 

O(N(uc + 2)). 

Its space complexity is 

O(Nun). 

We note in passing that simply outputting the N solutions is an O(Nn) 
operation. 

If N is large, we might prefer to stop after generating K solutions, for 
some fixed value K. In this case, the time and space complexities of RECON- 
STRUCT(SoZ, 9, E) are O(K(uc + n’)) and O(Kun) respectively. 

The efficiency of NEIGHBOURHOOD_SOLVE depends critically on the time 
required to find all solutions to the reduced problem 8’, which may greatly 
exceed the time complexity of RECONSTRUCT(Sol, 9, E). However, we have 
shown that neighbourhood substitution is useful not only when searching for a 
single solution, but also when searching for all solutions. 
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7. Conclusion 

Applying a convergent sequence of neighbourhood substitutions is a reduction 
operation for constraints which has the following properties: 

(1) The result is invariant, modulo isomorphism. 
(2) It can be applied in O(ak+’ c) time for order-k constraints, where a is the 

maximum number of labels in a domain, and c the number of constraints. 
(3) Combining it with k-consistency only requires establishing k-consistency 

once. 
(4) After solving the reduced CSP we can generate all N solutions to the 

original CSP in O(N(ac+n2)) time, where n is the number of variables. 
We can conclude that neighbourhood substitution has a sufficient number of 
interesting properties to make it useful in many constraint satisfaction problems. 

Further theoretical research and experimental trials on specific problems are 
required to determine in which classes of CSPs neighbourhood substitutions are 
common and in which classes of CSPs applying neighbourhood substitutions 
during backtracking would be worthwhile. 
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