
Artificial Intelligence 90 (1997) l-24

Artificial
Intelligence

Fundamental properties of neighbourhood substitution in
constraint satisfaction problems

Martin C. Cooper*

IRIT, UniversitP Paul Sabatier, 31062 Toulouse, France

Received December 1994; revised September 1995

Abstract

In combinatorial problems it is often worthwhile simplifying the problem, using
operations such as consistency, before embarking on an exhaustive search for solutions.
Neighbourhood substitution is such a simplification operation. Whenever a value x for a
variable is such that it can be replaced in all constraints by another value y, then x is
eliminated.

This paper shows that neighbourhood substitutions are important whether the aim is to
find one or all solutions. It is proved that the result of a convergent sequence of
neighbourhood substitutions is invariant modulo isomorphism. An efficient algorithm is
given to find such a sequence. It is also shown that to combine consistency (of any order)
and neighbourhood substitution, we only need to establish consistency once.

1. Neighbourhood substitution

In a CSP (constraint satisfaction problem) on y1 variables, constraints are given
in the form of relations C(P,), . . . , C(P,) on subsets P,, . . . , P, of the n
variables. C(P,) is the set of legal labellings for the set of variables P,. It may be
given as an explicit list of labellings or in implicit closed form. The set of n-tuples
satisfying all the constraints is simply the join of the constraints C(P,), . . . , C(P,).
The domain of variable i is denoted by Ai. Many problems, such as school-
timetabling, scheduling, line-drawing labelling, sketch-map interpretation and
circuit design can be expressed in a natural way as CSPs. For example, in the
graph colouring problem, in which the aim is to assign a colour to each node of a
given graph G so that no two adjacent nodes are assigned the same colour, there
is a binary constraint

* E-mail: cooper@irit.fr.

0004-3702/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved
PII SOOO4-3702(96)00018-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82148333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M.C. Cooper I ArtiJicial Intelligence 90 (1997) 1-24

CC{4 u>> = {(-G y>: X, y different colours} ,

for each edge (u, V) in G. In the case of binary constraints, we use the shorthand

C,, for C(+, 4).
Unfortunately, determining whether a constraint satisfaction problem has at

least one solution is NP-complete [8]. Consistency is a well-known operation on
CSPs which renders the information in the constraints more explicit: tuples are
eliminated from constraints when it is discovered that they cannot be part of any
globally consistent labelling. In general, the more explicit the constraints are, the
less search is required to find one or all solutions. Arc consistency is very effective
in certain problems, such as line-drawing labelling [12] and scheduling. However,
in other problems, one example being the g-queens problem, arc consistency
produces no eliminations and so does not reduce the combinatorial explosion.

Freuder [5] defined a new reduction operation for binary CSPs: label a E A, is
neighbourhood substitutable for label b EA, at variable i if for all constraints C,,
and for all values xEAj,

A straightforward generalisation to higher-order constraints is given in the
following section. If the label b is eliminated, then the reduced CSP will have a
set of solutions which may be a proper subset of the set of solutions to the original
CSP. However, an important property is preserved: the reduced CSP has a
solution iff the original CSP has a solution. Thus substitution operations are
clearly useful when searching for a single solution. We will show in Section 6 that
they are, in fact, equally useful when searching for all solutions. Local substitu-
tion operations, such as neighbourhood substitution, propagate in the same way
that local consistency operations propagate [7].

Substitution operations can be applied to certain CSPs in which consistency
would be of no help. Tsang [ll] points out that consistency is useful in highly
constrained problems but much less so in loosely constrained problems. We would
hope to be able to profitably apply substitution in both types of problems, but
especially in problems with a sparse constraint graph.

As an example, consider the graph colouring problem of Fig. l(a). Here the
constraint graph is a 5 by 5 grid. The list of possible colours for each node is given
in the form of the initial letters of the colours. Thus, for example, the set of
possible labels for the top right-hand node is {red, green, blue}. The problem is to
colour each node, so that adjacent nodes are assigned different colours. This CSP
is loosely constrained and arc consistency produces no eliminations of labels.
Neighbourhood substitution, on the other hand, produces many eliminations.
Consider the top right-hand node. The label green is neighbourhood substitutable
for both red and blue, since green is consistent with all labels at the two adjacent
nodes. Thus both red and blue can be eliminated at this node by neighbourhood
substitution.

Unlike consistency operations, applying substitution operations until conver-
gence (i.e. until no more eliminations are possible) does not always produce the

M.C. Cooper I Artificial Intelligence 90 (1997) l-24

(a) gY rgb

gb ry

rb bY

bYg rb

gY gb

yr

rb

gY

gY

bY

by

gb

byr

rb

gr

rgb

rY

gb

gr

bY

W Y g Y b g

g Y r g Y

r b gY byr gb

b r gY rb gr

Y g b g b

(c) lg b Y b r

b Y b g Y

r b gY byr gb

b r gY rb gr

Y g b g Y

3

Fig. 1. The results of applying two different convergent sequences of neighbourhood substitutions to
the graph colouring problem in (a) arc shown in (b) and (c).

same result. Two distinct convergent sequences of neighbourhood substitution
operations applied to the problem of Fig. l(a) produce the two distinct graph
colouring problems shown in Figs. l(b) and l(c). In both cases, however, the
reduced CSP is clearly easier to solve than the original CSP, since most variables
are left with only one possible label.

It should be mentioned that what makes neighbourhood substitution so
effective in this particular pseudo-random graph colouring problem is the fact that
the domains Ai for each variable i are distinct. In a colouring problem on a
connected graph, with identical domains Ai for all i, no neighbourhood substitu-
tions are possible.

4 M.C. Cooper I Artificial Intelligence 90 (1997) l-24

It is clear that the two reduced problems in Figs. l(b) and l(c) are very similar.
Let CSP(b) and CSP(c) denote these two problems, and let A,(b) and Ai
represent the domains in CSP(b) and CSP(c). The constraints Cii are identical in
the two problems. CSP(b) and CSP(c) are isomorphic, in the sense that, for each
node i, there is a bijection

h: Ai -+ Ai

satisfying

(x, Y) E cii @ (A(x), J(Y)) E 'lj.

We will show in the following section that two convergent sequences of
neighbourhood substitutions applied to two copies of the same CSP always
produce isomorphic CSPs. The definition of an isomorphism between arbitrary
CSPs is given below (Definition 2.4).

2. Invariance of the result of neighbourbood substitutions

To simplify the notation in the following proofs, we assume that labels at
different nodes are distinct. When we say that x is a label, we mean implicitly that
x is a (label, node) pair (a,, i,) such that a, EAix. This should not lead to any
confusion, since the substitution of x by y is only possible if i, =i,. It simply
avoids having to specify the node for each label.

Definition 2.1. Given two labels x,yEA, for variable i, the label y is neigh-
bourhood substitutable for x if for all constraints C(P) such that iEP =
{i, i,, . . . , i,_,}

{(z,, . . . , z~_~) E Ail x * . . x Aik_,: (x, zl, . . . , z,+~) E C(P)},

c {(z,, . . .,~~-~)EA~,x...xA~~_~:(y,z~ ,..., z~_~)EC(P)}.

We use the notation x ---, y to represent the corresponding neighbourhood
substitution operation, which can be read as “x is eliminated because it can be
substituted by y”.

An algorithm which eliminates substitutable labels may also update constraints
C(P) by eliminating all labellings (x, z1 , . . . , z~_~) when the label x is eliminated.
However, such eliminations are superfluous, in the sense that they cannot create
new neighbourhood substitutions. This is because, in Definition 2.1, we never
consider tuples (x, zi, . . . , z~_~) in which some zi or x has been eliminated from
the corresponding domain. Furthermore, in many constraint satisfaction prob-
lems, constraints are given implicitly in the form of equations or inequalities, such
as ui>ui+uk. Such constraints do not easily lend themselves to updating. For
these reasons we assume that neighbourhood substitution operations update only
the domains Ai and not the constraints C(P).

M.C. Cooper I Artificial Intelligence 90 (1997) 1-24 5

Let E be a sequence (e,, e2, . . . , e,) of neighbourhood substitutions applied to
a CSP. Each neighbourhood substitution ek has the form x + y, for some labels x
and y. We say that E converges if no more neighbourhood substitutions are
possible in the CSP resulting from the application of the sequence of substitutions
E. As an example, consider the CSP shown in Fig. 2(a), consisting of three
variables and two constraints C,, and C,,.
(x, y)EC,. Th

A line joins label XEA, and yEAi if
ere are three convergent sequences of neighbourhood substttu-

tions:

(1) (e-4 b+a),
(2) @-+a, c-,4,
(3) (b+a, d+e).

The resulting CSPs are shown in Fig. 2(b) for sequences (1) and (2), and in Fig.
2(c) for sequence (3). Although the CSPs are different, they are clearly
isomorphic.

If there exist labels a,, u2, . . . , LZ~_~ such that E contains as a subsequence

(eil,e;,, e~,)=(~~~~~~]~~~~...,“k-~~uk-l~uk-l~y)~

then we will write as a shorthand “x + ... y in E”, or more explicitly

x -+ a, --+ u2 + * *. + uk_l + y.

1 2 3

(a)

(b)

(d a C

V

f

g

e

Fig. 2. (a) The consistency graph of a 3-variable CSP; (b), (c) two isomorphic CSPs which result from
applying different convergent sequences of neighbourhood substitution operations to this CSP.

6 M.C. Cooper I Artijcial Intelligence 90 (1997) l-24

Note that E will often contain substitutions at different nodes, but that x,

. . > uk_, , y must all be labels for the same node. For example, if the CSP
zktains the single constraint shown in Fig. 3(a), then E = (f + d, c -+ b, b - a,
d + e) is a convergent sequence of neighbourhood substitutions which results in
the CSP shown in Fig. 3(b). In E, f + . . . e and c --+ . . . a (subsequences of length
2), as well asf+*..d, c--+..-b, b+***a and d-+..-e (subsequences of length
1). We consider x + ** ax to be true for all X; this corresponds to a sequence of
length 0.

We write x H . .. y in E if x -+ ... y in E and y is not eliminated in E.

Lemma 2.2. Let C(P) be a constraint in a CSP and E a sequence of neighbourhood
substitutions that can be applied to the CSP. If (ul, . . . , uk) E C(P) and ui H ... xi
in E, for i=l,. . . , k, then (x,, . . . ,x~)EC(P).

Proof. Let E, denote the prefix (e,, . . . , tj) of E =(e,, . . . , e,), with E, defined,
by default, as the empty sequence. Consrder as inductive hypothesis Hi:

if(u,, . . . ,u,)EC(P)andz+ H ..-xiinEj,fori=l,. . . ,k,

then (xr, . . . , xk) E C(P).

H, is clearly true, since ui H a.* ui in E,, the empty sequence. We will prove, by
contradiction, that H, + H,, 1. The only way that Hi could be true and Hi+, false is
if, for some (ur,. . . , u~)EC(P) such that u, H “*xi in E,, for i= 1, . . . , k,

(x,, . ’ . rXh-l,Xh,Xh+l,. . . ,X,)EC(P)

and

(a)

(b) a

\ e

Fig. 3. (a) The consistency graph of a single-constraint CSP; (b) the result of the sequence of
neighbourhood substitutions (f + d, c + b, b -+ II, d + e).

M.C. Cooper I Artificial Intelligence 90 (1997) l-24 7

where ej+i is the substitution x,, ++ ... XL. This contradicts Definition 2.1 of
neighbourhood substitution, given our assumption that none of the labels xi,
(i=l,...,k) h ave been eliminated from their domains in E,. Therefore,

Hj+Hj+, 3 and by induction we can deduce H,,,, which is exactly the result we set
out to prove, since E, = E. 0

The lemma would become false if ui - . . . xi were to be replaced by ui + . . . xi.
For example, in the sequence of substitutions

E = (f -+ d, c -+ b, b -+ a, d -+ e)

that can be applied to the CSP of Fig. 3(a), we have c -+ .. . b and f + 1.. f.
However, denoting the single constraint of this CSP by Ciz, (c, f)E C,, does not
imply (b, f)EC,,. This is due to the fact, that when b is substitutable for c, f has
already been eliminated from the domain A,.

Let x + y be a substitution which can be applied to a CSP. Consider a
convergent sequence F of neighbourhood substitutions applied to the same CSP.
Since extra eliminations of labels cannot prevent neighbourhood substitutions, we
can deduce that if x is not eliminated in F, then y must be. The following lemma
extends this result by considering a subsequence x + * *. y of eliminations within a
sequence E, instead of a single substitution x -+ y, and shows not only that y is
eliminated but also that y H **a x in F.

Lemma 2.3. Let E and F be two sequences of neighbourhood substitutions for the
same CSP, and suppose that F is convergent. If x + .. . y in E and x is not
eliminated in F, then y H ... x in F.

Proof. If x + ... + z + y in E where z + y is the pth substitution in the
sequence E, then we say that the subsequence x - ... y ends at position p. We
prove the lemma by induction on p. This gives the following inductive hypothesis.

H,: Let E and F be two sequences of neighbourhood substitutions for the
same CSP, where F is convergent. If x + ... y in E,, the prefix of E
ending at position p, and x is not eliminated in F, then y H ... x in F.

H,, is trivially true, since x -+ a*. x in E, and F for all x.
Suppose that H,_, is true, where p 2 1. Consider a subsequence of E, x + ...

* z + y, which ends at position p, where x is not eliminated in the convergent
sequence F. To demonstrate the truth of H,, we must show that y H *s-x in F.
Suppose that y - ... u in F. Note that we do not discount the possibility that
u =y.

Consider (x, zl,. . . ,z,_,)EC(P). W e will show that, if none of z, , . . , z~_~
are eliminated in F, then (u, zi , . . . , zk_ 1)~ C(P).

Suppose that, for each t = 1, . . . , k - 1, z, t+ . . . w, in E,, the prefix of E ending
at position p (the position at which z + y). We do not exclude the possibility that

8 M.C. Cooper I Artificial Intelligence 90 (1997) l-24

w,=z,. Since (x, zr, . . . , zk_r)EC(P), x I-+ *a* y in E,, and z, H ... W, in Ep, we
can deduce by Lemma 2.2 that

(Y, Wl, . . . > Wk-,I E W). (1)

This is illustrated in the left-hand side of Fig. 4 in the case of binary constraints.
Vertical arrows represent subsequences of neighbourhood substitutions: x I--+ . . . y
and .zr H... wr in E, ; horizontal lines represent constraint membership:

(x3 z1)3 (Y, w*)EC(P).

Each z, -+ . . . w, is a subsequence of E which ends before position p. This is
because z -+ y is the substitution at position p, and w, cannot be equal to y since
they are labels for different nodes. By our inductive hypothesis, applied to each of
z,-+ *.. w, in Ep_l, we deduce that either

(a) at least one of zr , . . . , zk_, is eliminated in F, or
(b) none of zr, . . . , zk_, is eliminated in F and, for each t= 1, . . . , k- 1,

w, H . . . z, in F.
Consider case (b). (y, wr, . . . , w~_~)EC(P) by (l), y H **+u in F by definition

of u, and W,H “*z, in F for each t=l,. . . , k- 1. Therefore, by Lemma 2.2,

(u, zl, ’ . . , zk-1 > E w>.

This is illustrated in the right-hand side of Fig. 4. Thus we have shown that if

? 2”. .

. , zk_ 1) E C(P) and none of zr , . . . , zk_ 1 is eliminated in F, then
u, zr, . . . , Zk-l)EC(P).

Hence, in the CSP which results from the sequence of substitutions F,

(noneofz,, . . . , zk_r eliminated) A (x, zr, . . . , z~_~) E C(P) +

(u,zl,...,zk&,) E C(P).

This implies, from Definition 2.1 of neighbourhood substitution, that x could be
substituted by u, which contradicts the fact that F is convergent, unless u=x.

Since y H *a. u, in F by definition of u, we have thus shown exactly what was
required, namely

YH * * * x in F,

which completes our proof by induction. 0

Ep F (case (b))

x- Zl Y-W1

/I i[
Y--w1 v-z,

Fig. 4. In the case of binary constraints, every z, such that (x, z,)EC(P), satisfies (LJ, z,)EC(P)
provided z1 is not eliminated in F.

M.C. Cooper I Artificial Intelligence 90 (1997) l-24 Y

Definition 2.4. Consider two CSPs with domains Ai and Al (i=l, . . . , n) and
constraints C(P) and C’(P) (PcN= { 1, . . . , n}). An isomorphism between the
two CSPs is a bijection

f: U Ai+- U A;,
i=l,...,n i=l,. ,n

such that
(1) ViE{l,. . . , n> VxEAi (.W+),
(2) VPGN ((u,, . . . , u~)EC(J’) e (f(ul), . . . > f(+))EC’(P)).

If no constraint exists on P in a CSP, then C(P) is simply the complete constraint
(the Cartesian product of the domains of the variables in P).

In the following theorem the two CSPs have identical constraints but different
domains.

Theorem 2.5. If E and F are two convergent sequences of neighbourhood
substitutions for the same CSP, then the CSPs which result from the application of
E and F are isomorphic.

Proof. We use the notation A,(E) to represent the set of labels for node i not
eliminated by E, and U(E) to represent Ui=t,,,,,n A,(E).

We define the function f: U(E) + U(F) as follows:

f(x) = Y wherex H -.*yinF.

Let x E U(E). Since x -+ --. f(x) in F and x is not eliminated in E, Lemma 2.3
tells us that f(x) H . ..x in E. f is thus injective, since f(xl)=f(x2)=y implies that

Y+-+ -**x1 and y - .*a x2 in E, which is clearly only possible if x1 =x2.
Consider y E U(F), and let x E U(E) be such that y - ... x in E. Then, by

Lemma 2.3, x H . . . y in F and hence f(x) =y. f is therefore surjective.
Let u,, . . . , uk E U(E). By definition of f, uj ++ *a- f(uj) in F, for each i =

1 , . . . 2 k. Therefore, by Lemma 2.2,

(u,, . . . > &) E W>J(f(u,), * . . 3 f(4)) E C(P).

Now, f(u;) - -.a ui in E, for each i=l, . . . , k, by Lemma 2.3. Thus, again by
Lemma 2.2,

(f(%)T * ’ * , f&J) E C(P) * (u17 . . > +J E cm.

Thus f is an isomorphism from U(E) to U(F). In particular, (x1, . . . ,x,) is a
solution to the CSP resulting from the application of E iff (f(xl), . . . , f(x,)) is a
solution to the CSP resulting from the application of F. 0

The major consequence of this result is that there is no point trying to choose
the best convergent sequence of neighbourhood substitutions operations to apply
to a CSP since the resulting reduced CSPs are all isomorphic.

10 M.C. Cooper I Artificial Intelligence 90 (1997) 1-24

3. k-consistency and neighbourhood substitution

We remind the reader of some definitions concerning consistency. For notation-
al convenience, we consider the domains Ai and the order-l constraints C({i}) to
be synonyms. A CSP can thus be represented by a set of constraints %?=
{C(P): PC/V}, without mention of the domains.

Given a labelling X, = (xi,, . . . , for a set of variables Q= {i,, . . , i,}cN,

and a subset P=(jl, . . . , j,)cQ,
xi,)

we use the notation Il,X,, to denote X,=

(x,,, . . , x,,,). We say that Xc! is an extension of X,.

Definition 3.1. A labelling Xe, for a set of variables Q cN of size k, k-satisfies the
set of constraints %={C(P): PcN} if, for each PCQ, &X,EC(P).

Definition 3.2. A set of constraints 9 = {D(P): PLN} is a k-solution to a CSP
%={C(P): PcN} if

(1) Pclv such that l<lPlsk, D(P)cC(P).
(2) (X,ED(P))A(P~Q~N)A(IQI=~)+~~~~~ exists an extension XQ of X,

such that X, k-satisfies 9.
(3) There does not exist a set of constraints 8= {E(P): PCN} satisfying

properties (1) and (2) and such that D(P) CE(P) for some PCN.
A k-solution to a CSP is strong k-consistent and is unique [3].

The result which is proved in this section is that if we wish to apply both
k-consistency and neighbourhood substitution operations to a CSP, then the best
strategy is to

(A) establish strong k-consistency, by finding the k-solution to the original
CSP, and then

(B) apply neighbourhood substitution operations until convergence.
This strategy will be shown to be optimal, in that any other sequence of
k-consistency and neighbourhood substitution operations produces a CSP which
is, at best, isomorphic to the result of executing (A) and then (B), above. At
worst, the CSP produced is less tightly constrained.

This strategy is valid for all values of k, and, in particular for arc consistency
(Zconsistency) [2,9] and path consistency (3-consistency) [6, lo].

The interaction between consistency and neighbourhood substitution includes
certain subtleties as illustrated by the following examples. The following example
shows that applying neighbourhood substitution operations until convergence and
then establishing strong k-consistency, in other words inverting the order of (A)
and (B) above, does not always produce as many eliminations.

Example 3.3. Consider the CSP in Fig. 5(a). No neighbourhood substitutions are
possible in this CSP. The arc consistent version of this CSP is shown in Fig. 5(b).
This is thus the result of executing operations (B) and then (A), with k=2.
However, by first establishing arc consistency, we can then apply the following

11

Cl2 Cl3 Cl4

(a) 1 2 1 3 1 4

(b) 1 2 1 3

i

b

(cl 1 2 1 3 1 4

/

i

b-e b

\

b

Fig. 5. (a) A konstraint CSP on 4 variables; (b) the result of applying arc consistency; (c) the result
of then applying neighbourhood substitutions.

convergent sequence of neighbourhood substitutions: d -+ e, f + g, c --$ b,
g + h. The resulting CSP is given in Fig. 5(c).

Establishing strong k-consistency is an operation which does not have a unique
result. For example, if a labelling (a, b) is eliminated from C({i, j}), then strong
k-consistency does not impose the elimination of (a, b, x) from C({i, j, k}) for all
XEA,. These eliminations are optional. In a k-solution (for ks3), these
eliminations are mandatory. Such eliminations are redundant in terms of future
deletions by consistency operations, but can be useful in allowing neighbourhood
substitutions which would otherwise be blocked by the presence of (a, b, x) in

C({i, i, k)).

12 M.C. Cooper I Artificial Intelligence 90 (1997) 1-24

Example 3.4. Consider the strong 3-consistent CSP composed of the following
constraints

c 123: 1 2 3

a b c
a b d
e b d

e g c
e g h

c,,: 1 2 c,,: 2 3 c,,: 1 3

a b b c a c

e g b d a d

g h e h

A, = ia, e>, A, = {b, s>, A, = {c, d, h}.

The labellings (e, b, d) and (e, g, c) in C123 are shown in bold italics since they are
superfluous; they are not present in the corresponding 3-solution. The presence of
the labelling (e, g, c) in C,,, blocks the neighbourhood substitution c + d at
variable 3, and the presence of the labelling (e, b, d) blocks the neighbourhood
substitution d + c. In other words, the elimination of (e, b, d) and (e, g, c) from
C,,, allows us to eliminate either c or d from A, by neighbourhood substitution.
The resulting reduced CSP has only two solutions compared to the three solutions
of the original CSP, shown above.

Examples 3.3 and 3.4 show that new neighbourhood substitutions may be
induced by establishing strong k-consistency and even more may be induced by
finding a k-solution. The heart of the proof of the main result of this section
consists in showing that finding a k-solution cannot invalidate eliminations by
neighbourhood substitution and that a strong k-consistent CSP remains strong
k-consistent after neighbourhood substitution eliminations.

In order to prove that finding a k-solution before applying neighbourhood
substitution operations is the best strategy, we first need to define the basic
consistency operations which are employed to find a k-solution. Only two
consistency operations are required [3]:

upward-propagation :
if (x1,. . . ,x,)jZC(P) where]P]<k
then for all i$ P, for all x E A,

delete (x1, . . . ,x,, x) from C(PU {i})

downward-propagation:
if, for some iEN and some PGN, such that jP(<k,

there is no xEA, such that (x1,. . . ,x,, x)EC(PU{i})
then delete (x1, . . . , xr) from C(P)

M.C. Cooper I Artijicial Intelligence 90 (1997) l-24 13

As remarked above, Ai and C({i}) are synonyms, which means that all
deletions from C({i}) automatically apply to Ai. Unlike neighbourhood substitu-
tion, the above consistency operations update constraints of order up to k, not
just the domains.

It is common practice when establishing arc consistency [2,9] not to store those
binary constraints which were not present in the original CSP, since this saves
considerable space and does not incur any loss of the information gained by the
propagation of constraints, the constraints C, which are not stored being just
Ai x A,. To simplify the presentation of our proofs we assume that all binary
constraints are stored when finding a 2-solution, although this is clearly not
necessary for constraints C,. which are always equal to Ai x A,.

The neighbourhood substitution operation, corresponding to a substitution
a + b at node i is given by Definition 2.1:

ns-elimination:
if for some a,bEA,

for all constraints C(P) such that iEP= {i, i, , . . . , i,}
W,, . . , ,x,)EA;,x...xAiT

((a, xl, . . . ,x,)EC(P) 3 (b, ~1,. . . ,x,)EC(f’))
then delete a from Ai

Neighbourhood substitution may destroy the property of being a k-solution,
but, as the following lemma shows, the crucial property of strong k-consistency is
preserved.

Lemma 3.5. Let CSP,, be a CSP in which the neighbourhood substitution a -+ b is
valid at node i, let CSP, be the result of the elimination of label a from Ai, and
CSP, the result of this elimination and the following updating of all constraints
C(P) on sets P = {i, i, , . . . , i,} containing i:

C(P) := C(P) n (Ai x A,, x . . . x A;).

(a) CSP, and CSP, are isomorphic.
(b) CSP,, is strong k-consistent + CSP, is strong k-consistent.
(c) CSP,, is a k-solution 3 CSP, is a k-solution.

Proof. (a) follows immediately from Definition 2.4 of an isomorphism. An
isomorphism is a mapping between elements of domains Aj and hence is
independent of elements (x, , . . , x,) of constraints C({i,, . . . , i,}) for which
some label x, is not an element of the corresponding domain Ai .

(b) CSP, can fail to be strong k-consistent only if, for ‘some labelling

(Yl,. . 3 y,)EC(Q), (a, Y I, . . . 7 Y,) is the only consistent extension of

(Yl>. . . > y,) to {i} U Q. However, by Definition 2.1 of neighbourhood substitu-
tion, we know that (b, y,, . .
(Yl?. . . ,

. , y,) is another consistent extension of
y,) to {i} U Q. Therefore, CSP, remains strong k-consistent despite the

elimination of a from A,.

14 M. C. Cooper I Artificial Intelligence 90 (1997) l-24

(c) CSP, is the result of applying all possible upward-propagation operations to
CSP, . It is therefore sufficient to prove that no downward-propagation operations
are possible in CSP,. The elimination of (a, y r, . . . , y,) from C({ i} U Q) cannot
induce the elimination of (a, y1 , . . . , y,_r , yi+ 1, . . . , y,) from the constraint

C({iluQ-lil) since this elimination has already been performed. Furthermore,
the elimination of (a, y,, . . . , y,) from C({i} U Q) cannot induce the elimination

of (Yl,. . . , y,) from C(Q), by the same argument as in the proof of (b),
above. 0

Lemma 3.6. If CSP, and CSP, are isomorphic, via the isomorphism f, then
(1) CSP, is strong k-consistent e CSP, is strong k-consistent;
(2) the neighbourhood substitution a + b is valid at variable i of CSP, iff the

neighbourhood substitution f(u) + f(b) is valid at variable i of CSP,.

Lemma 3.6 follows immediately from the definitions.
Lemma 3.5 tells us that neighbourhood substitutions cannot destroy strong

k-consistency. The following theorem is a much stronger result. We say that a
sequence of upward-propagation, downward-propagation and ns-elimination
operations is convergent if no more such operations are possible in the resulting
CSP. The resulting CSP is necessarily a k-solution.

Theorem 3.7. Let S be a convergent sequence of k-consistency and neighbourhood
substitution operations. The result of applying S is isomorphic to the CSP which
results from first finding the k-solution and then applying any convergent sequence
of neighbourhood substitutions.

Proof. Let S’ be a copy of the sequence S in which each neighbourhood
substitution is preceded by the operation of finding a k-solution. Finding a
k-solution is also performed as the final operation in S’. The upward-propagation
and downward-propagation operations in the original sequence S can be dis-
carded since they are clearly swallowed up by the new operations of finding a
k-solution.

We will now show that all labels eliminated in S are also eliminated in S’. We
will later show that all but the first determination of a k-solution in S’ are
redundant.

S’ may contain substitutions x + y such that x has already been eliminated in
S’ by consistency operations. Such substitutions are retained in S’, but are
considered to have no effect.

We can number the substitutions in S (starting from 1). By CSP, we refer to the
state of the constraints just before the application of the pth substitution in S. By
CSPI, we refer to the state of the constraints just before applying the corre-
sponding substitution in S’. Note that, in both cases, we do not number the
consistency operations but only the substitution operations.

M.C. Cooper I Artificial Intelligence 90 (1997) I-24 15

Suppose that the pth substitution in S is a -+ b at node i. This means, by
Definition 2.1, that in CSP,

for all constraints C(P) such that i E P = {i, i, , . . . , i,}

e,, f.. > xr) E Ai, X . . . x Aj
(aEA,r\(a,x,,.. .,xJEd(P) j bEA,r\(b,x, ,... ,x,)EC(P)).

(2)

We show by contradiction that applying consistency operations earlier in S’
than in S cannot invalidate neighbourhood substitutions. Let p be the first
position at which (2) holds in CSP, but not in CSP;. By this choice of p, all
labellings eliminated by neighbourhood substitution in CSP, are also eliminated in
CSP;. By the definition of a k-solution, all labellings eliminated by upward-
propagation and downward-propagation operations in CSP, are also eliminated
by the same operations in CSPL. Indeed, the premises of these propagation rules
cannot be invalidated by any extra eliminations in CSP;, and these rules are
applied as soon as possible in S’. We can deduce that there is a constraint C(P)
and values x,, . . . ,x, such that

(a,x,, . . . , x,)EC(P)n(AjXA,,X**.XAir) inCSP,,

(b,x,, . . . ,x,)EC(P)n(AixAjl X...XA,,) inCSP,,

(u,x,, . . ., x,)EC(P)n(AiXA,,X...XAi,) inCSPi,

@,x1,. . . ,x,)$C(P)n(Ai xA,, X -1. XAJ inCSPi.

(3)

This must be because (b, x1, . . . , xr) was eliminated by the extra consistency
operations in CSPL. Among all such constraints C(P) and values x, , . . . , x,, for
which (3) holds, let (b,xl, . . . , xr) be the first labelling to have been eliminated
by the extra consistency operations in CSPL. The case r =0 corresponds to the
elimination of b from Ai. Let CSPkLrM be the state of the constraints just before
the elimination of (b, x1, . . . ,x,). There are three possible reasons for the
elimination of (6, x1, . . . , x,) in CSPL,,,:

(a) gjE{l,. . . ,

(b) (x12 . .

r} such that (b, x,, . . . ,xj_,, x,+,, . . . ,x,)pfC(P-{i,}),
. ~~,)~W-{i~),

(c) 3h$P such that VxEA,((b, x1,. . . ,x,, x)EC(PU{h})).
(a) and (b) correspond to upward-propagation and (c) corresponds to down-
ward-propagation. We consider each case separately.

Case (a). Since (b, x,, . . . , x,) is the first labelling satisfying (3) and eliminated
by S’, there are three possibilities:

(i) (b, x1,. . . ,x~_~. x~+~, . . . ,x,)$C(P-{ii}) in CSP, or
(ii) (a, x,, . . . ,xj_,, x~+~, . . . ,x,)pfC(P-{ii}) in CSP, or

(iii) (a, x1,. . . ,xj_,, x~+~, . . . ,x,)$C(P-(1,)) in CSP;.

Since (2) holds in CSP, , we can deduce that

(a,x,, . . . >xj-l,xj+l>. . * 3X,)EC(P-{ij}) 3

@, x,,. ,xj_,,xj+l ,..., x,)EC(P-{i,}) in CSP,.

16 M.C. Cooper I Arti@ial Intelligence 90 (1997) l-24

Therefore (i) implies (ii), which in turn implies (iii), since, as observed above, all
labellings eliminated in CSP, are also eliminated in CSPL. Now (iii) implies that

(o~(~j.. . . , x,)$ZC(P) in CSPL since CSPI, is a k-solution. This is a contradiction

Case (b). (xi, . . . , x,)$C(P- {i}) in CSPL,,, implies immediately that

(x1,. . . , x,)eC(P- {i}) in CSPI, and hence that (a, x1, . , x,)@C(P) in CSPI,
since CSP; is a k-solution. This contradicts (3).

Case (c). Since (b, x1,. . . ,x,) is the first labelling eliminated in S’ which
satisfies (3), for each xEA, there are three possibilities:

(i) (b, xl, . . . ,x,, x)j?iC(PU{h}) in CSP, or
(ii) (a, x,, . . . ,x,, x)j?iC(PU {h}) in CSP, or

(iii) (a, xi,. . . ,x,, x)jZC(PU {h}) in CSP;.
Since b is neighbourhood substitutable for a in CSP,, we know that

(a,x,, . . ., x,,x)EWU {hl) *
@,x,, . . . ,x,,x)EC(PU{h}) inCSP,.

Therefore (i) implies (ii), which in turn implies (iii). Now the fact that (iii) is true
for all xEA, implies that (a, xi, _ . . , x,)$C(P) in CSPL since CSPI, is k-
consistent. This again contradicts (3).

We have thus shown, by contradiction, that (2) holds in CSPA. Therefore, all
labels a which are eliminated by neighbourhood substitutions in S are also
eliminated in S’ (either by neighbourhood substitution or by consistency opera-
tions).

Given this result, it is relatively easy to show that S and S’ eliminate exactly the
same set of labellings. We have just shown that all labels eliminated by
neighbourhood substitution in S are also eliminated in S’. The fact that all labels
eliminated by neighbourhood substitution in S’ are also eliminated in S is a direct
consequence of the definition of S’.

We now consider eliminations by consistency. Let (x1, . . . , x,) be the first
labelling which is eliminated by strong consistency operations in one of S and S’,
but not the other. Whether (xi, . . . , x,) was eliminated by upward-propagation or
downward-propagation, the premise of the same rule will become true at some
point of the other sequence, by the above result that all labels eliminated by
neighbourhood substitution in one sequence are also eliminated in the other.
Since both sequences produce a k-solution, by their respective definitions,

(x1,. . ’ , x,) will also be eliminated in the other sequence. This contradiction
shows that S and S’ eliminate exactly the same set of labellings.

Let S” be a copy of S’ in which we discard all but the first determination of a
k-solution. In other words, S” is simply the determination of a k-solution followed
by the sequence of neighbourhood substitutions in S. We know from Lemma
3.5(c) that a neighbourhood substitution applied to a k-solution can only induce
eliminations by upward-propagation. Lemma 3.5(a) and Lemma 3.6 tell us that
these eliminations cannot in turn induce new eliminations by neighbourhood

M.C. Cooper I Artificial Intelligence 90 (1997) l-24 17

substitution or downward-propagation. The CSPs resulting from the application
of S’ and S” are thus identical except for updates to constraints of the form

C(P) := C(P) n (Ai x Ai, x . . . x Ai,),

and by Lemma 3.5(a), these two CSPs are isomorphic. Theorem 3.7 follows from
Theorem 2.5 and the transitivity of isomorphism. 0

4. Local substitution

Freuder [5] defined the general notion of substitutability as follows: given two
possible labels a and b for a variable i, a is substitutable for b iff substituting the
value of a for b at variable i in any solution yields another solution. Jeavons et al.
[7] generalized substitutability to sets of labellings for sets of variables: given two
sets of labellings A and B for the set of variables X, A is substitutable for B on
the set of variables X if each solution whose projection on X is a labelling bEB
can be converted into another solution by the replacement of b by some labelling
a EA. This is particularly interesting in the case that X is the scope of a
constraint, B=C(X) and A=C(X)-{c} for some labelling c.

Unfortunately, in the worst case, testing for substitutability is as difficult as
solving the CSP. In the same way that global consistency has local versions which
can be applied in polynomial time, substitutability has tractable local versions,
such as neighbourhood substitutability. A more powerful version of local
substitutability was defined in [7]. Let cl(X) denote the closure of X, the union of
the scopes Y of constraints C(Y) such that Xn YZB.

Definition 4.1. The set of labellings A is said to be Zocally substitutubZe for B on
the set of variables X if, for all bEB, and for each labelling u which satisfies the
constraints on cl(X) and such that flxu= b, there is another labelling u which
satisfies the constraints on cl(X) and such that &(x)_xu =Dc,(x)_xu and n,u E A.

The notation fix, borrowed from relational algebra, denotes the projection
operation onto the set of variables X.

Local substitutability is more powerful than neighbourhood substitutability, but
is potentially much more costly to apply since we need to exhaust over all
consistent labellings of cl(X). In the worst case this is a combinatorial function of
the size of cl(X). We would not envisage applying local substitutability to a CSP
whose constraint graph was the complete graph, since cl(X) would be the set of
all variables.

Since applying k-consistency, for .k>2, converts the constraint graph into the
complete graph, we would not apply local substitution after k-consistency for
k>2. On the other hand, the concept of local substitutability subsumes arc
consistency (Zconsistency). For example, a label a for node i which cannot be
extended to a consistent labelling of the edge (i, j) will be eliminated by local

18 M.C. Cooper / Artificial Intelligence 90 (1997) l-24

substitutability since there is no labelling of cl(X) in which the node i is labelled
by a. This shows that no equivalent of Theorem 3.7 exists for local substitution
since we have no reason to combine it with consistency.

Theorem 2.5 tells us that two convergent sequences of neighbourhood substitu-
tions produce isomorphic CSPs. A simple example will suffice to show that two
convergent sequences of local substitution operations can produce very different
CSPs. Consider the example of a graph colouring problem, consisting of a single
constraint, illustrated in Fig. 6(a). Whether X= {l} or {2}, cl(X) is {1,2}. The set
of all consistent labellings of cl(X) is:

{(red, green), (red, Hue), (green, blue), (blue, green)}.

The set of labels {green, blue} is substitutable for {red, green, blue} at node 1,
which leaves the CSP shown in Fig. 6(b). The set of consistent labellings is

{(green, blue), (blue, green)}.

Alternatively we could have chosen to replace the set of labels {red, green,
blue} at node 1 by {red}. In the resulting constraint {(red, green), (red, blue)},
the set of labels {blue} is substitutable for {green, blue} at node 2, leaving the
CSP shown in Fig. 6(c). The set of consistent labelings is

{(red, blue)}.

(a) 1 2

(b) 1 2

. .

lgreen,bW {greeqblue)

(d 1 2

ired 1 blue)

Fig. 6. (a) The constraint graph of a simple graph colouring problem; (b), (c) two non-isomorphic
problems which result from the application of two different sequences of local substitution operations.

M. C. Cooper I Artificial Intelligence 90 (1997) 1-24 19

The two CSPs in Figs. 6(b) and 6(c) are clearly not isomorphic. Indeed, they have
a different number of solutions. This implies that heuristics may exist which
indicate which elements of constraints to eliminate by local substitutions in order
to minimize the size of the resulting CSP. Theorem 2.5 showed that any such
heuristic would have no effect in the case of neighbourhood substitutions.

5. Neighbourhood substitution algorithm

One way of finding a convergent sequence of neighbourhood substitutions is to
repeatedly apply the ns-elimination rule (see Section 3):

NS-1
repeat

for i:=l to II do
for each UEA, do

for each bE A, such that b#a do
if for all constraints C(P) such that iE P= {i, i, , . , . , i,}

for all (x,, . . . ,x,)EAj,x...xAj,

(u, x1,. . . > X,)EC(P) 3 (b, x1,. . . ,X,)EC(P)
then

Record (a + b, i) in sequence of substitutions E;
Delete a from A,;

end-if
until there are no deletions in an iteration

To avoid both a -+ b and b + a being accepted as neighbourhood substitutions,
in the case that a and b are interchangeable [5], it is essential that the test b E A i
be actually performed at each iteration.

Let k be an upper bound on the order of the constraints in the CSP, and let c
be the number of constraints. We assume that k is a constant. To calculate the
worst-case time complexity of NS-1, it is sufficient to count the maximum number
of constraint accesses. For each of the iterations of the repeat-until loop, the
number of constraint accesses is 0(u2cuk-’). The number of iterations of the
repeat-until loop is bounded above by the maximum number of label deletions,
which is O(un). Therefore the worst-case time complexity of NS-1 is

O(uk+2nc)

We can make a significant improvement on this worst-case time complexity
using ideas from Bessiere’s arc consistency algorithm AC-6 [2]. We first need the
following definition.

Definition 5.1. For u,bEAj, (x, P) is a block for a+ b at variable i if iEP =
{i, i,, . . . , i,}, x=(x1, . . . ,x,)EA,, x ..-xAir, (a, x)EC(P) and (b, x)@C(P).

20 M.C. Cooper I Artificial Intelligence 90 (1997) l-24

Notethatxisatuplex=(x,,.. . , xr), where r + 1 is the degree of the constraint
C(P), and r30. The existence of (x, P) blocks the elimination of a by the
neighbourhood substitution a -+ b.

We assume that, for each variable i, the set of possible blocks (x, P) has been
assigned an arbitrary total ordering, such as a lexicographical ordering. The
algorithm NS-2 keeps track of a block for a + b at i, for each variable i and for
each pair of distinct labels a,b E A,. When this block (x, P), where x =

(x1,. . . , xr), is no longer valid following the elimination of some xj (1 =~j s r) by
neighbourhood substitution, NS-2 searches for the next block according to the
total ordering. If no block remains then the neighbourhood substitution a + b is
itself accepted.

When a neighbourhood substitution a + b is accepted it is added to NS_List to
be processed later. Before it is actually processed, we must verify that neither a
nor b have already been deleted from A i.

Blocks is a set of ordered pairs of the form ((x, P), (a + b, i)) where (x, P) is a
block for the neighbourhood substitution a -+ b at i. After initialization, we will
find in Blocks exactly one block for each potential neighbourhood substitution
(a -+ b, i) which has not already been added to NS_List.

NS-2
{Initialization}

NS_List : = 0;
Blocks : = 0;
fori:=ltondo

for all pairs of labels u,bEA, such that b#a do
begin

Look for first block (x, P) for (a + b, i);
if (x, P) exists
then insert ((x, P), (a -+ b, i)) in Blocks
else add (a + b, i) to NS_List

end;

{Propagation}
while NS_List #0 do

Select and delete an element (a + b, i) from NS_List;
if u,bEA,
then

Record (a + b, i) in sequence of substitutions E;
Delete a from A,;
{all blocks (y, Q) which used the value a for

variable i are now invalid and must be replaced}
for each ((y, Q), (c + d, j))E Blocks such that

iEQ={j, i, i,, . . ,i,} and ~=(a, y,, . . . ,y,) do
if c,dEAj
then

Delete ((y, Q), (c+ d, j)) from Blocks;

M.C. Cooper I Artificial Intelligence 90 (1997) l-24 21

Look for next block (y’, Q’) for (c+ d, i);
if (y ‘, Q’) exists
then insert ((y’, Q’), (c-+ d, j)) in Blocks
else add (c-+ d, j) to NS_List

end-if
end-if

end-while

Blocks contains at most u*n elements. In order to have direct access to each
element ((x, P), (a + b, i)) of Blocks through each of the component labels
(xi, ii) of the block (x, P), where P= {i, i,, . . . , i,} and x=(x,, . . . , xr), a
suitable data structure is an array of lists, indexed by the component labels (x,, i,).
Thus ((x, P), (a-+ b, i)) is, in fact, stored r times. We assume that r is a constant,
since it is bounded above by k- 1, where k is the maximum order of the
constraints.

A block (x, P) for the neighbourhood substitution a + b must satisfy
(a, x)EC(P) and (b, x)j+!!C(P). Th e search for a block for a + b will thus be most
efficient when constraints are tight (there are few labellings (a, x) E C(P)) or when
constraints are loose (there are few labellings (b, x)$C(P)). Define m to be the
maximum value of min{]C(P)], jC(P)‘I} over all constraints C(P), where C(P)’
denotes the complement of C(P).

In NS-2, the total time spent searching for blocks is O(ucm), assuming that in
tight constraints we exhaust over all x such that (a, X)E C(P) and in loose
constraints we exhaust over all x such that (b, x)$!C(P). The number of iterations
of the while loop in NS-2 is bounded above by u*n, the total number of possible
neighbourhood substitutions. Making the very reasonable assumptions that c4n
and m 2 a, we can conclude that the worst-case time complexity of NS-2 is

O(ucm).

In the worst case, this is

o(uk+‘c).

For binary constraints [l], this gives a complexity of O(u3c). The space complexity
of both Blocks and NS_List is O(u*n), which is independent of the order of the
constraints.

6. A novel algorithm to find all consistent labellings

It is clear that neighbourhood substitutions are potentially useful when
searching for a single solution. They also turn out to be useful when searching for
all solutions. Let NS denote any algorithm to detect and eliminate neighbourhood
substitutable labels until convergence. Let SOLVE denote any algorithm which
returns the set of all solutions to the CSP passed as a parameter. Then the
following algorithm finds all solutions to a CSP 8, taking advantage of any
neighbourhood substitutions.

M.C. Cooper I Artificial Intelligence 90 (1997) 1-24

NEIGHBOURHOOD_SOLVE(9):
begin

NS(&?“, 5?“, E); (9 ’ is the reduced version of the CSP 9? after
neighbourhood substitution operations; E is
the convergent sequence of neighbourhood
substitutions x -+ y used to eliminate labels}

Sol : = SOLVE(9’); {Sol is the set of solutions to the CSP 9’}
RECONSTRUCT(Sol, 9, E);

end; {Sol is now the set of solutions to the original CSP 9}

RECONSTRUCT(Sol, 9, E):
begin

L := Sol;
while L #0 do

Select a solution (x,, . . , X,)E L and delete it from L;
for i:=l to IZ do

for each x,’ such that the neighbourhood
substitution XI -+ xi is in E do

if x’ = (x1,. . . ,x,_~, XI, xi+ ,... xn) satisfies all
constraints C(P) such that 1’EP

then
if x’j2Sol

end;
end;

then add x’ to L and to Sol;

6.1. Proof that algorithm finds all consistent labellings

Let (yl,. . . , y,) be a consistent labelling. Let E be the sequence of substitu-
tions applied to p to produce 9 ‘. For each node i = 1, . . . , n, there is a
subsequence of substitutions at node i: yj + ... xi in E such that xi is not
eliminated in E.

Let Epref be any prefix of E, and, for each i= 1, . . . , n, let zi be the label such
that y, H ... zi in Epref. By Lemma 2.2, the fact that (yr , . . . , y,) satisfies all the
original constraints implies that (z,, . . . , zn) also satisfies all the original con-
straints. In particular, when Epref = E, we can deduce that (x1, . . . , xn) is a
solution to 9 ’ since it satisfies all constraints and none of the xi have been
eliminated. Hence the algorithm will find (x1, . . . , xn). By an easy induction,
working back from (x1, . . . , xn) to (yr, . . . , y,), we can show that the algorithm
finds all labellings (z, , . . . , z,,) corresponding to prefixes Epref of E. Hence the
algorithm finds all consistent labellings (y , , . . . , y,).

6.2. Complexity of NEIGHBOURHOOD_SOLVE

The complexity of NS has already been discussed in detail in Section 5. The
sequence E is stored as an array of lists E, of all neighbourhood substitutions

M.C. Cooper I Artificial Intelligence 90 (1997) l-24 23

y -+x in E. The space required is O(an) since each label for each node can be
eliminated at most once in E. The sets L and Sol can be stored in an u-way tree to
ensure that the insertion, deletion and test of membership operations can all be
achieved in O(n) time and O(Nun) space, where N is the total number of
solutions to 9.

In this u-way tree, each node at level i corresponds to a prefix x,, . . . , x, of one
of the N solutions. Direct access to each possible extension xi+, of x1, . . . , x, to
level i+ 1 requires an array of length a. Minor trade-offs between time and space
are clearly possible according to the choice of data structure for L and Sol.

We assume direct access to the set of constraints involving node i, and that, for
each constraint C(P), the test x’EC(P) is O(1). T o calculate the worst case time
complexity of RECONSTRUCT(SoZ, P’, E), it is sufficient to count the number of
accesses to constraints and the number of membership tests of Sol. The number of
constraint accesses is at most

N i a . (number of constraints involving i) = O(Nuc),
i=l

where c is the number of constraints in 9’. The factor a is very pessimistic; it is an
upper bound on the number of labels x: such that XI += x, is in E, for a given label
x;.

The number of membership tests of Sol is O(k) since each solution

&::::
y,) is generated at most II times. This is because we can only generate
y,) in RECONSTRUCT(SoZ, P’, E) by replacing xi by yi, for some

iE(1,. . . , n}, in a solution (y, , . . . , y,_, , xi, y,+, , . . . , y,) where X, is the
unique label such that y, +x, in E.

Since a constraint access is an O(1) operation and a membership test of Sol is
an O(n) operation, the time complexity of RECONSTRUCT(Sol, P’, E) is

O(N(uc + 2)).

Its space complexity is

O(Nun).

We note in passing that simply outputting the N solutions is an O(Nn)
operation.

If N is large, we might prefer to stop after generating K solutions, for
some fixed value K. In this case, the time and space complexities of RECON-
STRUCT(SoZ, 9, E) are O(K(uc + n’)) and O(Kun) respectively.

The efficiency of NEIGHBOURHOOD_SOLVE depends critically on the time
required to find all solutions to the reduced problem 8’, which may greatly
exceed the time complexity of RECONSTRUCT(Sol, 9, E). However, we have
shown that neighbourhood substitution is useful not only when searching for a
single solution, but also when searching for all solutions.

24 M. C. Cooper I Artificial Intelligence 90 (1997) l-24

7. Conclusion

Applying a convergent sequence of neighbourhood substitutions is a reduction
operation for constraints which has the following properties:

(1) The result is invariant, modulo isomorphism.
(2) It can be applied in O(ak+’ c) time for order-k constraints, where a is the

maximum number of labels in a domain, and c the number of constraints.
(3) Combining it with k-consistency only requires establishing k-consistency

once.
(4) After solving the reduced CSP we can generate all N solutions to the

original CSP in O(N(ac+n2)) time, where n is the number of variables.
We can conclude that neighbourhood substitution has a sufficient number of
interesting properties to make it useful in many constraint satisfaction problems.

Further theoretical research and experimental trials on specific problems are
required to determine in which classes of CSPs neighbourhood substitutions are
common and in which classes of CSPs applying neighbourhood substitutions
during backtracking would be worthwhile.

Acknowledgements

The author would like to thank the anonymous referees whose comments
contributed significantly to the presentation of this paper.

References

[l] A. Bellicha, C. Capelle, M. Habib, T. KokCny and M.C. Vilarem, CSP techniques using partial
orders on domain values, in: Proceedings ECAI’94 Workshop on Constraint Satisfaction Issues
Raised by Practical Applications, Amsterdam (1994).

[2] C. Bessitre, Arc-consistency and arc-consistency again, Artif. Intell. 65 (1) (1994) 179-190.
[3] M.C. Cooper, An optimal k-consistency algorithm, Artif. Zntell. 41 (1990) 89-95.
[4] E.C. Freuder, Synthesizing constraint expressions, Commun. ACM 21 (11) (1978) 958-966.
[5] E.C. Freuder, Eliminating interchangeable values in constraint satisfaction problems, in:

Proceedings AAAI-91, Anaheim, CA (1991) 227-233.
[6] C. Han and C. Lee, Comments on Mohr and Henderson’s path consistency algorithm, Artif.

Intell. 36 (1988) 125-130.
[7] P.G. Jeavons, D.A. Cohen and M.C. Cooper, A substitution operation for constraints, in:

Proceedings PPCP94, Lecture Notes in Computer Science 874 (Springer, Berlin, 1994) l-9.
[8] A.K. Mackworth, Consistency in networks of relations, Artif. Zntell. 8 (1977) 99-118.
[9] R. Mohr and T.C. Henderson, Arc and path consistency revisited, Artif. Zntell. 28 (1986)

225-233.
[lo] U. Montanari, Networks of constraints: fundamental properties and applications to picture

processing, Information Sci. 7 (1974) 95-132.
[ll] E. Tsang, Foundations of Constraint Satisfaction (Academic Press, London, 1993).
[12] D.L. Waltz, Understanding line drawings of scenes with shadows, in: P.H. Winston, ed., The

Psychology of Computer Vision (McGraw-Hill, New York, 1975).

