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INTRODUCTION 

In this paper we study the question of when the linear span of 
{f(Kx)} = E, , k = 0, f 1, &2 ,... fn ,... is dense in certain function 
spaces B. B will designate any one of the following well-known 
spaces: Lp(0, 2n), 1 < p < co, the p-integrable functions, C(0, 27~), 
the continuous periodic functions, and P, the functions with absolutely 
convergent Fourier series. The norms used are the usual ones. The 
results obtained are generalizations of the Weierstrass approximation 
theorem in B by trigonometric polynomials. 

Another problem of interest-When will {f(Kx)) form a Paley- 
Wiener basis for L2?-is of a different nature than the spanning 
problem in this paper. The methods required to solve the basis 
problem are different than those used here and are discussed in [3]. 

We consider functions of the form f(x) = eir - Ci akekQ. This 
represents no loss of generality as far as the signs of the frequencies 
are concerned. One replaces ekix by cos kx (sin kx) and states and 
proves the theorems for even (odd) functions. 

Let Pl , P2 ,..., p, be the primes appearing as divisors of the integers 
2 ,**-> n. We associate withf(x) = eix - Ct==, akeikx the polynomial 

The density of E, depends on the location of the zeros of P(z, ,..., z8). 
We give necessary and sufficient conditions for the density of Ef in I1 
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and L2 with any number of variables, and all B with one variable. 
Less complete results for C(O,2x) and LP(O,27r) with any number of 
variables are also proven. An effective procedure of approximation 
in L2, with any number of variables and LP with one variable is also 
given 

1. Let T7J(x) =f(mx), m an integer. T, is an isometry of 
each B, and they commute with each other. f can then be written as 
f(x) = P(Tpl ,..,, T9J eix. Considering P( Tp, ,..., T,d) as a bounded 
operator from the spaces B to B, it is easy to see that E, is dense in 
any B if, and only if, the range P(Tpl ,..., T,*) is dense in B. 

The problem then becomes one of finding the spectrum u( T,,,) of 
the operator T,, . The spectrum of T, is independent of m. Because 
T,n is an isometry, the spectrum is contained in the unit disc, 
{I z / < 11. We give the determination of the spectrum r~( T,,) in the 
following theorem. 

THEOREM 1. (i) T, as an operator on P and C(0, 27~) has residual 
spectrum ur( T,) equal to the continuous spectrum u( T,) which equals 
{~h/<l),hfl.Thatis,ifhfl,/h~<l,thenT,-AIisl-1 
and range (T,, - AI) is not dense. h = 1 is the only eigenvalue and the 
constants are the only eigenfunctions. For / h / > 1, T,, - AI has a 
bounded inverse. 

(ii) T,, as an operator on L P, 1 < p < CO, has residual spectrum 
4Tm) = W < 11, an d continuous spectrum, a( T,) = { / h 1 = 1, A f 11. 
(That is, if 1 h 1 < 1, h # 1, T,m - AI is 1 - 1, and if I X / < 1, range 
(T,, - XI) is not dense, but is dense for j h I = 1. X = 1 is the only 
eigenvalue and the constants are the only eigenfunctions. For j X / > 1, 
T, - XI has a bounded inverse. 

Proof. [I h I < 11. Th en T,f = Af implies that f(k) = hf(mk), 
wheref’(K) is the k-th Fourier coefficient. So we have I f(k)1 < f(m’k)i, 
k # 0, for all r. By the Riemann-Lebesgue lemma this implies 
f(k) = 0. We havei = hf(O), so if h # 1, f(0) = 0 too. This shows 
that h = 1 is the only eigenvalue and the constants are the only 
eigenfunctions. 

[I h 1 > 11. Then Czz0 T,“/h” is convergent and is a bounded 
operator for all B, so T,, - M has a bounded inverse. 

[i h j < 11. A function, measure or pseudomeasure h E range 
(T,,, - hl)l, the annihilator of the range of T, - M, if, and only if, 

IZ(mk) = AA(k) for all k. (2) 
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Let h(x) = XV:,, A,.eimrx. Then h E range (T, - AZ) in all B because 
h E P. Hence, range (T, - AI) is not dense in any B. 

[IhI = l,h#l]. Wh en h = 1, everything we say for B and 
IX/= l,holdsforB,={fEB:j(O)=O}. 

We show for any g E B, that the distance d(g, E,) between g and E, 
is given by 

where f(x) = eiz - hei”* = (I- AZ’,) eix. (3) 

Here 

First we have 

(4 

II g - h IIB B II Ud - WkI 2 II wghl - II &04lB . (5) 

For h E E, , lim 11 S,(h)lI, = 0. T o see this, note that h can be approxi- 
mated by functions of the form q(x) = (I - hT,)p(x). Now we have 

and so 
(6) 

We see lim II S,(q)l1, = 0 and hence the same is true for h. Then 

d(& -%I > limII %(dllB * (7) 

By the Hahn-Banach theorem, d(g, E) = 1 supL(g)l, 11 L 11 = 1, 
L E E,l. For L E Efl, we have L(g) = W%~g)l. So I WI < II Wg)ll, 
and, therefore, d(g, Et) < J& II S,(g)ll, . This with (7) gives us the 
desired result. Note this formula is true for I X I < 1. By the Dunford- 
Schwartz ergodic theorem [2], lim S,(g) = 0 a.e. and lim 11 S,(g)/, = 0, 
II lip being the Lp norm. Hence for I h I = 1, range (T, - AI) is dense 
in Lp. The continuous and a fortiori the Ii case is different. 

It is easy to see that E, is dense in C(O,2rr) if, and only if, eiz E J!$ , 
the closure of E. Now S,(e&) = l/r cL:i hkeimkx is a gap series. By a 
theorem of Sidon [7], the sup norm 11 Sr(eis)llm is equivalent to the 
P norm II S,.(eiz)lI1* = l/y CiOi I h lk = 1 (I h I = 1). Hence, eiz $ ,!?f 
and so range (T, - AI) is not dense in E, . This completes the proof 
of Theorem 1. 

2. Remarks. We give two more proofs for the LP case of the 
last part of Theorem 1. 
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An elementary proof can be given by noting that if h E E,i then 
R(k) = AR(mk) (I h I = I), so that 1 k(k)1 < 1 k(mrk)I for all r and so 
h(k) = 0, and, therefore, h = 0 a.e. 

Another proof can be given by noting that /I S,.(eiz)llp is dominated 
by II W@)llz f rom a theorem of Paley [7]. But Ij S,.(eiz)l12 = l/z/r 
which goes to zero, so that eix E E, . 

3. A question which we do not consider here is when can 
g E LP be written as g(x) = h(x) - Ah(mx), for some h E LP. The 
case p = 2, was discussed by Kac [4] and Rochberg [6]. 

The continuous case for the last part of Theorem 1 presents 
another problem of interest, There we showed that when 

f(x) = eiz - Xeimx, 1 X I = 1, E, is not dense in C(0, 27r). This implies 
the existence of nontrivial measures p E Erl, such measures satisfying 

/II(k) = Ajqmk). (8) 

It is not hard to show such measures are purely singular. It would be 
of some importance to be able to construct measures satisfying (8). 
Even the case h = 1 is of interest. Besides the Haar and Dirac 
measures, there is a whole class of measures p such that p(k) = @(mk). 
These are the Cantor measures p with Fourier-Stieltjes coefficients 

/z(k) = fi COS2$) c.f., [5, 71. 
r=0 

If we have measures pi 

~+i&(k) = Wsk~@)- 

so that ii,(k) = h,&(mk), i = 1, 2, then 

S o we can build measures satisfying (8) 
by convolutions. When h, is a root of unity (h,’ = 1) we can give 
a construction of such p. Let & be the point mass at 19, and let 
8, = 2?r(m - 1) m”/( mr - 1). Then p,. = l/r ~~~~ &‘G, is a measure 
satisfying (8). It would be hoped that by convolving p’s with their 
h’s roots of unity, we can get measures satisfying (8) for any h, 1 X / = 1. 
This does not seem possible because {cl,} converges w* to 0, provided 
infinitely many of the X, f 1. This is not hard to prove and we leave 
this an exercise for the reader. 

4. We now prove 

THEOREM 2. Letf(x) = eiz - cffr a,eimbx and E, = span{f(kx)), 
k = 0, f 1, Ij,2 ,..., then 
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(a) Ef is dense in P and C(0, 27r) ;f, and only if, the zero set Z(P) 
of P(z) = 1 - c”= k 1 akxk is contained in {z : 1 z 1 > l}. 

(b) Et is dense in Lp (1 < p < m) if, and only if, Z(P) is contained 
in{z: /zI > 11. 

Proof. If Z(P) < {I x I > 11, l/P(x) is analytic in a neighborhood 
of the spectrum T, . Hence, P(T,)-l is a bounded operator on 
any B; c.f., [l]. This suffices for E, to be dense in B. 

If P(z) has at least one root A, I X I = 1, any measure p satisfying (8) 
is in E#. Hence, Et is not dense in C(O,277) and P. 

If P(x) has a root X with I h I < 1, then the 21 function 

p=;r=o x keimkz is in E,l for all B. So, in this case, E, is not dense 

Finally, let Ai ,..., A, be the roots of P(z), multiplicities allowed, 
(1 Ai I > 1). Then P(T) = U( T, - A#). When B = LP, we have from 
Theorem 1 that range (T,, - A#) is dense for each Ai . Hence, range 
P(T,) is dense and this implies Et is dense in LP. This completes the 
proof of Theorem 2. 

,iz - 
5. It is easy to see Theorem 2, remains true for f(x) = 

C,” a,eimkx provided P(x) = 1 - x1 a# is analytic in a neigh- 
borhood of {I x I < l}. 

6. We now consider the case where f (x) = eix - Cb2 akeiks. 
The answer here is not as complete as in Theorem 2. 

THEOREM 3. Suppose f (x) = e” - Ci==2 akeikx and P(x, ,..., 3,) = 
1 - C akz$ *** 48, (k = p$ ***pjs). Then 

de,,;;; $;2 ~0 set Z(P) < {t = (5, ,..., 5J : m= I & I > 11, Et is 

(b) if t&e is at least one 5 E Z(P) such that max I & I < 1, then 
Et is not dense in any B. 

Proof. (4 l/% *** z,) has a Taylor expansion in 

I Xl I < 1 + %..., Ix, I < 1 + E 

for some E > 0, and replacing z, by Tp, gives a series converging in 
norm to P(TpI ,..., Tp,)-l. 

(b) Let 5 = (L .** &) E Z(P), I tj I < 1. Then the P function 

g(x) = c...c 6:’ . . . ,e:” e&.& 

O<Sf 
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is in E,J- for all B. Hence, E, is not dense. This completes the proof 
of Theorem 3. 

7. We conjecture that if Z(P) _C (.$ : max 1 tj 1 3 l), then E, is 
dense inP, 1 < p < co. Further, if there is a t E Z(P) with I tI, I < 1 
and / ti j = 1 for some j, then E is not dense in C(0,27~). We have 
not been able to prove these assertions. However, it is very easy to 
show that Et is not dense in 1’. For letfj(x) = eix - ajeip+, j = 1 *a* s, 
013’ = l/& , and E’ = span{f,(kx),...,f,(Kx)}. Now E’l Z ErL, SO if E 
is not dense in B then E, isn’t. Let h be the pseudomeasure 

Then h E (E’)J-, so E, is not dense in P. 
If we can find a measure p satisfying 

,6(k) = a,P(P,k) = 0.. = a$(P,k), l%l z 1, (9) 

then Et would not be dense in C(O,27r). When each o~j is an rj root of 
unity we can construct measures satisfying (9). We write 

/,L = 1 c ai”j S(k, .-- k,), 
O<kj<rj-l 

where 6(/z, **. k,) is the point mass supported on 

and this p satisfies (9). Again it would be of considerable interest to 
be able to construct measures satisfying (9) but this seems difficult. 
Similar considerations, as in the case of (8), hold here. 

Now when all the o~j are of absolute value 1, the distance of ek to 
E’ can be calculated by a formula similar to (3). That is d(ei5, E’) = 
lim 11 Sr(eiz)IIB , where 

In this situation, the Sidon theorem doesn’t hold. Nevertheless we 
conjecture that 11 Sr(ei5)ll cc # o(1). 

8. In the case that Z(P) C (5 : max 1 fj I > l}, then for f in B, 

f = V’,, ,..., LJIV,I >a.., T,,)l-Y (10) 
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We cannot expect this to hold for the case when 

Z(p) C {E : *= I tj I Z I>, 

but we can expect an approximate formula to hold in LF. That is, it is 
reasonable to expect that 

convergence taking place in L P. This of course would complete the 
density theorem for L P. We give such a result for all LP and P(x) a 
polynomial in one variable; and for L2 and any number of variables. 
We first prove some lemmas. 

LEMMA 1. Let P(x, , x2 ,..., x,) be a polynomial with no zeros in 
1x1 I < 1, I x2 I < L..., 1 z, 1 < 1. In the L2 metric of the torus 1 2; 1 = 
1 z2 1 = -** = 1 z, I = 1 thefunction P(z, , z2 ,..., z,)/P(rzl , yz2 ,..., rxm) 
approaches 1 as r -+ l-. 

Since this fraction does go to 1 a.e. (wherever P(zI ,..., z,) # 0) it 
certainly suffices, by the bounded convergence theorem, to show 
that it is bounded. Thus, Lemma 1 follows from 

LEMMA 2. Let P(z, , z2 ,..., zm) be a polynomial of degree D with 
no zeros in I z, 1 < 1, I z, I < l,..., 1 z, 1 < 1 and let 0 < Y < 1. We 
have, throughout I x1 I < 1, I z2 1 < l,..., I z, I < 1, 

% , *2 9***, %?a) 

P(YZl , rz2 ,...) YZ,) d 2"D- 

Proof. Observe the factorization 

PC% , 22 ,***, %) 

P(YZl , rz2 ,..., YZ,) 

q%,z, ,-,%) . Jwl ,z2 ,**-9 %n) ... P(YZl Y~,mn-l,%a) 

= P(Yfzl , z, ,..., .a;,) P(YZl , YZ2 , z3 ,...) P(YZl ,..., I&) * 

Each factor is a fraction Q(WI , IV, ,..., kV,)/&(rJV, , W, ,..., W,), 
where the W, are a permutation of variables which are either z, 
or r-zi. Thus, Q( WI ,..., W,) has no zeros in I WI I < 1, 

I w2 I < l,..., I wn I < 1, and we show that this implies 

QW, , w2 ,..-, Wrn) 

Q(rWl , W, ,..., W,) ’ 2D9 
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which is sufficient for the Lemma. Fix IV,, Ws ,..., IV, with 1 Wi 1 < 1 
and view Q(W, , IV, ,..., IV,) as a polynomial in IV, alone. As such 
it has all its roots outside the open unit disk. Therefore, we can write 

W,)=c J&(W,-aj), c#O, d<D, 1~~~1 21. 

QW, ,  W, , . . . ,  Wwz) 
d WI - Cdj 

Q(yW, , W, ,..., Wm) = j;yWl - mj ’ 

But observe that, for 1 IV, 1 < 1, 

WI - aj 

YWI- Uj I I 
= 1 + (1 - Y)Wl 

YWI - Cyj G l + / y;lcyaj / 

1-Y 1 -Y 

G 1+ / j aj 1 _ y 1 G 1 + j-zy = 2. 

We conclude that 
/ QWl T.--V wd 
QW, 9..., Wm) 

< 2d < 20 

as required. 

9. Remark (a) If Z(P) C {E : max 1 ,$, ) > l}, then 
P(yTpl ,..., YTJ has a bounded inverse in all B, when 0 < r < 1. 

(b) Under the assumptions in (a), we have 

II w)qw-l lip < c -=c w  independent of Y, for 1 < p < w. (11) 

Now 

P(T) P(Y q-1 = n (T - lxjl)(Y T - ajq-1, with 1 a3 1 > 1. (12) 

Further, 

(T - 
orjl)(yT - air)-1 = cdj I - + Fl (G,” T-1 - (13) 

So I/( T - a#)(yT - +1)-l IIB < 2 1 Lyi 1 independent of Y. (13) com- 
bined with (12) gi ves us the desired result. We prove a similar result 
for 11 P(T, --a T,) P(rT, -*a rT,)-l II2 . 

(c) Suppose R(z, ,..., z,) is analytic in a neighborhood of the 
polydisc 1 xi 1 < l,..., j z, 1 < 1. Then if f(ei”) = R( Tp,* ,..., T,,*) ei”, 
we have 

This is just Parseval’s equality. 
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Using this, we can get an expression for the norm of R(T,; ,..., T,;) 
as an operator on L2. Let f(x) = ~~=i u,#kx = Q( Tp, s-0 T,#) eQ, 
Qh .*. z,) = c a$$ *.* z$, (k = p$ ***p$). Then Rf = RQei”, RQ is 
a function of the variables z1 ,..., x, , zi’ ,..., z,’ , where repetitions are 
allowed. Using (14) we find 

Hence, sup 11 Rf II2 = max ( R(eiel *.* eiev)l = I( R (12, where the sup is 
taken over f E La with norm 1. 

Now if P(zi *** xn) is a polynomial with Z(P) C {max 1 tj ( > l}, 
then 

Lemma 1 implies (16) is bounded independently of Y. 

10. We can now state our last two theorems. 

THEOREM 4. Suppose f E Lp, 1 < p < co and P(z) is a polynomial 
with Z(P) C { 1 z 1 2 l}. Then 

1;z IIf - P(T)P(rT)-‘fll, = 0. (T = T,). (17) 

Proof. It is enough to show (17) when f (x) = eiz. For if it is true 
for eiz then it is so for polynomials. From (11) we conclude the truth 
for all f E Lp. Let g,,(x) = P(T) P(rT)-l ei5. The Fourier series for 
gr(X) is of the form C a&) eimxz, a gap series. So by the Paley Theorem, 
all the Lp norms of eti - gp( x are dominated by the L2 norm. From ) 
(14) we find that 

s’” 1 &a - g,(x)12 dx = 1:” / 1 - +$$- 1’ de. 
0 

By Lemma 1 we get the desired result. 

THEOREM 5. Suppose P(z, ,..., z,) is a polynomial with 

Z(P) C (6 : max I & I 2 l}. 
Then 

lii IIf - P(T, ,..., T,) P(rT, ,..., rT,)-‘fljz = 0 for all f E Le. (18) 
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Proof. Again it is enough to show (18) true forf(x) 
(14) we have 

1 
2no s 

2rr / eis - P(T, ,..., T,) P(rT, ,..., 7-T,)-l eie I2 dx 

Lemma 1 gives the desired result. 
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