Phospholipase C-β (PLC-β) catalyzes the hydrolysis of the plasma membrane (PM) lipid phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P₂), thereby reducing the PM concentration of its precursor PI(4,5)P₃. A recent report proposed independent PI(4,5)P₂ and PI(4,5)P₃ PM pools with essential physiological functions, but it remains unknown whether PLC-β targets to these pools differentially.

Here, we investigated the time course and specificity of PLC-β-dependent phospholipid depletion in living CHO cells using genetically-encoded phospholipid sensors, total internal reflection fluorescence microscopy and whole cell patch-clamp. PLC-β-mediated PI(4,5)P₂ hydrolysis was detected reliably using KCNQ (Kv7)-mediated K⁺ currents, the PI(4,5)P₂ reporters PLC₅b1-Ph and Epsin ENTH, but not with the C-terminus of Tubby protein. Analogous experiments showed that activation of PLC-β did not reduce the concentration of PI(4) detected with the PI(4)P-specific reporter Osbp-PH. When PLC-β was heterologously overexpressed, Tubby-Term and Osbp-PH reported on the PLC-β-induced changes of PI(4,5)P₂ and PI(4)P, respectively.

In summary, we present detailed real-time analysis of PLC-β activity in living cells. Our findings indicate that phospholipid sensors may detect different phospholipid pools that are accessible to PLC-β differentially. Hence, this work supports the presence of functional phospholipid pools in living cells. This work was supported by Deutsche Forschungsgemeinschaft through SFB 593 (TP A12) to D.O.

3149-Pos Board B304

Regulation of Campbell Partitioning by Membrane Microdomains
Shailesh R. Aggarwal¹, Monica Rice², Cherie R. Singer¹, Viacheslav Nikolaev³, Martin Lohse², Robert D. Harvey²
¹University of Nevada, Reno, NV, USA, ²University of Wurzburg, Wurzburg, Germany.

The role of different membrane domains in the compartmentation of cAMP signaling was investigated using the FRET-based biosensor Epac2-camps. The MyrPalm sequence from Lyn kinase and the CAAX sequence from Rho GTPase were used to target this probe to lipid raft (Epac2-MyrPalm) or non-lipid raft (Epac2-CAAX) domains, respectively. Confocal imaging established that both probes were targeted to the plasma membrane in HEK293 cells. FRAP analysis demonstrated that depletion of membrane cholesterol altered both the recovery half-time and the mobile fraction of Epac2-MyrPalm but not Epac2-CAAX, confirming that each probe was targeted to the correct microdomain. FRET responses of these probes were then used to monitor relative changes in cAMP associated with lipid raft and non-raft domains. The results demonstrated that basal cAMP activity is significantly higher in non-raft domains. This was supported by the fact that the maximal increase in cAMP over baseline following agonist stimulation was significantly smaller for Epac2-CAAX than it was for Epac2-MyrPalm, consistent with the idea that the probe was partially activated by a higher basal level of cAMP associated with non-lipid raft domains. In addition, inhibition of adenylyl cyclase activity with MDL 12330A reduced basal cAMP activity detected by Epac2-CAAX but not Epac2-MyrPalm. Responses detected by Epac2-CAAX were also more sensitive to direct activation of adenylyl cyclase by forskolin, but less sensitive to inhibition of type 4 phosphodiesterase activity by rolipram. These results indicate that there are diffusionally-restricted pools of cAMP associated with different membrane microdomains under basal conditions. The higher basal cAMP activity associated with non-lipid raft domains can be explained by differences in basal adenylyl cyclase and phosphodiesterase activity.

3150-Pos Board B305

Integrating High-Resolution Bioimaging Techniques to Unravel How Membrane Lipids Influence Nanoscale Organization and Lateral Mobility of Adhesion Receptors
Christina Eich¹, Sandra de Keijzer¹, Thomas van Zanten², Gert-Jan Bakker¹, Carl G. Fidig¹, Maria F. Garcia-Parajo², Alessandra Cambi³
¹Nijmegen Centre for Molecular Life Sciences, Nijmegen, Netherlands, ²ICFO, Barcelona, Spain.

A central, but still unresolved question regarding the function of integrins is how these adhesion receptors regulate both their conformation and dynamic nanoscale organization on the membrane to generate adhesion-competent microclusters upon ligand binding. By superresolution nanoscopy, we recently showed that in quiescent monocytes, LFA-1 preorganizes in ligand-independent microclusters proximal to nanoscale raft components (1,2). Furthermore, to dissect the relationship between conformational state, lateral mobility, and microclustering we exploited the high spatial (nanometer) accuracy and temporal resolution of single dye tracking and found that LFA-1 nanoclusters are primarily mobile on the cell surface with a small (ca. 5%) subset of conformational-active LFA-1 nanoclusters anchored to the cytoskeleton (3). Lateral mobility resulted crucial for the formation of microclusters upon ligand binding and for stable adhesion under shear flow. Ongoing investigation in our laboratory points towards the importance of a specific lipid composition of the membrane nano-environment in modulating LFA-1 biophysical properties which eventually regulate the onset of leukocyte adhesion. Since several (patho)physiological stimuli can alter either temporarily or permanently the plasma membrane lipid composition, our studies offer a novel framework to understand integrin regulation via the lipid nanoenvironment.

(1) Van Zanten et al PNAS 2009.
(2) Van Zanten et al PNAS 2010.
(3) Bakker et al PNAS 2012.

3151-Pos Board B306

Visualizing Ghrelin Receptor through Genetically Encoded Labeling for Monitoring the Single-Molecule Conformational Dynamics
Minyoung Park¹, Thomas Huber¹, Bjorn Behrens Sivertsen², Birgitte Holst², Thue W. Schwartz², Thomas P. Sakmar¹
¹The Rockefeller University, New York, NY, USA, ²University of Copenhagen, Copenhagen, Denmark.

The ghrelin receptor (GhR) is a class A G protein-coupled receptor (GPCR) involved in the entero-endocrine signaling systems that regulates food intake and energy homeostasis. The GhR is noted for its unusually high basal constitutively activity. GhR is a potential drug target for “diabetes” syndromes, and the interaction between GhR and its endogenous peptide ligand, ghrelin, has been intensively studied. However, there is only a limited understanding of GhR pharmacology and its molecular mechanism of signal transduction. Using well-established amber codon suppression technology and state-of-the-art single-molecule techniques, we are developing real-time FRET monitors for the G-protein complex to enable us to better understand the complexity of GhR signaling in the endo-cytoendocrine system, providing insights to design specific drugs for targeting fine-tuned signal pathways involved in metabolic disorders like obesity and diabetes.

3152-Pos Board B307

TGF-Beta and Bmp Receptors: Distinct Modes of Oligomeric Interactions and Implications for Signaling
Yoav I. Henis¹, Barak Marom¹, Keren E. Shapira¹, Petra Krauss², Marcelo Ehrlich¹
¹Tel Aviv University, Tel Aviv, Israel, ²Freie Universitaet Berlin, Berlin, Germany.

Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signal via two Ser-Thr kinase receptors, type I (TβRI and II, BMPRI and II) for the TGF-β and BMP receptors, respectively), which appear to function as monomers, homo/heteromeric complexes. The extracellular domains (EDs) complexed with ligands were shown to form heterotetramers. However, the oligomerization dynamics among the full-length receptors in live cell membranes, the domains involved, and the potential roles of receptor homodimerization were largely unexplored. Using patch/FRAP and computerized immunofluorescence co-patching of epitope-tagged receptors [wild-type (wt) or mutants] in live cells, we show that the oligomerization dynamics are distinctly different for the two receptor systems. For TGF-β receptors, we find clear differences between TβRII and TβRII oligomeric interactions: (1) the homodimerization of TβRII, but not TβRI, depends on a cytoplasmic juxtamembrane region; and (2) TβRII/TβRII hetero-oligomerization depends on the cytoplasmic domain of TβRI and on a C-terminal region of TβRII, distinct from the region involved in TβRII homodimerization. TGF-β1 binding mildly elevated TβRII homodimerization, and strongly enhanced TβRII/TβRII heterocomplexic formation. Notably, both homo/heteromeric TGF-β receptor complexes were stable on the patch/FRAP timescale (minutes).

In contrast, the BMP receptors display stable interactions on the same timescale only for homocomplexic complexes, while the heterocomplexes are transient. Interestingly, the BMPR heterocomplexes appear to form at the expense of homo-monomeric interactions: (1) the homodimerization of BMPRII, but not BMPRI, depends on a cytoplasmic juxtamembrane region; and (2) BMPRII/BMPRI heterocomplex formation depends on a cytoplasmic juxtamembrane region. Based on these findings, we propose two mechanisms that can suppress the tendency of preformed BMP receptor hetero-oligomers to signal without ligand.