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Abstract

In three-dimensional Euclidean space, Scherk second surfaces are singly periodic embedded minimal surfaces with four
planar ends. In this paper, we obtain a natural generalization of these minimal surfaces in any higher-dimensional Euclidean
spaceRn+1, for n� 3. More precisely, we show that there exist(n− 1)-periodic embedded minimal hypersurfaces with four
hyperplanar ends. The moduli space of these hypersurfaces forms a one-dimensional fibration over the moduli space of flat tori
in R

n−1. A partial description of the boundary of this moduli space is also given. 2002 Éditions scientifiques et médicales
Elsevier SAS. All rights reserved.

1. Introduction

In three-dimensional Euclidean space Scherk second surfaces come in a one-parameter family(Sε)ε∈(0,π/2) which can be
described in many different ways. For example it can be describedvia its Weierstrass representation data [1,6]

Xε(ω) := �
ω∫
ω0

(
1

2

(
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)
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(
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g
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)
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)
dhε,

where

g(ω) := ω and dhε := 4sinε
(
ω4+ 1− 2cosεω2)−1

ωdω.

Or even more simply as the zero set of the function

Fε(x1, x2, z) := (cosε)2 cosh

(
x1

cosε

)
− (sinε)2 cosh

(
z

sinε

)
− cosx2. (1)

Indeed, it is well known that, the zero set of a functionF is a minimal surface if and only if 0 is a regular value ofF and

div

( ∇F
|∇F |

)
= 0,

on the zero set ofF . Using this, it is straightforward to check that the zero set ofFε is a minimal surface.
In any of these descriptions, the parameterε belongs to(0,π/2). Observe that we do not consider any dilation, translation

or rotation of a minimal surface; in other words we are only interested in the space of surfaces modulo isometries and dilations.
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Now, we would like to point out a few properties of Scherk’s second surfaces which will enlighten our construction of their
higher-dimensional analogues.

(i) Periodicity. Observe that Scherk’s second surfaces are singly periodic and, in the above description, their common period
has been normalized to be equal to(0,2π,0). Hence, if we defineT 1 := R/2πZ, we can considerSε to be a minimal
surface embedded inR× T 1×R.

(ii) Asymptotic behavior asε tends to0. Another feature which will be very important for us is the study the behavior of
Scherk’s second surfaces as the parameterε tends to 0 (a similar analysis can be performed when the parameterε tends
to π/2). To this aim, we write for all(x1, x2) in some fixed compact subset ofR

2 − ({0} × 2π Z) and for allε small
enough

z=±sinεacosh

(
(tanε)−2 cosh

(
x1

cosε

)
− (sinε)−2 cosx2

)
.

Using this, we readily see that, away from the set{0} × 2πZ, the one parameter family of surfacesSε converges to the
union of two horizontal planes, asε tends to 0. In other words, the sequence of surfacesSε converges, away from the
origin, to two copies ofR× T 1× {0} in R× T 1×R, as the parameterε tends to 0.
As already mentioned, a similar analysis can be carried out as the parameterε tends toπ/2 and, this time, we find that the
sequence of surfacesSε converges, away from the origin, to two copies of{0} × T 1×R in R× T 1×R.

(iii) Blow down analysis. For each fixedε ∈ (0,π/2), the surfaceSε has four planar ends which are asymptotic to

V±ε := {
(x1, x2, z) ∈R× T 1×R | z=±(tanε|x1| − 2sinε log tanε)

}
.

More precisely, away from a compact set inR × T 1 × R, the surfaceSε is a normal graph overV±ε for some function
which is exponentially decaying asx1 tends to±∞. Another way to understand this would be to say that the sequence of
surfacesλSε converges, asλ tends to 0, toW+

ε ∪W−
ε , where

W±
ε := {

(x1, x2, z) ∈R× T 1×R | z=± tanε|x1|
}
.

(iv) Blow up analysis. Instead of blowing down the surfacesSε as we have done in (iii), we can blow up the surfacesSε by
considering the sequence of scaled surfacesε−1Sε . As ε tends to 0 this sequence converges on compact to a vertical
catenoid. To see this, just define the new set of coordinates

(x̃1, x̃2, z̃) := 1

2sinε
(x1, x2, z),

and, in (1), we expend both cosx2 and cosh(x1/cosε), in terms of powers ofε. We find with little work

(cosε)2
(
1+ 2(tanε)2x̃2

1
)− (sinε)2 cosh(2 z̃)= 1− 2(sinε)2x̃2

2 +O
(
ε4

)
.

Hence,

x̃2
1 + x̃2

2 = cosh2 z̃+O
(
ε2

)
.

Clearly, asε tends to 0, this converges, uniformly on compact sets, to an implicit parameterization of a vertical catenoid.

To complete this brief description, let us mention that Scherk’s second surfaces have recently been used as one of the building
blocks of some desingularization procedure, to produce new embedded minimal surfaces in three-dimensional Euclidean space.
We refer to the work of M. Traizet [11] and also to the recent work of N. Kapouleas [4,5] for further details.

In order to state our result properly, we need to introduce two ingredients which will be fundamental in our analysis. First
observe that, in higher dimensions, there is a natural generalization of the catenoid in Euclidean three-space. This hypersurface,
which we will call the unitn-catenoid, is a hypersurface of revolution with two hyperplanar ends. It can be parameterized by

R× Sn−1 � (s, θ)→ (
ϕ(s) θ,ψ(s)

) ∈R
n+1,

where the functionϕ is defined by the identityϕn−1(s)= cosh((n− 1)s) and where the functionψ is given by

ψ(s) :=
s∫

0

ϕ2−n(t)dt .

Using thisn-catenoid, S. Fakhi and the author have produced examples of complete immersed minimal hypersurfaces ofR
n+1

which havek � 2 hyperplanar ends [2]. These hypersurfaces have the topology of a sphere withk punctures and they all have
finite total curvature, they generalize the well knownk-noids in three-dimensional Euclidean space [3].
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Another ingredient in our analysis is the moduli space of flat tori inR
m, for m � 1. We recall a few well known facts

about this moduli space and refer to [13] for further details. Any flat torus inR
m can be identified withRm/AZ

m where
A ∈GL(m,R). The volume of them-dimensional torusT m :=R

m/AZ
m is then given by

vol
(
T m

)= |detA|.
It is a simple exercise to check that two toriR

m/AZ
m andR

m/BZ
m are isometric if and only if there existM ∈O(m,R) and

N ∈GL(m,Z) such thatA=MBN . The moduli space of flat toriT m is defined to be the space of toriT m = R
m/AZ

m for
A ∈GL(m,R), normalized by asking that

vol
(
T m

)= vol
(
Sm

)
,

modulo isometries. For later use, it will be convenient to identify any torusT m ∈ T m with a subset ofRm. To this aim, if

T m =R
m/AZ

m,

for someA ∈GL(m,R), we identifyT m with the image of[−1
2,

1
2]m byA. In particular, we will talk about the origin 0∈ T m,

simply referring to the origin inA[−1
2,

1
2]m ⊂ R

m. We will also consider, forρ > 0 small enough,Bnρ ⊂ R
n−m × T m as the

n-dimensional ball of radiusρ in R
n−m×A[−1

2,
1
2]m. And so on. Also observe that, granted this identification,T m is invariant

under the action of the following subgroup ofO(m,R)

Dm :=
{
D := diag(η1, . . . , ηm)

∣∣ ηi =±1
}
.

In this paper, we pursue the quest of higher-dimensional generalizations of classical minimal surfaces which we have initiated
in [2]. More precisely, we obtain a natural generalization of Scherk’s second surfaces in higher-dimensional Euclidean spaces.
Recall that one can view the moduli space of Scherk’s surfaces as a one-dimensional fibration over the moduli space of flat
tori in R. We will show that, inR

n+1, for n� 3, there exists a finite-dimensional family of embedded minimal hypersurfaces
satisfying properties which are similar to (i)–(iv). This family, which turn out to be a one-dimensional fibration over the moduli
space of flat tori inRn−1, yields a partial description of the moduli space of what might be called “higher-dimensional Scherk’s
hypersurfaces”. More precisely, we obtain a description of the boundary of this moduli space, this boundary turns out to be
modeled over the moduli spaces of tori inR

m for any 1�m� n− 1.
Our main result can be stated as follows:

Theorem 1. Assume thatn� 3 and 1 � m� n− 1 are fixed. LetT m ∈ T m be any flat torus ofRm. Then, there existε0> 0
and(Sε)ε∈(0,ε0) a one-parameter family of minimal hypersurfaces ofR

n−m × T m ×R such that:

(i) For all ε ∈ (0, ε0), the hypersurfaceSε is embedded inRn−m × T m × R and is invariant under the action of
O(n−m,R)⊗Dm ⊗ {±I1} ⊂O(n+ 1,R).

(ii) Asε tends to0, the sequence of hypersurfaces(Sε)ε converges to the union of two copies ofR
n−m× T m×{0}, away from

the origin.
(iii) For all ε ∈ (0, ε0), there existcε > 0 anddε > 0 such that the hypersurfaceSε has four ends which are asymptotic to

V±ε := {
(x1, x2, z) ∈R

n−m × T m ×R
∣∣ z=±(cεζm(x1)+ dε)

}
,

where ζn−1(y) := |y|, ζn−2(y) := log |y| and ζm(y) := 0, whenm � n − 3. In particular, this means that, up to
a translation along thez-axis, the hypersurfaceSε is a normal graph overV±ε for some function which is polynomially
decaying in|x1|. Furthermore, whenm= n− 1, we have

lim
ε→0

ε1−ncε = 1

2
. (2)

(iv) Asε tends to0, the sequence of rescaled hypersurfaces(ε−1Sε)ε converges, uniformly on compact sets, to a vertical unit
n-catenoid.

Whenm = n− 1, this result yields minimal hypersurfaces which constitute the natural generalization of Scherk’s second
surfaces in higher-dimensional Euclidean spaces. More precisely, whenm = n− 1, the above result provides a description of
part ofSn, the moduli space ofn-dimensional Scherk’s hypersurfaces inR

n+1, showing that this moduli space is locally a
one-dimensional fibration over the moduli space of flat tori inR

n−1. Though we have not been able to prove it, we expect this
fibration to extend, as it does whenn= 2, to allcε ∈ (0,+∞).

The above result, whenm� n− 2, yields hypersurfaces which have to be understood as belonging to the boundary of the
moduli spaceSn, in the same way that any productR

n−m−1×T m, form� n−2 corresponds to a point in the compactification
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of the moduli space of flat tori inRn−1. We expect that the moduli spaceSn can be compactified and that the family of
hypersurfaces described in the above result constitutes a collar neighborhood of the boundary ofSn. In other words, Theorem 1
provides a local description ofSn, near its boundary.

To conclude, let us briefly describe the strategy of the proof of the result. It should be clear from (ii) to (iv) that, for smallε,
Scherk’s second surfaces can be understood as a desingularization of two copies ofR× T 1× {0} in R× T 1×R. Keeping this
observation in mind, our strategy will be to show that a similar desingularization is possible for two copies ofR

n−m×T m×{0}
in R

n−m × T m ×R. The proof of this result is very much in the spirit of [2,7] or [8], however, some aspects are simpler in the
present paper thanks to the special geometry of our problem.

Our work has been strongly influenced by the recent work of M. Traizet [12] and the work of N. Kapouleas [4,5] in their
construction of minimal embedded surfaces inR

3. Indeed, on the one hand, N. Kapouleas has used Scherk’s second surfaces
to desingularize finitely many catenoids or planes having a common axis of revolution and he has produced embedded minimal
surfaces with finitely many ends and very high genus. On the other hand, M. Traizet has used finitely many catenoids to
desingularized parallel planes and he has produced minimal surfaces with finitely many ends and genus larger than 2. There is
a formal link between these two constructions since, in some vague sense, the surfaces constructed by N. Kapouleas on the one
hand and the surfaces constructed by M. Traizet, for a genus large enough, on the other hand, should belong to the same moduli
space. It was therefore tempting to try to produce Scherk’s second surfaces using some desingularization procedure.

2. Definitions and notations

In this brief section we record some notations and definitions which will be used throughout the paper.

Eigenfunctions of+Tm : Givenm� 1 andT m ∈ T m, we will denote byEi , i ∈N, the eigenfunctions of the Laplacian onT m

with corresponding eigenvaluesµi , that is+TmEi = −µiEi , with µi � µi+1. We will assume that these eigenfunctions are
counted with multiplicity and are normalized so that∫

T m

E2
i dx = 1.

Though the spectral data of+Tm do depend onT m, we will not write this dependence in the notation.

Functions onT m which are invariant under the action of some group:We will be interested in functions onT m and
eigenfunctions of+Tm which have some special symmetry. Namely, the set of functions and eigenfunctions which are invariant
under the action of the following subgroup ofO(m,R)

D(m) := {
D := diag(η1, . . . , ηm)

∣∣ η. =±1
}
.

We defineI(m)⊂N to be the set of indicesi corresponding to eigenfunctionsEi which are invariant under the action ofD(m),
that is

I(m) := {
i � 0

∣∣Ei =Ei ◦D, for all D ∈D(m)
}
. (3)

Eigenfunctions of+Sn−1: For all n � 2, we will denote byej , j ∈ N, the eigenfunctions of the Laplacian onSn−1 with
corresponding eigenvaluesλj , that is+Sn−1ej =−λj ej , with λj � λj+1. We will assume that these eigenfunctions are counted
with multiplicity and are normalized so that∫

Sn−1

e2j dθ = 1.

Functions onRn or on Sn which are invariant under the action of some group:Given 1� m � n− 1, we can decompose
R
n =R

n−m ×R
m. We will be interested in functions onRn and eigenfunctions of+Sn−1 which have some special symmetry.

Namely, functions which are invariant under the action of the following subgroup ofO(n,R)

H(n,m) :=O(n−m,R)⊗D(m).

It will be convenient to defineJ(n,m) to be the set of indicesj ∈ N corresponding to eigenfunctionsej which are invariant
under the action ofH(n,m), that is

J(n,m) := {
j � 0

∣∣ ej = ej ◦R, for all R ∈H(n,m)
}
.
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It will be important to observe that 1,2, . . . , n do not belong toJ(n,m) since the eigenfunctions corresponding to the eigenvalues
λ1 = · · · = λn are not invariant under the action of−In ∈H(n,m).

For all k ∈ N and all α ∈ (0,1), we defineCk,α(Sn−1,H(n,m)) to be the subset of functions ofCk,α(Sn−1) whose
eigenfunction decomposition only involves indices belonging toJ(n,m). In other words,g ∈ Ck,α(Sn−1,H(n,m)) if and only
if g ∈ Ck,α(Sn−1) and

g =
∑
j∈J

gj ej .

Observe that, by definition, any function ofCk,α(Sn−1,H(n,m)) is orthogonal toe1, . . . , en in theL2 sense, onSn−1.

Notations: Given 1�m� n− 1, we will adopt the following notations:

x or (x1, x2) ∈R
m ×R

m ∼R
n−m,

will denote a point inRn and

(x, z) ∈R
n ×R∼R

n+1,

will denote a point inRn+1. Finally, θ will denote a point inSn−1.

3. Minimal hypersurfaces close to a truncated n-catenoid

This section is mainly adapted from [2], we recall some of the technical results of [2] which are needed in this paper and
adapt them to our situation.

3.1. Then-catenoid

Assume thatn � 3 is fixed. We recall some well known fact concerning the unitn-catenoidC1 which is a minimal
hypersurface of revolution inRn+1, further details are available in [2]. By definition,C1 is the minimal hypersurface of
revolution parameterized by

X0 : (s, θ) ∈R× Sn−1 → (
ϕ(s)θ,ψ(s)

) ∈R
n+1, (4)

whereϕ is the unique, smooth, non-constant solution of

(∂sϕ)
2+ ϕ4−2n = ϕ2 with ϕ(0)= 1,

and where the functionψ is the unique solution of

∂sψ = ϕ2−n with ψ(0)= 0.

As already mentioned in the introduction, it might be interesting to observe thatϕ is explicitely given by the identity

ϕn−1(s)= cosh
(
(n− 1)s

)
.

Using this, it is easy to check that the functionψ converges ass tends to±∞. We set

c∞ := lim
s→+∞ψ.

The fact thatψ converges at both±∞ implies that the hypersurfaceC1 has two hyperplanar ends and is in fact contained
between the two asymptotic hyperplanes defined byz = ±c∞. In addition, the upper end (respectively lower end) of the unit
n-catenoid can be parameterized as a graph over thez= 0 hyperplane for some functionu (respectively−u). It is easy to check
that the functionu has the following expansion asr := |x| tends to∞:

u= c∞ − 1

n− 2
r2−n +O

(
r4−3n). (5)
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3.2. The mean curvature operator

Let us assume that the orientation ofC1 is chosen so that the unit normal vector field is given by

N0 := 1

ϕ
(∂sψθ,−∂sϕ). (6)

All surfaces close enough toC1 can be parameterized (at least locally) as normal graphs overC1, namely as the image of

Xw :=X0+wϕ
2−n

2 N0,

for some small functionw. The following technical result is borrowed from [2]. It just states that the mean curvature of the
hypersurface parameterized byXw has some nice expansion in terms ofw. Observe that, in order to defineXw , we have used
wϕ(2−n)/2N0 instead of the usualwN0, there is no loss of generality in doing so and this choice will simplify the notations in
the forthcoming result which describes the structure of the nonlinear partial differential equationw has to satisfy in order for
the hypersurface parameterized byXw to be minimal.

Proposition 1 [2]. The hypersurface parameterized byXw is minimal if and only if the functionw is a solution of the nonlinear
elliptic partial differential equation given by

Lw= ϕ 2−n
2 Q2

(
ϕ− n2w

)+ ϕ n2Q3
(
ϕ− n2w

)
, (7)

where

L := ∂2
s ++Sn−1 −

(
n− 2

2

)2
+ n(3n− 2)

4
ϕ2−2n,

whereξ→Q2(ξ) is a nonlinear second-order differential operator which is homogeneous of degree2 and whereξ→Q3(ξ)

is a nonlinear second-order differential operator which satisfies

Q3(0)= 0, DξQ3(0)= 0 and D2
ξQ3(0)= 0.

Furthermore, the coefficients ofQ2 on the one hand and the coefficients in the Taylor expansion ofQ3 with respect to theξ ,
computed at anyξ in some fixed neighborhood of0 in C2,α(R× Sn−1) on the other hand are bounded functions ofs and so
are the derivatives of any order of these functions.

The operatorL is clearly equivariant with respect to any action of the form

R× Sn−1 � (s, θ)→ (−s,Rθ) ∈R× Sn−1,

whenR ∈ H(n,m). Since in addition the mean curvature is invariant by isometries, we conclude that the nonlinear operator
which appears on the right-hand side of (7) also enjoys this equivariance property.

It might be useful to rephrase the properties of the nonlinear operatorsQ2 andQ3 into a slightly weaker form. It follows from
the properties ofQ2 andQ3 that there exist constantsc, c0> 0 such that, for alls ∈R and allξ1, ξ2 ∈ C2,α([s, s+1]× Sn−1),
we have∥∥Q2(ξ1)−Q2(ξ2)

∥∥
C0,α � c

(
sup
i=1,2

‖ξi‖C2,α

)
‖ξ2− ξ1‖C2,α , (8)

and, provided‖ξi‖C2,α � c0, we also have∥∥Q3(ξ1)−Q3(ξ2)
∥∥
C0,α � c

(
sup
i=1,2

‖ξi‖C2,α

)2‖ξ2− ξ1‖C2,α , (9)

where all norms are computed on[s, s + 1] × Sn−1. SinceQ2 is homogeneous of degree 2 no assumptions onξi are required
in order to get the estimate involvingQ2, however they are required for the estimates involvingQ3.

Let us warn the reader that the operatorL which appears in this result is not the Jacobi operator which is defined to be the
linearized mean curvature operator when nearby hypersurfaces are normal graphs over then-catenoid, that is when they are
parameterized by

X̃w :=X0+wN0.

Nevertheless,L is conjugate to the Jacobi operator.
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3.3. Linear analysis

Projecting the operatorL over the eigenspace spanned byej , for all j , we are left with the study of the sequence of operators

Lj := ∂2
s − λj −

(
n− 2

2

)2
+ n(3n− 2)

4
ϕ2−2n, j ∈N.

The indicial roots ofL at both+∞ or−∞ are given by±γj where

γj :=
√(

n− 2

2

)2
+ λj . (10)

Let us recall that these indicial roots appear in the study of the asymptotic behavior of the solutions of the homogeneous
problemLjw = 0, at±∞. More precisely, for eachj ∈ N, one can findw±

j
, two independent solutions ofLjw = 0 such

thatw+
j
(s) ∼ eγj s andw−

j
(s) ∼ e−γj s at+∞. Observe that the functionss→ w±

j
(−s) are solutions ofLjw = 0 such that

w+
j
(s)∼ e−γj s andw−

j
(s) ∼ eγj s at−∞. These indicial roots will play a crucial rôle in the study of the mapping properties

of L.
To keep the notations short, we define the second-order elliptic operator

+0 := ∂2
s ++Sn−1 −

(
n− 2

2

)2
,

which acts on functions defined onR× Sn−1. In particular

L=+0+ n(3n− 2)

4
ϕ2−2n.

The indicial roots of+0 at both+∞ or−∞ are also given by±γj .
It is straightforward to check that+0 satisfies the maximum principle and also that the operatorL does not satisfy the

maximum principle because of the presence of the extra potential. Indeed, one can check that the functions

<0,− := ∂s
(
ϕ
n−2

2
)
, <0,+ := ϕ n−4

2 (ϕ∂sψ −ψ∂sϕ), (11)

and, forj = 1, . . . , n, the functions

<j,− := ϕ n−4
2 (ϕ∂sϕ +ψ∂sψ)ej , <j,+ := ϕ− n2 ej , (12)

are Jacobi fields, i.e. are solutions of the homogeneous problemLw = 0, and that the<j,+ are bounded. Nevertheless, the
following result, borrowed from [2], asserts that the operatorL still satisfies the maximum principle if it is restricted to the
higher eigenspaces of the cross-sectional Laplacian+Sn−1:

Proposition 2. Assume thatδ < (n+ 2)/2 is fixed and thatw is a solution of

Lw= 0,

which is bounded byϕδ on (s1, s2)× Sn−1 and which satisfiesw = 0 on {si} × Sn−1, if any of thesi is finite. Further assume
that, for eachs ∈ (s1, s2), the functionw(s, ·) is orthogonal toe0, . . . , en in theL2 sense onSn−1. Thenw ≡ 0.

In view of the previous result, it is natural to consider the operatorL acting on functions bounded by a constant times a power
of the functionϕ. As in [7,2], we define a family of weighted Hölder spaces by:

Definition 1. For all δ ∈R, the spaceCk,αδ (R× Sn−1) is defined to be the space of functionsw ∈ Ck,αloc (R× Sn−1) for which
the following norm is finite

‖w‖Ck,αδ := sup
s∈R

(
ϕ−δ |w|Ck,α ([s,s+1]×Sn−1)

)
.

Here| |Ck,α([s,s+1]×Sn−1) denotes the Hölder norm in[s, s + 1] × Sn−1.

Moreover, for anyS > 0, the spaceCk,αδ ([−S,S] × Sn−1) is defined to be the space of restriction of functions of

Ck,αδ (R× Sn−1) to [−S,S] × Sn−1. This space is naturally endowed with the induced norm.
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Though this will not be necessary for the remaining of the analysis, we quote here some well known properties of the
operator

L :C2,α
δ

(
R× Sn−1)→ C0,α

δ

(
R× Sn−1)

.

To keep track of the weighted space over whichL is defined, we will denote the above operator byLδ . The most important fact
is that the mapping properties ofLδ crucially depend on the choice of the weight parameterδ. Indeed, it follows from general
arguments thatLδ has close range and is even Fredholm if and only if the weightδ is not equal to any of the indicial roots±γj ,
j ∈ N (a fact which, given the special structure of our operator, can be easily proven be separation of variables). The fact that
the functions given in (12) are Jacobi fields shows thatLδ is not injective whenδ >−n/2 and it can be proven, with the help
of Proposition 2, thatLδ is injective if δ <−n/2. This later fact in turn implies thatLδ is surjective ifδ > n/2 is not equal to
anyγj , j � 0 (this uses the fact that the operatorLδ andL−δ are, in some sense, dual).

As already mentioned in Section 2, we will only be interested in functions which are invariant under the action of some
group. This is the reason why we introduce the:

Definition 2. For all k ∈ N, α ∈ (0,1) andδ ∈ R, the spaceCk,αδ (R× Sn−1, {±I1} ⊗ H(n,m)) is defined to be the space of

functionsw ∈ Ck,αδ (R× Sn−1) which satisfy

∀(s, θ) ∈R× Sn−1, w(s, θ)=w(−s, θ),
and also

∀(s, θ) ∈R× Sn−1, w(s,Rθ)=w(s, θ),
for all R ∈H(n,m). This space is endowed with the induced norm.

Observe that, any functionw ∈ Ck,αδ (R× Sn−1, {±I1} ⊗H(n,m)) can be decomposed as

w(s, θ)=
∑
j∈J

wj (s)ej (θ),

where, for allj , all functionss→wj (s) are even.

Observe that the Jacobi fields<j,±, for j = 1, . . . , n, which are defined in (12), are not invariant with respect to the action
of {±I1} ⊗H(n,m), hence one can show that

L :C2,α
δ

(
R× Sn−1, {±I1} ⊗H(n,m)

)→ C0,α
δ

(
R× Sn−1, {±I1} ⊗H(n,m)

)
,

is injective whenδ < (n− 2)/2 and surjective whenδ > (2− n)/2 is not equal to anyγj , for j � 0. We will not need such

a general statement, since we will be working with functions defined on[−S,S] × Sn−1.
Among the Jacobi fields defined in (11) and (12),

<+,0 = ϕ n−4
2 (ϕ∂sψ −ψ∂sϕ)

is the only one which is invariant with respect to the action of{±I1} ⊗H(n,m). It is easy to see that this Jacobi field vanishes
for finitely many values ofs. Hence we can defines0> 0 to be the largest zero of the function<+,0.

The result we will need reads:

Proposition 3. Assume thatδ ∈ ((2− n)/2, (n− 2)/2) andα ∈ (0,1) are fixed. There exists some constantc > 0 and, for all
S > s0+ 1, there exists an operator

GS :C0,α
δ

([−S,S] × Sn−1, {±I1} ⊗H(n,m)
)→ C2,α

δ

([−S,S] × Sn−1, {±I1} ⊗H(n,m)
)
,

such that, for allf ∈ C0,α
δ ([−S,S] × Sn−1, {±I1} ⊗H(n,m)), the functionw= GS(f ) is a solution of

Lw= f
in (−S,S)× Sn−1 withw = 0 on {±S} × Sn−1. Furthermore,‖w‖C2,α

δ

� c‖f ‖C0,α
δ

.

Proof. Our problem being linear, we can assume without loss of generality that

sup
[−S,S]×Sn−1

(
ϕ−δ |f |)= 1.
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Observe that, it follows from Proposition 2 that, when restricted to the space of functionsw such that, for alls, the function
w(s, ·) is orthogonal toe0, . . . , en in theL2 sense onSn−1, the operatorL is injective over(−S,S) × Sn−1. Also, if s > s0
thenL is injective over(−S,S)× Sn−1 when restricted to functions which are even and only depend ons. As a consequence,
for all S > s0, we are able to solveLv = f , in (−S,S)× Sn−1, with v = 0 on {±S} × Sn−1. In addition, sincef is invariant
under the action of{±I1} ⊗H(n,m), so isv.

We claim that there exists some constantc > 0, independent ofS > s0+ 1 and off , such that

sup
[−S,S]×Sn−1

(
ϕ−δ |w|) � c.

Observe that the result is true whenS > s0+ 1 stays bounded. We argue by contradiction and assume that the result is not true.
In this case, there would exist a sequenceSk > s0+ 1 tending to+∞, a sequence of functionsfk satisfying

sup
[−Sk,Sk]×Sn−1

(
ϕ−δ |fk |

)= 1,

and a sequencevk of solutions ofLvk = fk , in (−Sk,Sk)× Sn−1, with vk = 0 on{±Sk} × Sn−1 such that

Ak := sup
[−Sk,Sk]×Sn−1

(
ϕ−δ|vk |

)→+∞.

Let us denote by(sk, θk) ∈ [0, Sk)× Sn−1, a point where the above supremum is achieved, observe that all the functions we
consider are even in thes variable, thus we can assume that the above supremum is achieved at some point of[0, Sk)× Sn−1.
We claim that the sequenceSk − sk remains bounded away from 0. Indeed, sincevk and(∂2

s ++Sn−1)vk are both bounded
by a constant (independent ofk) timesϕδ(Sk)Ak in [Sk − 1, Sk ] × Sn−1 and sincevk = 0 on {Sk} × Sn−1, we may apply
standard elliptic estimates and conclude that the gradient ofvk is also uniformly bounded by a constant timesϕδ(Sk)Ak in
[Sk − 1

2, Sk ] × Sn−1. As a consequence the above supremum cannot be achieved at a point which is too close toSk . Therefore,
up to some subsequence, we may also assume that the sequenceSk − sk converges toS∗ ∈ (0,+∞]. We now distinguish a few
cases according to be the behavior of the sequencesk , which, up to a subsequence, can be assumed to converge in[0,+∞].

We define the sequence of rescaled functions

ṽk := ϕ
−δ(sk)
Ak

vk(· + sk, ·).

Case1: Assume that the sequencesk converges tos∗ ∈ R. After the extraction of some subsequences, if this is necessary,
we may assume that the sequence1

Ak
vk converges on compact tov some nontrivial solution of

Lv = 0,

in R× Sn−1. Furthermore

sup
R×Sn−1

(
ϕ−δ |v|)= 1. (13)

Moreover, for eachs ∈R, the functionv(s, ·) is orthogonal in theL2 sense toe1, . . . , en onSn−1. But, the result of Proposition 2
together with the fact thatδ ∈ ((2− n)/2, (n− 2)/2) implies thatv only depends ons. Hence,v is a multiple of<0,+ and
cannot be bounded by a constant timesϕδ unlessv ≡ 0. A contradiction with (13).

Case2: Assume that the sequencesk converges to+∞. After the extraction of some subsequences if this is necessary, we
may assume that the sequenceṽk converges tov some nontrivial solution of

+0v = 0,

in (−∞, S∗)× Sn−1, with boundary conditionv = 0, if S∗ is finite. Furthermore

sup
(−∞,S∗)×Sn−1

(
e−δs |v|)= 1. (14)

Independently of the fact thatS∗ is finite or not. This case is easy to rule out using the eigenfunction decomposition ofv

v =
∑
j∈J

vj ej .

Indeed,vj has to be a linear combination of the functions e±γj s (whereγj has been defined in (10)) and is bounded by eδs .
Since we have assumed thatδ ∈ ((2− n)/2, (n− 2)/2), it is easy to see that allvj ≡ 0, contradicting (14).
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We have reached a contradiction in all cases, hence, the proof of the claim is finished. To complete the proof of the
proposition, it suffices to apply Schauder’s estimates in order to get the relevant estimates for all the derivatives.✷

We will also need some properties of the Poisson operator for+0 on [0,∞) × Sn−1. The result we will need is standard
and a proof can be found, for example, in [2]:

Lemma 1. There existsc > 0 such that, for allg ∈ C2,α(Sn−1,H(n,m)), there exists a uniquew ∈ C2,α
(2−n)/2([0,+∞)× Sn−1)

solution of

+0w = 0 in (0,+∞)× Sn−1,

w = g on {0} × Sn−1.
(15)

Furthermore, we have||w||C2,α
(2−n)/2

� c‖g‖C2,α and, for all s > 0, the functionw(s, ·) is invariant with respect to the action of

H(n,m).

The idea behind the proof of this result is that one can use the eigenfunction decomposition ofg to obtain an explicite
solution of (15) together with the estimate. In the remaining of the paper, we will denote byP(g) the solution of (15).

3.4. The nonlinear problem

We fix ρ ∈ [0,1] and, for allε ∈ (0, ρ), we definesε > 0 by the identity

ρ = εϕ(sε) > 0.

Let us notice that, asε tends to 0, we have

sε ∼− logε.

In order to parameterize the unitn-catenoid we use (4) and define the outer unit normalN0 as in (6). Let us define a smooth
function ξε :R→ [−1,1] which satisfiesξε = −1 for s � sε − 1, ξε = 1 for s � 1− sε , ξε = −∂s logϕ for |s| � sε − 2 and
which interpolates smoothly between those functions when|s| ∈ [sε − 2, sε − 1]. We consider the vector field

Nε(s, θ) :=
(√

1− ξ2
ε (s) θ, ξε(s)

)
.

It turns out that this vector field is a perturbation of the unit normalN0, and in fact, we have for allk � 0∣∣∇k(Nε ·N0− 1)
∣∣ � ckε2n−2,

for all |s|� sε − 2.
We look for all minimal hypersurfaces close to the unitn-catenoid which has been rescaled by a factorε. This means that

the hypersurfaces we are looking for can be parameterized by

Xw := εX0+wϕ
2−n

2 Nε,

for (s, θ) ∈ [−sε, sε] × Sn−1 and for some small functionw. It follows from (7) that such an hypersurface is minimal if and
only if w satisfies a nonlinear equation of the form

Lw= �Qε(w), (16)

where

�Qε(w) := ε2n−2Lεw+ εϕ 2−n
2 �Q2,ε

(
ϕ− n2 ε−1w

)+ εϕ n2 �Q3,ε
(
ϕ− n2 ε−1w

)
.

Here�Q2,ε and�Q3,ε enjoy properties which are similar to those enjoyed byQ2 andQ3, namely (8) and (9) still hold uniformly
in ε ∈ (0, ρ). The linear operatorε2n−2Lε represents the difference between the linearized mean curvature operator for
hypersurfaces parameterized using the vector fieldN0 and those parameterized using the vector fieldNε . The operatorLε has
coefficients which are supported in([−sε,2− sε] ∪ [sε − 2, sε])× Sn−1 and which are uniformly bounded inC0,α topology.
The details of the derivation of this formula can be found, for example, in [8] or in [2].
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3.4.1. Solutions of (16) which are parameterized by their boundary data
We fix δ ∈ ((2− n)/2, (n− 2)/2), α ∈ (0,1) andκ > 0. Givenh ∈ C2,α(Sn−1,H(n,m)) whose norm satisfies

‖h‖C2,α � κεn−1,

we set

g := ϕ n−2
2 (sε)h,

and we define

w̃h :=Psε (g)(sε − ·, ·)+Psε (g)(· + sε, ·) ∈ C2,α([−sε, sε] × Sn−1, {±I1} ⊗H(n,m)
)
. (17)

We know from Lemma 15 that

‖w̃h‖C2,α
(n−2)/2

� cε
n−2

2 ‖g‖C2,α � c‖h‖C2,α . (18)

Now, if we writew = w̃h + v, we wish to find a functionv ∈ C2,α
δ ([−sε, sε] × Sn−1, {±I1} ⊗H(n,m)) such that

Lv = �Qε(w̃h + v)−Lw̃h in (−sε, sε)× Sn−1,

v = 0 on{±sε} × Sn−1.
(19)

To obtain a solution of this equation, it is enough to find a fixed point of the mapping

Nε(v) := Gsε
(�Qε(w̃h + v)−Lw̃h

)
,

whereGsε is the operator defined in Proposition 7. Using (18) together with Proposition 7 and the properties of�Qε , we can
estimate:∥∥ε2n−2Lεw̃h −Lw̃h

∥∥
C0,α
δ

� c
(
1+ ε 3n−2

2 +δ)‖h‖C2,α ,∥∥εϕ 2−n
2 �Q2,ε

(
ϕ− n2 ε−1w̃h

)∥∥
C0,α
δ

� c
(
ε−1+ ε n2+δ)‖h‖2

C2,α

and finally, there existsε0> 0 (which depends onκ) such that for allε ∈ (0, ε0) we have∥∥εϕ n2 �Q3,ε
(
ϕ− n2 ε−1w̃h

)∥∥
C0,α
δ

� c
(
ε−2+ ε 2−n

2 +δ)‖h‖3
C2,α .

In the above estimates, the constantc > 0 does not depend onε, nor onκ . Observe that in order to obtain the last estimate,
we have implicitly used that fact that‖h‖C2,α is small enough so that we can apply (9), or rather its counterpart for�Q3,ε . This
explains why the restrictionε ∈ (0, ε0) is needed in order to obtain the last estimate.

It is then a simple exercise to show that for any fixedκ > 0, there existc > 0 andε0> 0, such that, for allε ∈ (0, ε0), the
nonlinear mappingNε is a contraction in the ball of radius

R(ε,h) := c‖h‖C2,α ,

in C2,α
δ ([−sε, sε] × Sn−1, {±I1} ⊗ H(n,m)) into itself, and henceNε has a unique fixed pointvh in this ball. Therefore, the

functionwh := w̃h+vh is a solution of (16) whose boundary data is, up to a constant function, given byh. We can even choose
the constantc to be independent ofκ , but this will not be useful.

3.4.2. Family of minimal hypersurfaces close ton-catenoid
We summarize the results we have obtained so far and translate them in the geometric framework. Let us fix

δ ∈
(

2− n
2
,
n− 2

2

)
, α ∈ (0,1) and κ > 0.

There existsc > 0 andε0> 0 such that for allε ∈ (0, ε0) and for allh ∈ C2,α(Sn−1,H(n,m)) satisfying

‖h‖2,α � κεn−1,

there exists a minimal hypersurface, which will be denoted byCε(h)⊂R
n+1, and which is parameterized by

Xh = εX0+whϕ
2−n

2 Nε in [−sε, sε] × Sn−1,

for some functionwh satisfying

‖wh‖C2,α
(n−2)/2

� c‖h‖C2,α .
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This hypersurface is symmetric with respect to the hyperplanez = 0 and further inherits all the symmetries induces
by the symmetries used to define the function spaces in Definition 2, hence, it is invariant with respect to the action of
O(n−m,R)⊗Dm ⊗ {±I1} ⊂O(n+ 1,R). Furthermore, if we perform the change of variable

r := εϕ(s),
we see that near its upper boundary, this hypersurface is the graph of the function

x ∈ Bnρ
∖
Bnρ/2→ c∞ε−Wh(x)− Vε,h(x),

over thez = 0 hyperplane. HereWh denotes the (unique) harmonic extension of the boundary datah in Bnρ and the function
Vε,h satisfies

‖Vε,h‖C2,α � c0εn−1

for some constantc0 which does not depend onκ nor onε. Here the norms are taken overBnρ −Bnρ/2. This last claim, which is
a key point of our analysis, follows from (5). Indeed, whenh= 0,Cε(0) is just a rescaledn-catenoid and, using (5) we see that
its upper end is the graph of the function

x→ c∞ε+O
(
εn−1r2−n

)
.

We have also used the fact that the solution of (19) we have constructed is equal tow̃h + vh wherew̃, defined in (17), is linear
in h and wherevh can be estimated by a constant (independent ofε andκ) times‖h‖C2,α ϕδ . Essentially the constantc0 arises
from the termO(εn−1r2−n) in the above expansion, the contributions ofvh and the perturbation caused by the change of
variable being neglectable whenε is chosen small enough. Indeed, let us denote byW̃h the function defined inBnρ −Bnρ/2 by

W̃h
(
εϕ(s)θ

)= ϕ(sε) n−2
2 ϕ(s)

2−n
2 w̃h(s, θ).

One can check that∥∥W̃h −Wh∥∥C2,α � cεn−2‖h‖C2,α ,

where the norm on the left is computed inBnρ −Bnρ/2.
Observe that, reducingε0 if this is necessary, we can assume that the mappingh→ Vε,h is continuous and in fact smooth.

With little work we also find that

‖Vε,h2 − Vε,h1‖C2,α � cε
n−2

2 −δ‖h2− h1‖C2,α , (20)

for some constantc > 0 which does not depend onε. The norm on the left-hand side of this inequality is understood to be the
norm onBnρ − Bnρ/2. The constantc in (20) can be chosen to be independent ofκ but this will be irrelevant for the remaining
of the analysis.

4. Minimal hypersurfaces which are graphs over a hyperplane

We are now concerned with both the mean curvature and the linearized mean curvature operator for hypersurfaces which are
graphs over thez= 0 hyperplane, inRn−m × T m ×R.

4.1. The mean curvature operator for graphs

We assume thatn� 3 and 1�m� n−1 are fixed. Further assume thatT m ∈ T m is fixed. Then, for any functionu, defined
in R

n−m × T m, which is at least of classC2, we can define a hypersurface which is the graph ofu

R
n−m × T m � (x1, x2) → (

x1, x2, u(x1, x2)
) ∈R

n−m × T m ×R.

Recall that the mean curvature of this hypersurface, with downward pointing unit normal, is then given by

Hu := −1

n
div

( ∇u
(1+ |∇u|2)1/2

)
. (21)
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4.2. Linear analysis

We define the function spaces which are adapted to the analysis of the Laplacian inR
n−m × T m. Our main concern will be

the asymptotic behavior of the functions as|x1| tends to+∞.

Definition 3. For all k ∈ N, α ∈ (0,1) and ν ∈ R, the spaceCk,αν (Rn−m × T m) is defined to be the space of functions
w ∈ Ck,αloc (R

n−m × T m) for which the following norm is finite:

‖w‖Ck,αν := |w|Ck,α (Bn−m1 ×T m) + sup
r>1/2

r−ν
∣∣w(r ·)∣∣Ck,α((Bn−m2 −Bn−m1 )×r−1T m)

.

Here| |Ck,α(Ω) denotes the Hölder norm inΩ .

To get a better understanding of these weighted spaces, let us observe that, ifTm =R
m/AZ

m, we can identify any function
defined onRn−m × T m with a function defined onRn−m ×R

m which has{0} ⊗AZ
m as its group of periods. In which case

functions which belong toCk,αν (Rn−m × T m) are identified with functions defined onRn−m × R
m, which are bounded by

a constant times(1+ |x1|)ν , whose first derivative are bounded by a constant times(1+ |x1|)ν−1 (if k � 1), and so on.
As in the previous section, we will only work with functions having some special symmetry. To this aim, we introduce the:

Definition 4. For all k ∈N, α ∈ (0,1) andν ∈R, the spaceCk,αν (Rn−m × T m,H(n,m)) is defined to be the space of functions
w ∈ Ck,αν (Rn−m × T m) which are invariant under the action ofH(n,m).

Observe that, because of the invariance of our function space with respect to the action ofH(n,m), any function
w ∈ Ck,αν (Rn−m × T m,H(n,m)) can be decomposed as

w(x1, x2)=
∑
i∈I

wi(r1)Ei(x2),

whereI(m)⊂N has been defined in (3) and where

r1 := |x1|.
To begin with let us treat the easy case where 1�m� n− 3. We have the:

Proposition 4. Assume that1 �m� n− 3. Givenν ∈ (2+m− n,0) andα ∈ (0,1). There exist some constantc > 0 and an
operator

G :C0,α
ν−2

(
R
n−m × T m,H(n,m))→ C2,α

ν

(
R
n−m × T m,H(n,m)),

such that, for allf ∈ C0,α
ν−2(R

n−m × T m,H(n,m)), the functionw=G(f ) is a solution of

+w= f,
in R

n−m × T m. Furthermore,‖w‖C2,α
ν

� c‖f ‖C0,α
ν−2

.

Proof. The proof of the result is simplified by the fact that

+|x1|ν =−ν(n−m− 2− ν)|x1|ν−2.

Hence, the functionw(x1, x2) := |x1|ν , which is defined in(Rn−m − {0})× T m can be used as a barrier function to prove, for
anyf ∈ C0,α

ν−2(R
n−m × T m,H(n,m)), the existence of a solution of

+w= f,
in R

n−m × T m. Furthermore, it also yields the estimate∣∣w(x1, x2)
∣∣ � c‖f ‖C0,α

ν−2
|x1|ν ,

for some constant which does not depend onf . The maximum principle then implies that∣∣w(x1, x2)
∣∣ � c‖f ‖C0,α

ν−2

(
1+ |x1|

)ν
.
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Starting from this, Schauder’s estimates give

‖w‖C2,α
ν

� c‖f ‖C0,α
ν−2
.

The details are left to the reader.✷
Whenm= n− 2 orm= n− 1, the previous result has to be modified since 2+m− n� 0 in these two cases. To this aim,

we chooseχ a cutoff function defined onR such thatχ ≡ 1 for t � 2 andχ ≡ 0 whent � 1. Whenm= n− 2, we define the
space

D2 := Span
{
χ(r1) logr1

}⊂ C∞
(
R

2),
and whenm= n− 1, we set

D1 := Span
{
χ(r1)r1

}⊂ C∞(R).
This time we have the:

Proposition 5. Assume thatm= n− 2 or m= n− 1. Givenν ∈ (−∞,0) andα ∈ (0,1). There exist some constantc > 0 and
an operator

G :C0,α
ν−2

(
R
n−m × T m,H(n,m))→ C2,α

ν

(
R
n−m × T m,H(n,m))⊕Dn−m,

such that, for allf ∈ C0,α
ν−2(R

n−m × T m,H(n,m)), the functionw=G(f ) is a solution of

+w= f,
in R

n−m × T m. Furthermore,‖w‖C2,α
ν ⊕Dn−m � c ‖f ‖C0,α

ν−2
.

Proof. We decompose

f = f0+
∑

i∈I−{0}
fiEi,

and adopt the notationf = f0+ f ′. We look for a solutionw which will also be decomposed as

w=w0+
∑

i∈I−{0}
wiEi,

and again we setw = w0 + w′. For notational convenience,f ′, v′,w′, . . . will denote functions whose eigenfunction
decomposition only involves indicesi ∈ I(m)− {0}.

Observe that, because of the invariance of our problem with respect to the action ofH(n,m), the Laplacian inRn−m × T m
reduces to the study of the operator

L := ∂2
r1
+ n−m− 1

r1
∂r1 ++Tm,

where we have setr1 := |x1|.
Step 1: We would like to prove the existence ofw′ and also obtain the relevant estimate. Our problem being linear, we may

always assume that

sup
Rn−m×T m

(1+ r1)2−ν |f ′| = 1.

Obviously+, or L, is injective over anyBn−mR × T m. As a consequence, for anyR > 1 we are able to solve+v′ = f ′, in

Bn−m
R

× T m, with v′ = 0 on∂Bn−m
R

× T m.
We claim that, there exists a constantc > 0, independent ofR > 1 and off ′, such that

sup
Bn−mR ×T m

(1+ r1)−ν |v′|� c.

Observe that the result is certainly true if we assume thatR remains bounded. We argue by contradiction and assume that the
claim is not true. In this case, there would exist a sequenceRk > 1 tending to+∞, a sequence of functionsf ′

k
satisfying

sup
Bn−mRk

×T m
(1+ r1)2−ν

∣∣f ′k∣∣= 1,
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and a sequencev′
k

of solutions ofLv′
k
= f ′

k
, in Bn−m

Rk
× T m, with v′

k
= 0 on∂Bn−m

Rk
× T m, such that

Ak := sup
Bn−mRk

×T m
(1+ r1)−ν

∣∣v′k∣∣→+∞.

Let us denote by(x1,k, x2,k) ∈ Bn−mRk
× T m, a point where the above supremum is achieved. We now distinguish a few cases

according to the behavior of the sequencer1,k := |x1,k | which, up to a subsequence, can always be assumed to converge in
[0,+∞]. Observe that, as in the proof of Proposition 7, the sequenceRk/r1,k remains bounded away from 1 and can be
assumed to converge in(1,∞].

We define the sequence of rescaled functions

ṽ′k :=
(1+ r1,k)−ν

Ak
v′k(r1,k ·).

Case1: Assume that the sequencer1,i converges tor1,G ∈ [0,∞). After the extraction of some subsequences, if this is

necessary, we may assume that the sequence1
Ak
v′k converges to some nontrivial solution of

Lv′ = 0, (22)

in R
n−m × T m. Furthermore,

sup
Rn−m×T m

(1+ r1)−ν |v′| = 1. (23)

But, ν being negative, the maximum principle implies thatv is identically equal to 0. This clearly contradicts (23).

Case2: Assume that the sequencer1,k converges to+∞. After the extraction of some subsequences, if this is necessary, we
may assume that the sequenceṽ′

k
converges to some nontrivial solution of

∂2
r1
v′ + n−m− 1

r1
∂r1v

′ ++Rmv
′ = 0,

in (Rn−m−{0})×R
m or in (Bn−m

R
−{0})×R

m in which case we also havev′ = 0 on∂Bn−m
R

×R
m. In addition, the function

v′ does not depend onx2. This last claim follows from the fact that the functionsx2 → ṽ′
k
(x1, x2) have a group of period given

by r−1
1,k AZ

m, if T m =R
m/AZ

m. In addition,|∇x2 ṽ
′
k | is bounded by a constant only depending onx1. Passing to the limit, we

see thatv′ does not depend onx2.
In either case,x1→ v′(x1) solves

∂2
r1
v′ + n−m− 1

r1
∂r1v

′ = 0,

and satisfies

sup
(Rn−m−{0})×Rm

r−ν1 |v′| = 1 or sup
(Bn−mR −{0})×Rm

r−ν1 |v′| = 1. (24)

It should be clear thatv′ ≡ 0, contradicting (24).
Since we have obtained a contradiction in both cases, this finishes the proof of the claim.

Step 2: We now turn our attention to the existence ofw0 as well as the relevant estimate. Our problem reduces to solve one
ordinary differential equation since

∂2
r1
w0+ n−m− 1

r1
∂r1w0= f0.

It is easy so check that, whenm= n− 1 the functionw0 is given by the formula

w0= r1
+∞∫
0

f0 dt +
∞∫
r1

∞∫
ζ

f0 dt dζ,

while, whenm= n− 2, the functionw0 is given by

w0= logr1

+∞∫
0

tf0 dt +
∞∫
r1

ζ−1
∞∫
ζ

tf0 dt dζ.
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Granted the above formula, one can directly check that we can decompose:w0 := a0χ + w̃0 whenm = n − 1 andw0 :=
a0χ logr1+ w̃0 whenm= n− 2, with

|a0| + sup
(0,∞)

(1+ r1)−ν |w̃0|� c sup
(0,∞)

(1+ r1)2−ν |f0|.

To complete the proof of the proposition, it suffices to sum the two results we have just obtained and apply Schauder’s
estimates in order to get the relevant estimates for all the derivatives.✷

If ρ > 0 is fixed small enough, we define the spaceCk,αν (Rn−m×T m−Bnρ ,H(n,m)) as the space of restrictions of functions

of C2,α
µ (Rn−m × T m,H(n,m)) to R

n−m × T m −Bnρ . This space is naturally endowed with the induced norm.
In order to simplify the notations, we set

E2,α
ν := C2,α

ν

(
R
n−m × T m −Bnρ,H(n,m)

)
when 1�m� n− 3 and

E2,α
ν := C2,α

ν

(
R
n−m × T m −Bnρ,H(n,m)

)⊕Dn−m
whenm= n− 2 orm= n− 1. We also define

F0,α
ν−2 := C0,α

ν−2

(
R
n−m × T m −Bnρ ,H(n,m)

)
when 1�m� n− 1. Using the previous result together with a standard perturbation argument, we obtain the:

Proposition 6. Assume thatν ∈ (2+m−n,0) when1 �m� n−3, ν ∈ (−∞,0) whenm= n−2 or m= n−1, andα ∈ (0,1)
are fixed. There existρ0> 0, c > 0 and, for allρ ∈ (0, ρ0), there exists an operator

Gρ :F0,α
ν−2→ E2,α

ν ,

such that, for allf ∈F0,α
ν−2, the functionw =Gρ(f ) is a solution of

+w= f,
in R

n−m × T m −Bnρ , withw = 0 on ∂Bnρ . Furthermore,‖w‖E2,α
ν

� c ‖f ‖F0,α
ν−2

.

4.3. The nonlinear problem

Using (21), one can check that the hypersurface parameterized by

R
n−m × T m −Bρ � (x1, x2)→

(
x1, x2, u(x1, x2)

) ∈R
n−m × T m ×R,

has mean curvature 0 if and only if the functionu is a solution of

+u−Q(u)= 0, (25)

where we have set

Q(u) := − 1

1+ |∇u|2∇
2u(∇u,∇u).

4.3.1. Solutions of (25) which are parameterized by their boundary data
Let us assume that

ν ∈ (2+m− n,0) when 1�m� n− 3, or ν ∈ (−2,0) whenm= n− 2, or ν ∈ (−∞,0) whenm= n− 1,

is fixed. The new restriction onν whenm= n− 2 is needed to ensure that the nonlinear operator

u→+u−Q(u),
mapsE2,α

ν into F0,α
ν−2. Thanks to the result of Proposition 6, it is possible to apply the implicit function theorem to solve (25)

with w on ∂Bnρ equal to some given functionh ∈ C2,α(Sn−1,H(n,m)) which satisfies‖h‖2,α � c0 for some fixed constant
c0> 0. The solution of (25) provided by the implicit function theorem will be denoted bywh. By construction, the graph ofwh
is a minimal hypersurface whose boundary is parameterized by the boundary datah.
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4.3.2. Family of minimal hypersurfaces which are close toR
n−m × T m

Let us summarize what we have proved. We fixν according to the above choice,α ∈ (0,1) andκ > 0. There existsε0> 0
and for allε ∈ (0, ε0), for all h ∈ C2,α(Sn−1,H(n,m)) satisfying

‖h‖2,α � κεn−1,

we have been able to find a minimal hypersurface, which is a graph overR
n−m× T m−Bnρ . This hypersurface, once translated

by ε c∞ along thez-axis, will be denoted byMε(h).
Moreover, there exists a constantch such thatMε(h) is asymptotic to{

(x1, x2, z) ∈R
n−m × T m ×R

∣∣ z= chζm(x1)+ c∞ε
}
,

whereζn−1(y) := |y|, ζn−2(y) := log |y| andζm(y) := 0, when 1�m� n− 3.
Also observe that the hypersurfaceMε(h) inherits all the symmetries induces by the symmetries used to define the function

spaces in Definition 4, hence it is invariant with respect to the action ofO(n−m,R)⊗Dm ⊗ {±I1} ⊂O(n+ 1,R).
Furthermore, near its boundary this hypersurface can be parameterized as the graph of

Bn2ρ −Bnρ � x→ c∞ε− Ŵh(x)− V̂h(x),

whereŴh is the unique (bounded) harmonic extension of the boundary datah in R
n−m × T m − Bnρ which belongs toE2,α

ν .

Here the function̂Vh satisfies∥∥V̂h∥∥C2,α � c0ε2n−2,

for some constantc0 which depends onκ but does not depend onε. The norm is taken overBn2ρ −Bnρ .

Reducingε0 if this is necessary, we can assume that the mappingh→ V̂h is continuous and in fact smooth. It follows from
standard properties of the solutions obtained through the application of the implicit function theorem that∥∥V̂h2 − V̂h1

∥∥
C2,α � cεn−1‖h2− h1‖C2,α , (26)

for some constantc > 0 which does not depend onε, but depends onκ . Here the norms are understood onBn2ρ −Bnρ .

5. The gluing procedure

We fix κ > 0 large enough and apply the results of the previous sections. There existsε0 > 0 and for all g,h,∈
C2,α(Sn−1,H(n,m)) satisfying‖g‖2,α � κεn−1 and‖h‖2,α � κεn−1, we define the hypersurfaceMε(g) and the hypersurface
Cε(h). Our aim will be now to findg andh in such a way that(

Mε(g)∪Cε(h)
)∩R

n−m × T m × (0,+∞),
is aC1 hypersurface. Then applying a reflection with respect to the hyperplanez= 0, we will obtain a completeC1 hypersurface
in R

n−m × T m ×R. Finally, it will remain to apply standard regularity theory to show that this hypersurface is in factC∞.
By construction, the two hypersurfacesMε(g) andCε(h) are graphs over thez= 0 hyperplane near their common boundary.

That is,Mε(h) is the graph of the function

x ∈ Bn2ρ \Bnρ→ c∞ε− Ŵg(x)− V̂g(x),
andCε(g) is the graph of the function

x ∈ Bnρ \Bnρ/2→ c∞ε−Wh(x)− Vε,h(x).
Hence, to produce aC1 hypersurface, it remains to solve the equations

Ŵg + V̂g =Wh + Vε,h, ∂r Ŵg + ∂r V̂ε,g = ∂rWh + ∂rVε,h, (27)

where all functions are evaluated on∂Bnρ . The first identity is obtained by asking that the Dirichlet data of the two graphs

coincide on∂Bnρ and already ensures that the hypersurface isC0, while the second is obtained by asking that the Neumann data

of the two graphs coincide on∂Bnρ and ensures that the hypersurface isC1.
Let us recall that the mapping

U :h ∈ C2,α(Sn−1,H(n,m)
)→ ρ∂r

(
Wh − Ŵh

)
(ρ ·) ∈ C1,α(Sn−1,H(n,m)

)
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is an isomorphism. Indeed, this mapping is a linear first order elliptic pseudo-differential operator and, in order to check that
it is an isomorphism, it is enough to prove that it is injective. Now if we assume thatU(h)= 0 then the functionw defined by
w := Ŵh in R

n−m× T m−Bnρ andw :=Wh in Bnρ is a global solution of+w = 0 in R
n−m× T m, and furthermore,w belongs

to E2,α
ν . It is easy to check that necessarilyw ≡ 0 and, as a consequence,h≡ 0. This proves the injectivity ofU .
Using the above claim, it is easy to see that (27) reduces to a fixed point problem

(g,h)=Cε(g,h),

in E := (C2,α(Sn−1,H(n,m)))2. However, (20) and (26) imply thatCε :E → E is a contraction mapping defined in the ball of
radiusκεn−1 of E into itself, providedε is chosen small enough. Hence, we have obtained a fixed point of the mappingCε , in
this ball. This completes the proof of the existence of the hypersurfacesSε which are described in the Theorem 1. Most of the
properties states in Theorem 1 follow readily from the construction itself except the derivation of (2).

Proof of (2). This follows from the application of the balancing formula for minimal hypersurfaces. In the case wherem= n−1
we know from the construction itself that the hypersurfaceSε is, away from the origin, the graph of the function

(x1, x2)→ cε |x1| + c∞ε+O
(
εn−1|x1|ν

)
,

for someν < 0. Observe that necessarilycε � 0, otherwise we easily get a contradiction by the maximum principle. Moreover,
near 0 the hypersurface is a graph over the rescaledn-catenoid. It remains to identify the constantcε . In order to do so, we
apply the balancing formula of [10] (Theorem 7.2) between the hyperplanez= 0 andz= z0 for z0 tending to+∞. This yields

2Vol
(
T n−1)

cε ∼ εn−1Vol
(
Sn−1)

.

And (2) follows at once from our normalization of the volume on an(n− 1)-dimensional torus. ✷
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