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Abstract

In three-dimensional Euclidean space, Scherk second surfaces are singly periodic embedded minimal surfaces with four
planar ends. In this paper, we obtain a natural generalization of these minimal surfaces in any higher-dimensional Euclidean
spaceR"t1 for n > 3. More precisely, we show that there exist— 1)-periodic embedded minimal hypersurfaces with four
hyperplanar ends. The moduli space of these hypersurfaces forms a one-dimensional fibration over the moduli space of flat tori
in R"~1. A partial description of the boundary of this moduli space is also gize®002 Editions scientifiques et médicales
Elsevier SAS. All rights reserved.

1. Introduction

In three-dimensional Euclidean space Scherk second surfaces come in a one-parameteésfanaib/, /) which can be
described in many different ways. For example it can be descrilagts Weierstrass representation data [1,6]
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Or even more simply as the zero set of the function
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Indeed, it is well known that, the zero set of a functiBris a minimal surface if and only if O is a regular valuefofand

. ( VF
div| — ) =0,
I[VF]
on the zero set of'. Using this, it is straightforward to check that the zero sefofs a minimal surface.

In any of these descriptions, the parametéelongs to(0, 7/2). Observe that we do not consider any dilation, translation
or rotation of a minimal surface; in other words we are only interested in the space of surfaces modulo isometries and dilations.
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Now, we would like to point out a few properties of Scherk’s second surfaces which will enlighten our construction of their
higher-dimensional analogues.

(i) Periodicity. Observe that Scherk’s second surfaces are singly periodic and, in the above description, their common period
has been normalized to be equal(f 2, 0). Hence, if we defing'l .= R/27Z, we can consides, to be a minimal
surface embedded i x T1 x R.

(i) Asymptotic behavior as tends to0. Another feature which will be very important for us is the study the behavior of
Scherk’s second surfaces as the parametends to 0 (a similar analysis can be performed when the parametads
to /2). To this aim, we write for allx1, x2) in some fixed compact subset Bf — ({0} x 27 Z) and for alle small
enough

z ==£sine acos?((tanz—:)_2 cos?-( x—1> - (sinz—:)_2 003x2) .
cose

Using this, we readily see that, away from the g8tx 27 7Z, the one parameter family of surfacSs converges to the
union of two horizontal planes, astends to 0. In other words, the sequence of surfeéizesonverges, away from the
origin, to two copies oR x T1 x {0} in R x T1 x R, as the parametertends to 0.
As already mentioned, a similar analysis can be carried out as the parartestds tar /2 and, this time, we find that the
sequence of surfacels converges, away from the origin, to two copies@f x 71 x RinR x T1 x R.

(iii) Blow down analysisFor each fixed € (0, 7/2), the surfaceS; has four planar ends which are asymptotic to

viE= {(r1,x2.2) eR x T1 xR | z = £(tane|x1| — 2sine logtane)}.

More precisely, away from a compact setinx T'1 x R, the surfaceS; is a normal graph oveV8jE for some function
which is exponentially decaying as tends totoo. Another way to understand this would be to say that the sequence of
surfacesi S, converges, as tends to O, td/l/;r U W, , where

WE = {(x1,x2,2) e Rx T1 x R |z = +tane|xy|}.

(iv) Blow up analysisinstead of blowing down the surfacés as we have done in (iii), we can blow up the surfaSgdy
considering the sequence of scaled surfacess;. As ¢ tends to O this sequence converges on compact to a vertical
catenoid. To see this, just define the new set of coordinates

(X1,%2,2) := (x1, x2,2),

2sine
and, in (1), we expend both ces and coslix1/ cose), in terms of powers of. We find with little work
(0058)2(1 + 2(tane)2i%) — (sine)?cosh23) =1 — 2(sine)2i§ + 0(54).
Hence,
724 72 =costfz +O(s2).

Clearly, asc tends to 0, this converges, uniformly on compact sets, to an implicit parameterization of a vertical catenoid.

To complete this brief description, let us mention that Scherk’s second surfaces have recently been used as one of the building
blocks of some desingularization procedure, to produce new embedded minimal surfaces in three-dimensional Euclidean space.
We refer to the work of M. Traizet [11] and also to the recent work of N. Kapouleas [4,5] for further details.

In order to state our result properly, we need to introduce two ingredients which will be fundamental in our analysis. First
observe that, in higher dimensions, there is a natural generalization of the catenoid in Euclidean three-space. This hypersurface,
which we will call the unitz-catenoid, is a hypersurface of revolution with two hyperplanar ends. It can be parameterized by

R x §" 15 (s5,0) > (p(s)0, ¥ (s)) e R"HL,
where the functior is defined by the identity”~1(s) = cosh(n — 1)s) and where the functiog is given by

S

Y (s) = / Q%" (1) dr.
0

Using thisn-catenoid, S. Fakhi and the author have produced examples of complete immersed minimal hypersuRfates of
which havek > 2 hyperplanar ends [2]. These hypersurfaces have the topology of a sphekepwuitbtures and they all have
finite total curvature, they generalize the well knokvnoids in three-dimensional Euclidean space [3].
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Another ingredient in our analysis is the moduli space of flat tofRfh, for m > 1. We recall a few well known facts
about this moduli space and refer to [13] for further details. Any flat toruRfncan be identified witliR™ /AZ™ where
A € GL(m, R). The volume of thern-dimensional torug” :=R™/AZ™ is then given by

vol(T™) = |detA.

Itis a simple exercise to check that two t&f' /AZ™ andR" /B7Z™ are isometric if and only if there exi3f € O (m, R) and
N € GL(m, Z) such thatA = M B N. The moduli space of flat tod™ is defined to be the space of t@i"* = R"/AZ™ for
A € GL(m, R), normalized by asking that

vol(T™) = vol(S™),
modulo isometries. For later use, it will be convenient to identify any t@¥liss 7™ with a subset oR™. To this aim, if
T =R™/AZ",

for someA € GL(m, R), we identify 7" with the image o[—%, %]’" by A. In particular, we will talk about the origin& 7",

simply referring to the origin inA[—%, %]m C R™. We will also consider, fop > 0 small enoughB; C R"™" x T™ as the

n-dimensional ball of radiug in R~ x A[—%, %]’". And so on. Also observe that, granted this identificatiofi,is invariant
under the action of the following subgroup 6fm, R)

O :=|D:=diagny, ..., nm) | n; = £1}.

In this paper, we pursue the quest of higher-dimensional generalizations of classical minimal surfaces which we have initiated
in [2]. More precisely, we obtain a natural generalization of Scherk’s second surfaces in higher-dimensional Euclidean spaces.
Recall that one can view the moduli space of Scherk’s surfaces as a one-dimensional fibration over the moduli space of flat
tori in R. We will show that, inR"*1, for n > 3, there exists a finite-dimensional family of embedded minimal hypersurfaces
satisfying properties which are similar to (i)—(iv). This family, which turn out to be a one-dimensional fibration over the moduli
space of flat tori ifR" 1, yields a partial description of the moduli space of what might be called “higher-dimensional Scherk’s
hypersurfaces”. More precisely, we obtain a description of the boundary of this moduli space, this boundary turns out to be
modeled over the moduli spaces of toriRf* for any 1< m <n — 1.

Our main result can be stated as follows:

Theorem 1. Assume that > 3and1 < m < n — 1 are fixed. Letl" € 7™ be any flat torus oR™. Then, there existy > 0
and (Se)ee(0,¢0) @ ONe-parameter family of minimal hypersurface®R6f™ x T x R such that

(i) For all ¢ € (0,¢p), the hypersurfaceS, is embedded IMRR"~™ x T™ x R and is invariant under the action of
On—mR)®Dy, ®{£l1} C O(n+ 1L, R).
(ii) Ase tends tadD, the sequence of hypersurfadess). converges to the union of two copiesR8T ™ x T™ x {0}, away from
the origin.
(iii) Forall € € (0, ¢p), there exist; > 0 andd, > 0 such that the hypersurfack has four ends which are asymptotic to

VE = (01, %2,2) e R"™ X T X R | 2 = £(colm(x1) +de) ),

where ¢,_1(y) := |y|, ¢—2(y) :=logly| and ¢, (y) := 0, whenm < n — 3. In particular, this means that, up to
a translation along the-axis, the hypersurfac§; is a normal graph ovenVsjE for some function which is polynomially
decaying inx41|. Furthermore, whem =n — 1, we have

1
lim el "¢, = =. 2
e—0 € 2 ( )
(iv) Ase tends ta0, the sequence of rescaled hypersurfagest S, ). converges, uniformly on compact sets, to a vertical unit
n-catenoid.

Whenm = n — 1, this result yields minimal hypersurfaces which constitute the natural generalization of Scherk’s second
surfaces in higher-dimensional Euclidean spaces. More precisely, wken — 1, the above result provides a description of
part of S,,, the moduli space of-dimensional Scherk’s hypersurfacesRfit!, showing that this moduli space is locally a
one-dimensional fibration over the moduli space of flat toifT 1. Though we have not been able to prove it, we expect this
fibration to extend, as it does when= 2, to allc; € (0, +00).

The above result, whem < n — 2, yields hypersurfaces which have to be understood as belonging to the boundary of the
moduli spaceS,, in the same way that any prodit —""—1 x 7" for m < n — 2 corresponds to a point in the compactification
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of the moduli space of flat tori ifR”~1. We expect that the moduli spa can be compactified and that the family of
hypersurfaces described in the above result constitutes a collar neighborhood of the bougain other words, Theorem 1
provides a local description &, near its boundary.

To conclude, let us briefly describe the strategy of the proof of the result. It should be clear from (ii) to (iv) that, far,small
Scherk’s second surfaces can be understood as a desingularization of two c@piegdfx {0} in R x T1 x R. Keeping this
observation in mind, our strategy will be to show that a similar desingularization is possible for two caRles’ok 7™ x {0}
in R"™™ x T™ x R. The proof of this result is very much in the spirit of [2,7] or [8], however, some aspects are simpler in the
present paper thanks to the special geometry of our problem.

Our work has been strongly influenced by the recent work of M. Traizet [12] and the work of N. Kapouleas [4,5] in their
construction of minimal embedded surface®i# Indeed, on the one hand, N. Kapouleas has used Scherk’s second surfaces
to desingularize finitely many catenoids or planes having a common axis of revolution and he has produced embedded minimal
surfaces with finitely many ends and very high genus. On the other hand, M. Traizet has used finitely many catenoids to
desingularized parallel planes and he has produced minimal surfaces with finitely many ends and genus larger than 2. There is
a formal link between these two constructions since, in some vague sense, the surfaces constructed by N. Kapouleas on the one
hand and the surfaces constructed by M. Traizet, for a genus large enough, on the other hand, should belong to the same moduli
space. It was therefore tempting to try to produce Scherk’s second surfaces using some desingularization procedure.

2. Definitionsand notations
In this brief section we record some notations and definitions which will be used throughout the paper.

Eigenfunctions oA7=: Givenm > 1 andT™ € 7™, we will denote byE;, i € N, the eigenfunctions of the Laplacian @’
with corresponding eigenvalues, that isArm E; = —u; E;, with p; < ;1. We will assume that these eigenfunctions are
counted with multiplicity and are normalized so that

/ E?dv=1

T771
Though the spectral data afy» do depend o™, we will not write this dependence in the notation.

Functions onT™ which are invariant under the action of some groupiVe will be interested in functions o™ and

eigenfunctions ofA 7= which have some special symmetry. Namely, the set of functions and eigenfunctions which are invariant
under the action of the following subgroup 6fm, R)

D(m) :={D :=diagn1, ....nm) | ne = +1}.

We defined(m) C N to be the set of indicescorresponding to eigenfunctiois which are invariant under the action®f(m),
that is

J(m):={i 20| E; =E; oD, forall D e D(m)}. ©)]
Eigenfunctions ofAg,—1:  For alln > 2, we will denote bye;, j € N, the eigenfunctions of the Laplacian ofi—1 with

corresponding eigenvalugsg, thatisA gi—1e; = — je;, with A; < 1 ;, 1. We will assume that these eigenfunctions are counted
with multiplicity and are normalized so that

/ e?d@:l.

sn—1

Functions onR” or on S" which are invariant under the action of some groupgGiven 1< m < n — 1, we can decompose
R" =R"™™ x R™. We will be interested in functions dR"* and eigenfunctions oA ¢.—1 which have some special symmetry.
Namely, functions which are invariant under the action of the following subgroup(ef R)

Hn,m):=0mn —m,R) @ D(m).

It will be convenient to defing(n, m) to be the set of indiceg € N corresponding to eigenfunctiors which are invariant
under the action ofy(n, m), that is

J(n,m) = {j}O!ejzejoR, fOI’allRef)(n,m)}.
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It will be important to observe that 2, . .., n do not belong t@(n, m) since the eigenfunctions corresponding to the eigenvalues
A1 =---= A, are not invariant under the action efl,, € H(n, m).

For all k e N and all« € (0, 1), we defineC**(5"~1, §(n,m)) to be the subset of functions &% (s"~1) whose
eigenfunction decomposition only involves indices belonging(a ). In other wordsg € C5-% (5" 1, §3(n, m)) if and only
if g ecke(s"1) and

8= Zé’jer

Jed
Observe that, by definition, any function &f% (5”1, §(n, m)) is orthogonal ta, . .., e, in the L2 sense, ors" 1.
Notations: Given 1< m < n — 1, we will adopt the following notations:
x or (x1,x2) eR" x R ~R"™™M,
will denote a point inR" and
(x,2) eR" x R~R"1

will denote a point inR"*1. Finally, 6 will denote a point ins” 1,

3. Minimal hypersurfaces close to a truncated n-catenoid

This section is mainly adapted from [2], we recall some of the technical results of [2] which are needed in this paper and
adapt them to our situation.

3.1. Then-catenoid

Assume thatr > 3 is fixed. We recall some well known fact concerning the unitatenoidC1 which is a minimal
hypersurface of revolution ilR"t1, further details are available in [2]. By definitio; is the minimal hypersurface of
revolution parameterized by

X0:(5,0) €R x "1 = (p(5)0, ¥ (s)) e R"H1, (4)
whereg is the unique, smooth, non-constant solution of
(059)? + ¢+ 21 =% with p(0) =1,
and where the functiog is the unique solution of
dsy = 2" with ¥ (0) = 0.
As already mentioned in the introduction, it might be interesting to observe tisaxplicitely given by the identity
" L) = cosH(n — D)s).
Using this, it is easy to check that the functignconverges as tends totoo. We set

i I V-
The fact thaty converges at both-oo implies that the hypersurfacgé; has two hyperplanar ends and is in fact contained
between the two asymptotic hyperplanes defined by+c~o. In addition, the upper end (respectively lower end) of the unit
n-catenoid can be parameterized as a graph over #h@ hyperplane for some functian(respectively—u). It is easy to check
that the function: has the following expansion as= |x| tends tooo:

1

2—n 4—3n
n— Zr + O(r ) (5)

U==Coo —
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3.2. The mean curvature operator
Let us assume that the orientation®f is chosen so that the unit normal vector field is given by

1
No:= 5(33«//9, —9s59). (6)

All surfaces close enough 16, can be parameterized (at least locally) as normal graphsyeramely as the image of
2—n
Xw:=Xo+we 2 Np,

for some small functionw. The following technical result is borrowed from [2]. It just states that the mean curvature of the
hypersurface parameterized Ky, has some nice expansion in termsuafObserve that, in order to defig,, we have used
we@=m/2 Ny instead of the usuabNg, there is no loss of generality in doing so and this choice will simplify the notations in
the forthcoming result which describes the structure of the nonlinear partial differential equalias to satisfy in order for

the hypersurface parameterized ¥y, to be minimal.

Proposition 1[2]. The hypersurface parameterized ¥y, is minimal if and only if the functiow is a solution of the nonlinear
elliptic partial differential equation given by

2—n n n n
Lw=¢2 Qz(¢~ 2w) +¢203(p™ 2w). 7

where

2
n—2 n@Bn—2) o o,
2 ) T v

where¢ — Q2(&) is a nonlinear second-order differential operator which is homogeneous of d2gmee wheret — Q3(§)
is a nonlinear second-order differential operator which satisfies

030 =0.  DgQ3()=0 and DFQ3(0)=0.

L= 33+ASH—<

Furthermore, the coefficients @i, on the one hand and the coefficients in the Taylor expansigdgofvith respect to thé,
computed at any in some fixed neighborhood 6fin C2%(R x $"~1) on the other hand are bounded functionssaind so
are the derivatives of any order of these functions.

The operator is clearly equivariant with respect to any action of the form
RxS"15(s5,0) > (—s, RO) eR x §"71,

when R € $(n, m). Since in addition the mean curvature is invariant by isometries, we conclude that the nonlinear operator
which appears on the right-hand side of (7) also enjoys this equivariance property.
It might be useful to rephrase the properties of the nonlinear oper@toasid Q3 into a slightly weaker form. It follows from
the properties of, and Q5 that there exist constantscg > 0 such that, for alk € R and allgg, £ € C2%([s, s + 1] x s*~1),
we have

| 0260 — 02(€2)| cow < ¢( SUP IEilcz ) 182~ Enllcac (®)

and, provided|§; || -2« < co, we also have
2
2360 — 03(€)| cow < ¢(_ SUP lilczc ) ez — ez, (©)

where all norms are computed fn s + 1] x $” 1. SinceQ, is homogeneous of degree 2 no assumptions; @re required
in order to get the estimate involvin@,, however they are required for the estimates involving

Let us warn the reader that the operafowhich appears in this result is not the Jacobi operator which is defined to be the
linearized mean curvature operator when nearby hypersurfaces are normal graphs eveatteid, that is when they are
parameterized by

Xw = Xo+ wNg.

Nevertheless( is conjugate to the Jacobi operator.
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3.3. Linear analysis

Projecting the operataf over the eigenspace spannedebyfor all j, we are left with the study of the sequence of operators

2
2 n—2 nBn—2) o 5 .
Lj.=as—xj—< 7 ) t—— T JeN
The indicial roots ofC at both+oo or —oo are given byty; where
2
n—2
=y (%5 ) ;. (10)

Let us recall that these indicial roots appear in the study of the asymptotic behavior of the solutions of the homogeneous
problemL jw = 0, at+oco0. More precisely, for eacli € N, one can findwf, two independent solutions df jw = 0 such
thatwj*(s) ~ e¥i% and w;(s) ~ e~ Vi% at +o00. Observe that the functions— wf(—s) are solutions of_ jw = 0 such that
w}_(s) ~ e V¥ and wj_(s) ~ &¥j% at —oo. These indicial roots will play a crucial role in the study of the mapping properties
of L.

To keep the notations short, we define the second-order elliptic operator

2 n—2 2
AOIZ BS +AS7171 - 2 )

which acts on functions defined @&x $"~1. In particular
I’l(3l’l — 2) 2-2n
5 7

The indicial roots ofAg at both+oo or —co are also given byty ;.
It is straightforward to check thatkg satisfies the maximum principle and also that the operAtadioes not satisfy the
maximum principle because of the presence of the extra potential. Indeed, one can check that the functions

L=Ag+

_ n-2 n—4
WO~ = (0 2), WOt = "2 (pdyy — Yisp), (11)

and, forj =1,...,n, the functions
- ul + _n
\Ilj’ :=(/7 2 (§085§0+‘//33‘//)€ja \Ilj’ :=§0 Zejv (12)

are Jacobi fields, i.e. are solutions of the homogeneous proBlers: 0, and that thel/:t are bounded. Nevertheless, the
following result, borrowed from [2], asserts that the operatostill satisfies the maximum principle if it is restricted to the
higher eigenspaces of the cross-sectional Laplagign 1.

Proposition 2. Assume that < (n 4 2)/2 is fixed and thaiv is a solution of
Lw =0,
which is bounded by?® on (s1, s2) x §"~1 and which satisfies) = 0 on {s;} x "1, if any of they; is finite. Further assume

that, for eachs € (s, s2), the functionw(s, -) is orthogonal toeg, ... ., e, in the L2 sense ors" 1. Thenw = 0.

In view of the previous result, it is natural to consider the operétacting on functions bounded by a constant times a power
of the functiong. As in [7,2], we define a family of weighted Holder spaces by:

k,a

o9 (R x §"~1) for which

Definition 1. For all § € R, the space?(’;’”‘(R x §"1y is defined to be the space of functiomse C
the following norm is finite

. —5
”w”ckﬂ = SUP(QD leck""([s,s%»l]xs”*l))'
§ seR

Here| |C"'v"‘([s,s+l]><S”*1) denotes the Holder norm [, s + 1] x $" 1.

Moreover, for anyS > 0, the spaceC§’“([—S, S] x S”—l) is defined to be the space of restriction of functions of
C§’°‘(R x §" 1) to[—S, §] x §"~L. This space is naturally endowed with the induced norm.
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Though this will not be necessary for the remaining of the analysis, we quote here some well known properties of the
operator

L:C2*(R x §"71) - Q¥ (R x 5" ).

To keep track of the weighted space over whitls defined, we will denote the above operatordyy The most important fact
is that the mapping properties 6§ crucially depend on the choice of the weight paraméténdeed, it follows from general
arguments thaf’s has close range and is even Fredholm if and only if the welightot equal to any of the indicial rootsy;,
J € N (a fact which, given the special structure of our operator, can be easily proven be separation of variables). The fact that
the functions given in (12) are Jacobi fields shows ihats not injective whers > —n/2 and it can be proven, with the help
of Proposition 2, thals is injective if§ < —n /2. This later fact in turn implies thal; is surjective if§ > n/2 is not equal to
anyy;, j > 0 (this uses the fact that the operatty and L _; are, in some sense, dual).

As already mentioned in Section 2, we will only be interested in functions which are invariant under the action of some
group. This is the reason why we introduce the:

Definition 2. For allk e N, « € (0,1) and$ € R, the spac£§’“(R x Sn—1 {11} ® H(n,m)) is defined to be the space of
functionsw € Cg"“(R x §"—1y which satisfy

V(s,0) eRx "L w(s,0) = w(—s,0),
and also

V(s,0) eRx "L w(s, RO) = w(s, 0),

for all R € $H(n, m). This space is endowed with the induced norm.

Observe that, any functiom Cg"“(R x §n—1 {£I1} ® $H(n, m)) can be decomposed as
w(s,0) =Y wj(s)e; ),
J€J
where, for allj, all functionss — w (s) are even.

Observe that the Jacobi fields/:*, for j =1,...,n, which are defined in (12), are not invariant with respect to the action
of {+11} ® $H(n, m), hence one can show that

L:CE*(R x $" L {£11) ® H(n,m)) = C* (R x §" 7L, {£11) @ H(n, m)),

is injective whens < (n — 2)/2 and surjective whed > (2 — n)/2 is not equal to any;, for j > 0. We will not need such

a general statement, since we will be working with functions defined-¢h S] x sn—1
Among the Jacobi fields defined in (11) and (12),

ul
WH0= "7 (posy — ¥ d50)

is the only one which is invariant with respect to the actiof-bf1} ® $H(n, m). It is easy to see that this Jacobi field vanishes
for finitely many values of. Hence we can defing > 0 to be the largest zero of the functidn0.
The result we will need reads:

Proposition 3. Assume that € ((2—n)/2, (n — 2)/2) anda € (0, 1) are fixed. There exists some constant 0 and, for all
S > 5o + 1, there exists an operator
Gs:Co* (IS, 81 x 8" L (11} ® H(n.m)) — CF¥([=5. 81 x S"L {£11) @ H(n.m)).
such that, for allf € C?’“([—S, S]x st {£I1} ® $H(n, m)), the functionw = G5(f) is a solution of
Lw=f
in (=S, ) x $" 1 withw =0o0n{+S} x §*~1. Furthermore,||w||c§,a < c||f||c?,a .

Proof. Our problem being linear, we can assume without loss of generality that

sup (¢7%1fl) =1
[—S,S]xSsn—1
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Observe that, it follows from Proposition 2 that, when restricted to the space of funatisash that, for alk, the function
w(s, -) is orthogonal tee, ..., e, in the L2 sense ors"1 the operatolL is injective over(—S, S) x sn=1 Also, if s > S0
thenZ is injective over(—S, §) x §"~1 when restricted to functions which are even and only depend As a consequence,
for all S > sg, we are able to solvEv = f, in (=S, S) x §7=1 with v = 0 on {£S} x S"~1. In addition, sincef is invariant
under the action of+11} ® H(n, m), So isv.

We claim that there exists some constant 0, independent of > sqg + 1 and of f, such that

sup (<p75|w|) <ec.
[—S,S]xsn—1
Observe that the result is true whg&n- sg + 1 stays bounded. We argue by contradiction and assume that the result is not true.
In this case, there would exist a sequefige- sg + 1 tending to+oo, a sequence of functiong satisfying

sup (¢ 1Al) =1
[—Sk, Sk]x Sn—1

and a sequence, of solutions ofCvy = fi, in (—Sk, Sk) x $"~1, with vy = 0 on{£S;} x $"~1 such that

Ay = sup (<p75|vk|) — 400.
[— Sk, Sp]x 51

Let us denote by, 6;) € [0, S;) x $"~1, a point where the above supremum is achieved, observe that all the functions we
consider are even in thevariable, thus we can assume that the above supremum is achieved at some [ihisi{ ok sn—1,

We claim that the sequenc® — s; remains bounded away from 0. Indeed, singeand (EJS2 + Agu-1)vy are both bounded

by a constant (independent bf times ¢? (Sy) A in [Sy — 1, S¢] x §"~1 and sincevy = 0 on {S;} x "1, we may apply
standard elliptic estimates and conclude that the gradient @ also uniformly bounded by a constant timg&S;) Ay in

[S; — 1 Si1 x $"~1. As a consequence the above supremum cannot be achieved at a point which is too$)lo3téoefore,

up to some subsequence, we may also assume that the se§uenggconverges t&™ € (0, +o0]. We now distinguish a few
cases according to be the behavior of the sequenaghich, up to a subsequence, can be assumed to convei@etino].

We define the sequence of rescaled functions
-5
. ®~°(sg)
Vg = ———— U (- + Sk, 0.
Ak

Casel: Assume that the sequengeconverges ta,. € R. After the extraction of some subsequences, if this is necessary,
we may assume that the seque@#{ejk converges on compact tosome nontrivial solution of

Lv=0,
inR x $"~1. Furthermore
sup (<p’5|v|) =1 (13)
RXS”’l

Moreover, for each € R, the functionu(s, -) is orthogonal in the 2 sense teq,...,e, onS"1. But, the result of Proposition 2
together with the fact that € ((2 —n)/2, (n — 2)/2) implies thatv only depends or. Hence,v is a multiple of w0+ and
cannot be bounded by a constant tigésunlessv = 0. A contradiction with (13).

Case2: Assume that the sequengeconverges te-oo. After the extraction of some subsequences if this is necessary, we
may assume that the sequenigeconverges t@ some nontrivial solution of

Agv =0,
in (—oo, §*) x §"~1 with boundary condition = 0, if $* is finite. Furthermore
sup (e"ss lv]) =1. (14)
(—00,8*)x §n—1

Independently of the fact that* is finite or not. This case is easy to rule out using the eigenfunction decomposition of
V= Z vjej.
JEI

Indeed,v; has to be a linear combination of the functios’ & (wherey; has been defined in (10)) and is bounded By e
Since we have assumed tldat ((2—n)/2, (n — 2)/2), itis easy to see that all; = 0, contradicting (14).
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We have reached a contradiction in all cases, hence, the proof of the claim is finished. To complete the proof of the
proposition, it suffices to apply Schauder’s estimates in order to get the relevant estimates for all the derivatives.

We will also need some properties of the Poisson operatonfpon [0, co) x $" 1. The result we will need is standard
and a proof can be found, for example, in [2]:

Lemma 1. There exists > 0 such that, for allg € C2%(S"~1, §(n, m)), there exists a unique € C(Zé‘i‘n)/z([o, +00) x S*~1y
solution of

Agw =0 in (0, +o0) x §"°1,

w=g on{0}xs" 1 (15)

Furthermore, we havﬁw||cz,a <cliglic2« and, for alls > O, the functiomw (s, -) is invariant with respect to the action of
@-n)/2
H(n,m).

The idea behind the proof of this result is that one can use the eigenfunction decomposgido obtain an explicite
solution of (15) together with the estimate. In the remaining of the paper, we will dend@ég)ythe solution of (15).

3.4. The nonlinear problem

We fix p € [0, 1] and, for alle € (0, p), we defines; > 0 by the identity
p=¢ep(se) >0.
Let us notice that, astends to 0, we have
se ~ —loge.

In order to parameterize the umitcatenoid we use (4) and define the outer unit norivighs in (6). Let us define a smooth
function &, : R — [—1, 1] which satisfieg, = —1fors > s, — 1,& =1 fors <1—s,, & = —05loge for |s| < s — 2 and
which interpolates smoothly between those functions whkea [s; — 2, s — 1]. We consider the vector field

Ne(s, 0) := (\/?82(5)9,55(5)).

It turns out that this vector field is a perturbation of the unit noriigl and in fact, we have for all > 0
|VE(Ne - Nog — D)| < 272,

forall |s| > ss — 2.
We look for all minimal hypersurfaces close to the unitatenoid which has been rescaled by a faetdrhis means that
the hypersurfaces we are looking for can be parameterized by

2—n
Xw:=¢eXg+we 2 Ng,

for (s, 0) € [—s¢, s¢] x S"~1 and for some small functiow. It follows from (7) that such an hypersurface is minimal if and
only if w satisfies a nonlinear equation of the form

Lw = Q¢(w), (16)
where

— 2-n — n n — n

Qc(w) =" 2Lew+e9 2 Q2,(¢ 2e  w) + 9203, (¢ 2 1w).

Here g_zzyg and §3,8 enjoy properties which are similar to those enjoyeddyand Q3, namely (8) and (9) still hold uniformly

in ¢ € (0, p). The linear operater”*ZLs represents the difference between the linearized mean curvature operator for
hypersurfaces parameterized using the vector figJéand those parameterized using the vector fiéld The operatof., has
coefficients which are supported (f-sg¢, 2 — 5] U [se — 2, s¢]) X s"=1 and which are uniformly bounded g topology.

The details of the derivation of this formula can be found, for example, in [8] or in [2].
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3.4.1. Solutions of (16) which are parameterized by their boundary data
We fixé € (2—n)/2,(n —2)/2), « € (0,1) andk > 0. Givenh € Cz'“(S”*l, $(n, m)) whose norm satisfies

Ihllpza < xe™ 2,
we set
g:=9"7 (se)h.
and we define
B 1= Ps, (8)(se — ) + P () + e 1) € C2¥([—s¢. 5] x 8"~ L {11} @ H(n, m)). (17)
We know from Lemma 15 that

- n=2
”wh”cﬁﬁz)/z <ce 2 |Igllgze <clltligza- (18)

Now, if we writew = wj, + v, we wish to find a function e C?’“([—sg, se] x sn1 {£I1} ® H(n, m)) such that

Lv= Q) +v) — LW, N (—Se, 5¢) X sn=1

v=0 on{zks.} x s L (19)

To obtain a solution of this equation, it is enough to find a fixed point of the mapping

Ne(v) = gsg(és(wh +v) — Ewh),

whereg;, is the operator defined in Proposition 7. Using (18) together with Proposition 7 and the proped@gsveé can
estimate:

H821172L8{Eh — Ly, HC?Q <0(1+8#+5)Hh||02.a,

2—n — n ~ _ n
leo 2 Qa9 26 L) | o < el L4 e2)n)3,,
and finally, there existsg > 0 (which depends or) such that for alk € (0, eg) we have
n — n ~ _ 2—n
le0? Oae (0™ 2 n) | cow < (724672 )R,

In the above estimates, the constant 0 does not depend an nor onk. Observe that in order to obtain the last estimate,
we have implicitly used that fact thit|| -2 is small enough so that we can apply (9), or rather its counterpa@igr. This
explains why the restriction € (0, g) is needed in order to obtain the last estimate.

It is then a simple exercise to show that for any fixed 0, there exist > 0 andeg > 0, such that, for alk € (0, gg), the
nonlinear mappingV; is a contraction in the ball of radius

R(e, h) :=c||h||cg,[,,
in C?’“([—sg, AP (11} ® $H(n, m)) into itself, and henceV,; has a unique fixed point, in this ball. Therefore, the

functionwy, := wy, + vy, is a solution of (16) whose boundary data is, up to a constant function, givierMig can even choose
the constant to be independent af, but this will not be useful.

3.4.2. Family of minimal hypersurfaces closeitcatenoid
We summarize the results we have obtained so far and translate them in the geometric framework. Let us fix

2— -2
56( 2n’n2 ) ae€(0,1) and «>0.

There existg > 0 andeg > 0 such that for alk € (0, eg) and for alli € Cz'“(S”*l, $(n, m)) satisfying
Ihlize <Ke" ",

there exists a minimal hypersurface, which will be denoted’bg:) c R"*1, and which is parameterized by
X, =¢eXo+ whw%Ng in [—se, se] x S" 1,

for some functionw;, satisfying

lwpll -2, <clhllpze-
Colyp N
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This hypersurface is symmetric with respect to the hyperplareO and further inherits all the symmetries induces
by the symmetries used to define the function spaces in Definition 2, hence, it is invariant with respect to the action of
On—m,R) @D, ®{xI1} C O(n + 1, R). Furthermore, if we perform the change of variable

r:=egq(s),
we see that near its upper boundary, this hypersurface is the graph of the function
x€ B_g\BZ/Z — Coo€ — Wp(x) — Ve (%),

over thez = 0 hyperplane. HeréV;, denotes the (unique) harmonic extension of the boundary/datas;, and the function
Ve satisfies

Ve nlloza < cos™ 2

for some constanty which does not depend annor one. Here the norms are taken ove_ﬁ — BZ o- This last claim, which is

a key point of our analysis, follows from (5). Indeed, whes 0, C.(0) is just a rescaled-catenoid and, using (5) we see that

its upper end is the graph of the function
X — Cook + O(s"ilrzf”).

We have also used the fact that the solution of (19) we have constructed is egijatto, wherew, defined in (17), is linear
in » and wherey, can be estimated by a constant (independeatasfd« ) times||/2|| -2« ©%. Essentially the constang arises
from the termO(¢"~1,2-") in the above expansion, the contributionsvpfand the perturbation caused by the change of
variable being neglectable wheris chosen small enough. Indeed, let us denot&pythe function defined iB; — BZ/Z by

~ n=2 2-n

Wi (e9(5)0) = ¢(s6) 2 ¢(s) 2 Wp(s,6).
One can check that

Wi — Wil p2e < ce™ 2l 20,

where the norm on the left is computedBf — BY 1o
Observe that, reducing, if this is necessary, we can assume that the mappirg V. 5, is continuous and in fact smooth.
With little work we also find that

n—2_
IVe.ny — Venyllgza <ce 2 2lhg — hillpas (20)

for some constant > 0 which does not depend @n The norm on the left-hand side of this inequality is understood to be the
norm onBj — BZ/Z' The constant in (20) can be chosen to be independent difut this will be irrelevant for the remaining
of the analysis.

4. Minimal hypersurfaces which are graphsover a hyperplane

We are now concerned with both the mean curvature and the linearized mean curvature operator for hypersurfaces which are
graphs over the = 0 hyperplane, ilR? =" x T x R.

4.1. The mean curvature operator for graphs

We assume that > 3 and 1< m < n — 1 are fixed. Further assume that € 7™ is fixed. Then, for any function, defined
inR"=™ x T™ which is at least of clasg?, we can define a hypersurface which is the graph of

R*™ x T™ 3 (x1,x2) — (xl,xz, u(xi,xz)) eR"™M x T" xR.

Recall that the mean curvature of this hypersurface, with downward pointing unit normal, is then given by

1 Vu
H, = ——div| ————= ). 21
YT <<1+|Vu|2)1/2> 1)
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4.2. Linear analysis

We define the function spaces which are adapted to the analysis of the LaplaRian’in< 7. Our main concern will be
the asymptotic behavior of the functions|ag| tends to+oco.

Definition 3. For allk € N, o € (0,1) andv € R, the spaceC’J’”‘(R"—m x T™) is defined to be the space of functions
w e Clko’g‘(R”*m x T™) for which the following norm is finite:

”w” ko 1= |'LU| k.o (gn—m my + sup r—\) w(r ) ko n—m_pn—m —1my -
ck Che (B ™" xTm) ro1)2 | |c ((By ™™ =By ™yxr=1Tm)
Here| |ck,a(9) denotes the Holder norm i2.

To get a better understanding of these weighted spaces, let us observefihat K™ /AZ™, we can identify any function
defined onR"~" x T™ with a function defined ofR"~"* x R™ which has{0} ® AZ™ as its group of periods. In which case

functions which belong t@f’”‘(R"—m x T™) are identified with functions defined &'~ x R™, which are bounded by
a constant time&l + |x1])¥, whose first derivative are bounded by a constant tiftes x1 )"~ (if ¥ > 1), and so on.
As in the previous section, we will only work with functions having some special symmetry. To this aim, we introduce the:

Definition 4. For allk e N, @ € (0, 1) andv € R, the spac@f’”‘(R"—m x T™, $(n, m)) is defined to be the space of functions
w e Cf’“(R”—m x T™) which are invariant under the action 9fn, m).

Observe that, because of the invariance of our function space with respect to the actign, ef), any function
w e C"f'“(R”_m x T™, $(n, m)) can be decomposed as

w(xy, x2) = Y w;(r) Ei (x2),
i€J
whereJ(m) C N has been defined in (3) and where
ry = |x1l.
To begin with let us treat the easy case whererk < n — 3. We have the:
Proposition 4. Assume thal < m < n — 3. Givenv € (24 m —n,0) anda € (0, 1). There exist some constant- 0 and an
operator

G:COY (R X T™, §(n,m)) — C24(R"™ x T™, §(n, m)),

such that, for allf € CSf‘Z(R"*’" x T™, $(n, m)), the functionw = G(f) is a solution of
Aw = f,

inR"™™M x ™M, Furthermore,||w||C2,a < C”f“CO,oz .
v v=2

Proof. The proof of the result is simplified by the fact that
AlxplY = —v(n —m — 2 — v)|xq "2

Hence, the functiom (x1, x2) := |x1|”, which is defined inR"~™ — {0}) x T™ can be used as a barrier function to prove, for
any f € Cgf‘z(R"*’" x T™, $(n, m)), the existence of a solution of

Aw = f,
in R"~™ x T™, Furthermore, it also yields the estimate
|w(x1, x2)| <cllfllgoe xal”s
v—2
for some constant which does not dependfoThe maximum principle then implies that

[w(s. x| < el fllgoe (1+1xal)".
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Starting from this, Schauder’s estimates give
Iwllp2e < CIIfllcgfz-

The details are left to the readert

Whenm =n — 2 orm =n — 1, the previous result has to be modified sinee2 — n > 0 in these two cases. To this aim,
we choosey a cutoff function defined ofR such thaty =1 forr > 2 andy = 0 whenr < 1. Whenm = n — 2, we define the
space

Dy := Spar{ x (r1) logry} € C®(R?),
and whenn =n — 1, we set

D1 :=Spar{x(r)r1} C CP®R).
This time we have the:

Proposition 5. Assume thatt =n — 2 or m =n — 1. Givenv € (—o0, 0) and« € (0, 1). There exist some constant- 0 and
an operator

G:COY (R X T™, §(n, m)) — C24(R"™" x T™, §(n,m)) & Dp—m,

such that, for allf € Cef‘z(R"—m x T™, $(n, m)), the functionw = G(f) is a solution of
Aw = f,

inR x T™, Furthermore,llw||cg,a@Dnim <c ||f||c‘(,)f2.

Proof. We decompose
f=fo+ > fEi.
ieJ—{0}
and adopt the notatiofi = fo + f’. We look for a solutions which will also be decomposed as
w=wo+ Z w; Ej,
ieJ—{0}
and again we setv = wg + w’. For notational conveniencef’,v’,w’,... will denote functions whose eigenfunction
decomposition only involves indicéss J(m) — {0}.

Observe that, because of the invariance of our problem with respect to the acfiom, of), the Laplacian iR” ™ x 7™
reduces to the study of the operator
2 n—m-—1
L:=07, + ———0r + Apnm,
r

where we have sef := |x1].

Step 1: We would like to prove the existence of and also obtain the relevant estimate. Our problem being linear, we may
always assume that

sup (A+r)%7VIf =1
RnmeTm
Obviously A, or L, is injective over anyB%‘m x T™. As a consequence, for aiy> 1 we are able to solvav’ = 7, in
B x T™, withv' =0 0ndBy ™" x T™.
We claim that, there exists a constant 0, independent oR > 1 and of f/, such that
sup (A+r) VI <e.
By " xT™

Observe that the result is certainly true if we assume ghegmains bounded. We argue by contradiction and assume that the
claim is not true. In this case, there would exist a sequétjce 1 tending to+oo, a sequence of functiorﬁ satisfying

sup (l+r1)2"’|f,é| =1,

B Tm
Ry
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and a sequence, of solutions ofLv; = f/, in Bﬁ;m x T™, with v, =0 on BB;’Qk_”’ x T™, such that

Ag:= sup  (14r)~"|v| > 4oo.
B;ZWXT"’

Let us denote byxq x, x2 ) € B?e,:m x T™, a point where the above supremum is achieved. We now distinguish a few cases
according to the behavior of the sequemgg := |x1 x| which, up to a subsequence, can always be assumed to converge in
[0, +00]. Observe that, as in the proof of Proposition 7, the sequétige; , remains bounded away from 1 and can be
assumed to converge (i, oo].

We define the sequence of rescaled functions

o At
V=
Ak
Casel: Assume that the sequeneg; converges toq , € [0, 0o). After the extraction of some subsequences, if this is
necessary, we may assume that the sequgﬁmg converges to some nontrivial solution of

TAGEDE

Lv' =0, (22)
in R"~™ x T™, Furthermore,
sup A+r) P =1 (23)
RnmeTm

But, v being negative, the maximum principle implies thas identically equal to 0. This clearly contradicts (23).

Case2: Assume that the sequengg;, converges te-oo. After the extraction of some subsequences, if this is necessary, we
may assume that the sequeri;ga:onverges to some nontrivial solution of

—-m-1
8,211/ + % Brlv’ + Apmv’ =0,
1

in (R"~ — {0}) x R™ orin (B~ ™ —{0}) x R™ in which case we also hav¢ = 0 ond By ™" x R". In addition, the function
v’ does not depend orp. This last claim follows from the fact that the functions— ﬁ,’( (x1, x2) have a group of period given
by rl_]% AZ™if T =R™/AZ™. In addition,|Vy, v, | is bounded by a constant only dependingrgnPassing to the limit, we
see that’ does not depend atp.

In either casey; — v/(x1) solves

2 , n—m-—1 r
v +T3rlv =0,

and satisfies

sup ri"W=1 or sup r =1 (24)
(Rr=m—{0}) xR™ (B " —{0) xR™

It should be clear that’ = 0, contradicting (24).
Since we have obtained a contradiction in both cases, this finishes the proof of the claim.

Step 2: We now turn our attention to the existenceugf as well as the relevant estimate. Our problem reduces to solve one
ordinary differential equation since
2 n—m-—1
8r1wo + Tarl wo = fo

It is easy so check that, whein=n — 1 the functionwg is given by the formula

+00 00 00
wo:rlffodt-l—//fodtd{,
0

r g’
while, whenm = n — 2, the functionwg is given by
+o00 00 00
wo = logry / tfodt + ;flftfodtd;.
0 r1 14
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Granted the above formula, one can directly check that we can decompgse:agy + wg whenm =n — 1 andwg :=
agy logri + wg whenm =n — 2, with

lagl + sup (1+r1)~"IiWol < ¢ sup (1 +r1)? ™| fol.
(0,00) (0,00)

To complete the proof of the proposition, it suffices to sum the two results we have just obtained and apply Schauder’s
estimates in order to get the relevant estimates for all the derivatives.

If o > Ois fixed small enough, we define the spé&é‘ R > T™ — B, H(n, m)) as the space of restrictions of functions

of C,Z;“(R”*m x T™, $(n,m)) toR"™™" x T™ — By. This space is naturally endowed with the induced norm.
In order to simplify the notations, we set

£29 = C2Y(R"™™ x T™ — BP, H(n,m))
when 1< m <n — 3 and

E2%:=C2(R"™™ x T™ — B, §(n,m)) ® Dy—m
whenm =n —2 orm =n — 1. We also define

PO OB T — B 5. m)
when 1< m < n — 1. Using the previous result together with a standard perturbation argument, we obtain the:
Proposition 6. Assume that € (2+m —n,0) whenl<m <n—3,v € (—o0,0) whenm =n—20orm =n—1, anda € (0, 1)
are fixed. There exigiy > 0, ¢ > 0 and, for all p € (0, pg), there exists an operator

G, :}'\?f‘z - E£2°,
such that, for allf € f‘?f‘z, the functionw = G, (f) is a solution of

Aw = f,

In R T — By, withw =0 0na B} Furthermore wllgza < ¢/l 1 zoe .

4.3. The nonlinear problem

Using (21), one can check that the hypersurface parameterized by
R"™ x T™ — By 3 (x1,x2) — (x1,x2,u(x1,x2)) e R"™" x T™ x R,
has mean curvature 0 if and only if the functieris a solution of
Au— Q) =0, (25)
where we have set

Vzu(Vu, Vu).

4.3.1. Solutions of (25) which are parameterized by their boundary data
Let us assume that

ve@+m—n,0 whenl<m<n-3, or ve(-2,00 whenm=n-2, or ve(—o00,00 whenm=n-1,
is fixed. The new restriction omwhenm = n — 2 is needed to ensure that the nonlinear operator
u— Au— Q(u),

mapsSE’“ into ]—"?f‘z. Thanks to the result of Proposition 6, it is possible to apply the implicit function theorem to solve (25)

with w on aBg equal to some given functioh € c2e(s"=1 §(n, m)) which satisfieg| |2, < co for some fixed constant
co > 0. The solution of (25) provided by the implicit function theorem will be denoted pyBy construction, the graph afj,
is a minimal hypersurface whose boundary is parameterized by the boundaty data
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4.3.2. Family of minimal hypersurfaces which are clos&fa™ x 7™
Let us summarize what we have proved. Wefiaccording to the above choice,c (0, 1) andx > 0. There existsg > 0

and for alle € (0, sg), for all h € C2*(S"~1, §(n, m)) satisfying
Il <re"t,

we have been able to find a minimal hypersurface, which is a graptfdvet x 7" — BJ. This hypersurface, once translated
by & coo along thez-axis, will be denoted b, (h).
Moreover, there exists a constaftsuch thatV, (k) is asymptotic to

{(xl,xz,z) eR"™™M xT" xR ! z=cplm(x1) +coo£},

whereg, _1(y) := [yl, &—2(y) :=log|y| and¢y (y) :=0, when 1<m < n — 3.

Also observe that the hypersurfatg (h) inherits all the symmetries induces by the symmetries used to define the function
spaces in Definition 4, hence it is invariant with respect to the actian(ef—m,R) ® D, ® {11} C O(n + 1, R).

Furthermore, near its boundary this hypersurface can be parameterized as the graph of

@) — Bl 5x > coot — Wy(x) — V().
where W, is the unique (bounded) harmonic extension of the boundary/dataR” " x T™ — B} which belongs tcff’”‘.
Here the functiorﬂ, satisfies

Vil co < c0e®* 2,

for some constanty which depends or but does not depend en The norm is taken ovaﬁ_gp — Bj.

Reducingeg if this is necessary, we can assume that the mappirg Vh is continuous and in fact smooth. It follows from
standard properties of the solutions obtained through the application of the implicit function theorem that

1Via = Vi o2 < ce™ Hing = bl e, 26)

for some constant > 0 which does not depend enbut depends or. Here the norms are understoodb_gup - BJ.

5. Thegluing procedure

We fix k > 0 large enough and apply the results of the previous sections. There gxist9 and for all g, i, €
C29($"L, 9(n, m)) satisfyingllgllz.o < ke" L and|hll2,q < k"1, we define the hypersurfadé; (¢) and the hypersurface
C¢(h). Our aim will be now to findg and# in such a way that

(Me(g) UCe(h)) NR"™ x T™ x (0, +00),

is ac1 hypersurface. Then applying a reflection with respect to the hyperplar@ we will obtain a completé® hypersurface
in R"~™ x T™ x R. Finally, it will remain to apply standard regularity theory to show that this hypersurface is iG¥act

By construction, the two hypersurfack (g) andCe (k) are graphs over the= 0 hyperplane near their common boundary.
That is,M, (h) is the graph of the function

xe @ \ B > coos — Wg(x) — Vg (x),
andC,(g) is the graph of the function
x € By \ B = coos = Wy(x) = Ve j (x).
Hence, to produce @! hypersurface, it remains to solve the equations
We+Ve=Wp+Vep, 0 Wot 3 Ve g=0Wy+ 3 Verp, (27)

where all functions are evaluated ﬁnt. The first identity is obtained by asking that the Dirichlet data of the two graphs
coincide ond B, and already ensures that the hypersurfaa‘.ﬁ@jwvhile the second is obtained by asking that the Neumann data

of the two graphs coincide ohBj, and ensures that the hypersurfacéis
Let us recall that the mapping

U:h eC?2(S"L §(n,m)) = pdr (Wy — Wi)(p-) € CH(S"7L, 9(n, m))
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is an isomorphism. Indeed, this mapping is a linear first order elliptic pseudo-differential operator and, in order to check that
it is an isomorphism, it is enough to prove that it is injective. Now if we assumétigt= 0 then the functiorw defined by
w =Wy inR"™" x T™ — Bf andw := W}, in Bf is a global solution oAw = 0inR"™" x 7™, and furthermorew belongs

to 53’”‘. It is easy to check that necessarnily= 0 and, as a consequenées= 0. This proves the injectivity dff.
Using the above claim, it is easy to see that (27) reduces to a fixed point problem

(gah)ZCS(gah)7

in &:=(C%%(S" 1, §(n, m)))2. However, (20) and (26) imply th&, : £ — £ is a contraction mapping defined in the ball of
radiuske" 1 of £ into itself, providedk is chosen small enough. Hence, we have obtained a fixed point of the mahpiig
this ball. This completes the proof of the existence of the hypersurfacesich are described in the Theorem 1. Most of the
properties states in Theorem 1 follow readily from the construction itself except the derivation of (2).

Proof of (2). This follows from the application of the balancing formula for minimal hypersurfaces. In the casemvbene- 1
we know from the construction itself that the hypersurfSgés, away from the origin, the graph of the function

(x1, %¥2) = Colx1] + coct + O(" " xy "),

for somev < 0. Observe that necessarily > 0, otherwise we easily get a contradiction by the maximum principle. Moreover,
near O the hypersurface is a graph over the resoaleatenoid. It remains to identify the constant In order to do so, we
apply the balancing formula of [10] (Theorem 7.2) between the hyperplan@ andz = zq for zg tending to+oco. This yields

2Vol(T" L) ¢p ~ &~ Ivol (577 1).

And (2) follows at once from our normalization of the volume on(ar- 1)-dimensional torus. O
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