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Abstract

We study the action of metaplectic operators on Wiener amalgam spaces, giving upper bounds for their
norms. As an application, we obtain new fixed-time estimates in these spaces for Schrödinger equations
with general quadratic Hamiltonians and Strichartz estimates for the Schrödinger equation with potentials
V (x) = ±|x|2.
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1. Introduction

The Wiener amalgam spaces were introduced by Feichtinger [13] in 1980 and soon they re-
vealed to be, together with the closely related modulation spaces, the natural framework for the
time-frequency analysis; see, e.g., [14,15,17,18] and Gröchenig’s book [21]. These spaces are
modeled on the Lp spaces but they turn out to be much more flexible, since they control the local
regularity of a function and its decay at infinity separately. For example, the Wiener amalgam
space W(B,Lq), in which typically B = Lp or B = FLp, consists of functions which locally
have the regularity of a function in B but globally display a Lq decay.
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In this paper we focus our attention on the action of the metaplectic representation on Wiener
amalgam spaces. The metaplectic representation μ : Sp(d,R) → U(L2(Rd)) of the symplectic
group Sp(d,R) (see the subsequent Section 2 and [19] for details), was first constructed by Se-
gal and Shale [30,31] in the framework of quantum mechanics (though on the algebra level the
first construction is due to van Hove [42]) and by Weil [43] in number theory. Since then the
metaplectic representation has attracted the attention of many people in different fields of mathe-
matics and physics. In particular, we highlight the applications in the framework of reproducing
formulae and wavelet theory [8], frame theory [16], quantum mechanics [12] and PDEs [24,25].

Fix a test function g ∈ C∞
0 and 1 � p,q � ∞. Then the Wiener amalgam space W(FLp,Lq)

with local component FLp and global component Lq is defined as the space of all func-
tions/tempered distributions f such that

‖f ‖W(FLp,Lq) := ∥∥‖f Txg‖FLp

∥∥
L

q
x
< ∞,

where Txg(t) := g(t − x) and the FLp norm is defined in (6). To give a flavor of the type of
results:

If 1 � p � q � ∞ and A = (
A B
C D

) ∈ Sp(d,R), with detB �= 0, then the metaplectic operator
μ(A) is a continuous mapping from W(FLq,Lp) into W(FLp,Lq), that is∥∥μ(A)f

∥∥
W(FLp,Lq)

� α(A,p, q)‖f ‖W(FLq,Lp).

The norm upper bound α = α(A,p, q) is explicitly expressed in terms of the matrix A and
the indices p,q (see Theorems 4.1 and 4.2).

This analysis generalizes the basic result [14]:

The Fourier transform F is a continuous mapping between W(FLq,Lp) and W(FLp,Lq)

if (and only if ) 1 � p � q � ∞.

Indeed, the Fourier transform F is a special metaplectic operator. If we introduce the sym-
plectic matrix

J =
[

0 Id

−Id 0

]
, (1)

then F is (up to a phase factor) the unitary metaplectic operator corresponding to J ,

μ(J ) = (−i)d/2F .

A fundamental tool to achieve these estimates is represented by the analysis of the dilation op-
erator f (x) �→ f (Ax), for a real invertible d × d matrix A ∈ GL(d,R), with bounds on its norm
in terms of spectral invariants of A. In the framework of modulation spaces such an investigation
was recently developed in the scalar case A = λI by Sugimoto and Tomita [35,36] and by Bényi
and Okoudjou [4]. In Section 3 we study this problem for a general matrix A ∈ GL(d,R) for
both modulation and Wiener amalgam spaces. In particular, we extend the results in [35] to the
case of a symmetric matrix A.
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In the second part of the paper we present some natural applications to partial differential
equations with variable coefficients. Precisely, we study the Cauchy problem for the Schrödinger
equation with a quadratic Hamiltonian, namely⎧⎨⎩ i

∂u

∂t
+ Hu = 0,

u(0, x) = u0(x),

(2)

where H is the Weyl quantization of a quadratic form on R
d × R

d . The most interesting case is
certainly the Schrödinger equation with a quadratic potential. Indeed, the solution u(t, x) to (2)
is given by

u(t, x) = eitH u0,

where the operator eitH is a metaplectic operator, so that the estimates resulting from the previ-
ous sections provide at once fixed-time estimates for the solution u(t, x), in terms of the initial
datum u0. An example is provided by the harmonic oscillator H = − 1

4π
� + π |x|2 (see, e.g.,

[19,23,29]), for which we deduce the dispersive estimate∥∥eitH u0
∥∥

W(FL1,L∞)
� |sin t |−d‖u0‖W(FL∞,L1). (3)

Another Hamiltonian we take into account is H = − 1
4π

�−π |x|2 (see [6]). In this case, we show

∥∥eitH u0
∥∥

W(FL1,L∞)
�

(
1 + |sinh t |

sinh2 t

) d
2 ‖u0‖W(FL∞,L1). (4)

In Section 5 we shall combine these estimates with orthogonality arguments as in [9,27] to obtain
space–time estimates: the so-called Strichartz estimates (for the classical theory in Lebesgue
spaces, see [20,26,27,38,39,44]). For instance, the homogeneous Strichartz estimates achieved
for the harmonic oscillator H = − 1

4π
� + π |x|2 read∥∥eitH u0

∥∥
Lq/2([0,T ])W(FLr′ ,Lr )x

� ‖u0‖L2
x
,

for every T > 0, 4 < q, q̃ � ∞, 2 � r, r̃ � ∞, such that 2/q +d/r = d/2, and, similarly, for q̃ , r̃ .
In the endpoint case (q, r) = (4,2d/(d − 1)), d > 1, we prove the same estimate with FLr ′

replaced by the slightly larger FLr ′,2, where Lr ′,2 is a Lorentz space (Theorem 5.2).
The case of the Hamiltonian H = − 1

4π
� − π |x|2 will be detailed in Section 5.2. Finally, we

shall compare all these estimates with the classical ones in the Lebesgue spaces (Section 5.3).
Our analysis combines techniques from time-frequency analysis (e.g., convolution relations,

embeddings and duality properties of Wiener amalgam and modulation spaces) with methods
from classical harmonic analysis and PDE’s theory (interpolation results, Hölder-type inequali-
ties, fractional integration theory).

This study carries on the one in [9], developed for the usual Schrödinger equation (H = �).
We record that hybrid spaces like the Wiener amalgam ones had appeared before as a technical

tool in PDEs (see, e.g., Tao [37]). Notice that fixed-time estimates between modulation spaces in
the case H = � were first considered in [1] and, independently, in [3,4], and they were used to
obtain well-posedness results on such spaces [2,5].
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Finally we observe that, by combining the Strichartz estimates in the present paper with argu-
ments from functional analysis as in [11], well-posedness in suitable Wiener amalgam spaces
can also be proved for Schrödinger equations as above with an additional potential term in
Lα

t W(FLp′
,Lp)x (see Remark 5.5).

Notation. We define |x|2 = x · x, for x ∈ R
d , where x · y = xy is the scalar product on R

d . The
space of smooth functions with compact support is denoted by C∞

0 (Rd), the Schwartz class is
S(Rd), the space of tempered distributions S ′(Rd). The Fourier transform is normalized to be
f̂ (ξ) = Ff (ξ) = ∫

f (t)e−2πitξ dt . Translation and modulation operators (time and frequency
shifts) are defined, respectively, by

Txf (t) = f (t − x) and Mξf (t) = e2πiξ tf (t).

We have the formulas (Txf )̂ =M−xf̂ , (Mξf )̂ =Tξ f̂ , and MξTx = e2πixξ TxMξ . The notation
A � B means A � cB for a suitable constant c > 0, whereas A 
 B means c−1A � B � cA,
for some c � 1. The symbol B1 ↪→ B2 denotes the continuous embedding of the linear space B1
into B2.

2. Function spaces and preliminaries

2.1. Lorentz spaces [33,34]

We recall that the Lorentz space Lp,q on R
d is defined as the space of temperate distributions

f such that

‖f ‖∗
pq =

(
q

p

∞∫
0

[
t1/pf ∗(t)

]q dt

t

)1/q

< ∞,

when 1 � p < ∞, 1 � q < ∞, and

‖f ‖∗
pq = sup

t>0
t1/pf ∗(t) < ∞,

when 1 � p � ∞, q = ∞. Here, as usual, λ(s) = |{|f | > s}| denotes the distribution function
of f and f ∗(t) = inf{s: λ(s) � t}.

One has Lp,q1 ↪→ Lp,q2 if q1 � q2, and Lp,p = Lp . Moreover, for 1 < p < ∞ and 1 �
q � ∞, Lp,q is a normed space and its norm ‖·‖Lp,q is equivalent to the above quasi-norm ‖·‖∗

pq .
We now recall the following generalized Hardy–Littlewood–Sobolev fractional integration

theorem (see, e.g., [32, p. 119] and [41, Theorem 2, p. 139]), which will be used in the sequel
(the original fractional integration theorem corresponds to the model case of convolution by
K(x) = |x|−α ∈ Ld/α,∞, 0 < α < d).

Proposition 2.1. Let 1 � p < q < ∞, 0 < α < d , with 1/p = 1/q + 1 − α/d . Then,

Lp
(
R

d
) ∗ Ld/α,∞(

R
d
)
↪→ Lq

(
R

d
)
. (5)



510 E. Cordero, F. Nicola / Journal of Functional Analysis 254 (2008) 506–534
2.2. Wiener amalgam spaces [13–15,17,18]

Let g ∈ C∞
0 be a test function that satisfies ‖g‖L2 = 1. We will refer to g as a window function.

For 1 � p � ∞, recall the FLp spaces, defined by

FLp
(
R

d
) = {

f ∈ S ′(
R

d
)
: ∃h ∈ Lp

(
R

d
)
, ĥ = f

};
they are Banach spaces equipped with the norm

‖f ‖FLp = ‖h‖Lp , with ĥ = f. (6)

Let B be one of the following Banach spaces: Lp,FLp , 1 � p � ∞, Lp,q , 1 < p < ∞, 1 � q �
∞, possibly valued in a Banach space, or also spaces obtained from these by real or complex
interpolation. Let C be one of the following Banach spaces: Lp , 1 � p � ∞, or Lp,q , 1 < p <

∞, 1 � q � ∞, scalar-valued. For any given function f which is locally in B (i.e. gf ∈ B ,
∀g ∈ C∞

0 ), we set fB(x) = ‖f Txg‖B .
The Wiener amalgam space W(B,C) with local component B and global component C is

defined as the space of all functions f locally in B such that fB ∈ C. Endowed with the norm
‖f ‖W(B,C) = ‖fB‖C , W(B,C) is a Banach space. Moreover, different choices of g ∈ C∞

0 gen-
erate the same space and yield equivalent norms.

If B = FL1 (the Fourier algebra), the space of admissible windows for the Wiener amalgam
spaces W(FL1,C) can be enlarged to the so-called Feichtinger algebra W(FL1,L1). Recall
that the Schwartz class S is dense in W(FL1,L1).

We use the following definition of mixed Wiener amalgam norms. Given a measurable func-
tion F of the two variables (t, x) we set

‖F‖W(Lq1 ,Lq2 )tW(FLr1 ,Lr2 )x = ∥∥∥∥F(t, ·)∥∥
W(FLr1 ,Lr2 )x

∥∥
W(Lq1 ,Lq2 )t

.

Observe that [9]

‖F‖W(Lq1 ,Lq2 )tW(FLr1 ,Lr2 )x = ‖F‖
W(L

q1
t (W(FL

r1
x ,L

r2
x )),L

q2
t )

.

The following properties of Wiener amalgam spaces will be frequently used in the sequel.

Lemma 2.1. Let Bi , Ci , i = 1,2,3, be Banach spaces such that W(Bi,Ci) are well defined.
Then:

(i) (Convolution) If B1 ∗ B2 ↪→ B3 and C1 ∗ C2 ↪→ C3, we have

W(B1,C1) ∗ W(B2,C2) ↪→ W(B3,C3). (7)

In particular, for every 1 � p,q � ∞, we have

‖f ∗ u‖W(FLp,Lq) � ‖f ‖W(FL∞,L1)‖u‖W(FLp,Lq). (8)

(ii) (Inclusions) If B1 ↪→ B2 and C1 ↪→ C2,

W(B1,C1) ↪→ W(B2,C2).
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Moreover, the inclusion of B1 into B2 need only hold “locally” and the inclusion of C1
into C2 “globally.” In particular, for 1 � pi, qi � ∞, i = 1,2, we have

p1 � p2 and q1 � q2 ⇒ W
(
Lp1,Lq1

)
↪→ W

(
Lp2,Lq2

)
. (9)

(iii) (Complex interpolation) For 0 < θ < 1, we have[
W(B1,C1),W(B2,C2)

]
[θ] = W

([B1,B2][θ], [C1,C2][θ]
)
,

if C1 or C2 has absolutely continuous norm.
(iv) (Duality) If B ′, C′ are the topological dual spaces of the Banach spaces B , C, respectively,

and the space of test functions C∞
0 is dense in both B and C, then

W(B,C)′ = W(B ′,C′). (10)

Proposition 2.2. For every 1 � p � q � ∞, the Fourier transform F maps W(FLq,Lp) in
W(FLp,Lq) continuously.

The proof of all these results can be found in [13–15,22].
The subsequent result of real interpolation is proved in [9].

Proposition 2.3. Given two local components B0,B1 as above, for every 1 � p0,p1 < ∞,
0 < θ < 1, 1/p = (1 − θ)/p0 + θ/p1, and p � q we have

W
(
(B0,B1)θ,q ,Lp

)
↪→ (

W
(
B0,L

p0
)
,W

(
B1,L

p1
))

θ,q
.

2.3. Modulation spaces [21]

Let g ∈ S be a non-zero window function. The short-time Fourier transform (STFT) Vgf of
a function/tempered distribution f with respect to the window g is defined by

Vgf (z, ξ) =
∫

e−2πiξyf (y)g(y − z) dy,

i.e., the Fourier transform F applied to f Tzg.
For 1 � p,q � ∞, the modulation space Mp,q(Rn) is defined as the space of temperate

distributions f on R
n such that the norm

‖f ‖Mp,q = ∥∥∥∥Vgf (·, ξ)
∥∥

Lp

∥∥
L

q
ξ

is finite. Among the properties of modulation spaces, we record that M2,2 = L2, Mp1,q1 ↪→
Mp2,q2 , if p1 � p2 and q1 � q2. If p,q < ∞, then (Mp,q)′ = Mp′,q ′

.
For comparison, notice that the norm in the Wiener amalgam spaces W(FLp,Lq) reads

‖f ‖W(FLp,Lq) = ∥∥∥∥Vgf (z, ·)∥∥
Lp

∥∥
L

q
z
.

The relationship between modulation and Wiener amalgam spaces is expressed by the following
result.
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Proposition 2.4. The Fourier transform establishes an isomorphism F :Mp,q → W(FLp,Lq).

Consequently, convolution properties of modulation spaces can be translated into point-wise
multiplication properties of Wiener amalgam spaces, as shown below.

Proposition 2.5. For every 1 � p,q � ∞ we have

‖f u‖W(FLp,Lq) � ‖f ‖W(FL1,L∞)‖u‖W(FLp,Lq).

Proof. From Proposition 2.4, the estimate to prove is equivalent to

‖f̂ ∗ û‖Mp,q � ‖f̂ ‖M1,∞‖û‖Mp,q ,

but this is a special case of [7, Proposition 2.4]. �
The characterization of the M2,∞-norm in [35, Lemma 3.4], see also [28], can be rephrased

in our context as follows.

Lemma 2.2. Suppose that ϕ ∈ S(Rd) is a real-valued function satisfying ϕ � C on [−1/2,1/2]d ,
for some constant C > 0, suppϕ ⊂ [−1,1]d , ϕ(t) = φ(−t) and

∑
k∈Zd ϕ(t − k) = 1 for all

t ∈ R
d . Then

‖f ‖M2,∞ 
 sup
k∈Zd

∥∥(MkΦ) ∗ f
∥∥

L2 , (11)

for all f ∈ M2,∞, where Φ = F−1ϕ.

To compute the Mp,q -norm we shall often use the duality technique, justified by the result
below (see [21, Proposition 11.3.4 and Theorem 11.3.6] and [35, relation (2.1)]).

Lemma 2.3. Let ϕ ∈ S(Rd), with ‖ϕ‖2 = 1, 1 � p,q < ∞. Then (Mp,q)∗ = Mp′,q ′
, under the

duality

〈f,g〉 = 〈Vϕf,Vϕg〉 =
∫

R2d

Vϕf (x,ω)Vϕg(x,ω)dx dξ, (12)

for f ∈ Mp,q , g ∈ Mp′,q ′
.

Lemma 2.4. Assume 1 < p,q � ∞ and f ∈ Mp,q . Then

‖f ‖Mp,q = sup
‖g‖

Mp′,q′ �1

∣∣〈f,g〉∣∣. (13)

Notice that (13) still holds true whenever p = 1 or q = 1 and f ∈ S(Rd), simply by extending
[21, Theorem 3.2.1] to the duality S ′ 〈·,·〉S .

Finally we recall the behaviour of modulation spaces with respect to complex interpolation
(see [14, Corollary 2.3]).
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Proposition 2.6. Let 1 � p1,p2, q1, q2 � ∞, with q2 < ∞. If T is a linear operator such that,
for i = 1,2,

‖Tf ‖Mpi ,qi � Ai‖f ‖Mpi,qi ∀f ∈ Mpi,qi ,

then

‖Tf ‖Mp,q � CA1−θ
1 Aθ

2‖f ‖Mp,q ∀f ∈ Mp,q,

where 1/p = (1 − θ)/p1 + θ/p2, 1/q = (1 − θ)/q1 + θ/q2, 0 < θ < 1, and C is independent
of T .

2.4. The metaplectic representation [19]

The symplectic group is defined by

Sp(d,R) = {
g ∈ GL(2d,R): tgJg = J

}
,

where the symplectic matrix J is defined in (1). The metaplectic or Shale–Weil representation μ

is a unitary representation of the (double cover of the) symplectic group Sp(d,R) on L2(Rd). For
elements of Sp(d,R) in special form, the metaplectic representation can be computed explicitly.
For f ∈ L2(Rd), we have

μ

([
A 0
0 tA−1

])
f (x) = (detA)−1/2f

(
A−1x

)
,

μ

([
I 0
C I

])
f (x) = ±eiπ〈Cx,x〉f (x). (14)

The symplectic algebra sp(d,R) is the set of all 2d ×2d real matrices A such that etA ∈ Sp(d,R)

for all t ∈ R.
The following formulae for the metaplectic representation can be found in [19, Theorems 4.51

and 4.53].

Proposition 2.7. Let A = (
A B
C D

) ∈ Sp(d,R).

(i) If detB �= 0 then

μ(A)f (x) = id/2(detB)−1/2
∫

e−πix·DB−1x+2πiy·B−1x−πiy·B−1Ayf (y) dy. (15)

(ii) If detA �= 0,

μ(A)f (x) = (detA)−1/2
∫

e−πix·CA−1x+2πiξ ·A−1x+πiξ ·A−1Bξ f̂ (ξ) dξ. (16)

The following hybrid formula will be also used in the sequel.
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Proposition 2.8. If A = (
A B
C D

) ∈ Sp(d,R), detB �= 0 and detA �= 0, then

μ(A)f (x) = (−i detB)−1/2e−πix·CA−1x
(
e−πiy·B−1Ay ∗ f

)(
A−1x

)
. (17)

Proof. By (16) we can write

μ(A)f (x) = (detA)−1/2e−πix·CA−1x

∫
e2πiξ ·A−1xF

(
F−1eπiξ ·A−1Bξ

)
f̂ (ξ) dξ

= (−i detB)−1/2e−πix·CA−1x

∫
e2πiξ ·A−1xF

(
e−πiy·B−1Ay ∗ f

)
(ξ) dξ,

where we used the formula (see [19, Theorem 2, p. 257])

F−1(eiπξ ·A−1Bξ
)
(y) = (−i detA−1B

)−1/2
e−πiy·B−1Ay.

Hence, from the Fourier inversion formula we obtain (17). �
3. Dilation of modulation and Wiener amalgam spaces

Given a function f on R
d and A ∈ GL(d,R), we set fA(t) = f (At). We also consider the

unitary operator UA on L2(Rd) defined by

UAf (t) = |detA|1/2f (At) = |detA|1/2fA(t). (18)

In this section we study the boundedness of this operator on modulation and Wiener amalgam
spaces. We need the following three lemmata.

Lemma 3.1. Let A ∈ GL(d,R), ϕ(t) = e−π |t |2 , then

VϕϕA(x, ξ) = (
det(A∗A + I )

)−1/2
e−π(I−(A∗A+I )−1)x·xM−((A∗A+I )−1)xe

−π(A∗A+I )−1ξ ·ξ .

Proof. By definition of the STFT,

VϕϕA(x, ξ) =
∫
Rd

e−πAy·Aye−2πiξ ·ye−π(y−x)2
dy

= e−π |x|2
∫
Rd

e−π(A∗A+I )y·y+2πx·ye−2πiξ ·y dy.

Now, we rewrite the generalized Gaussian above using the translation and dilation operators, that
is

e−π(A∗A+I )y·y+2πx·y = eπ(A∗A+I )−1x·x(det(A∗A + I )
)−1/4

(T(A∗A+I )−1xU(A∗A+I )1/2)ϕ(y)

and use the properties FUB = U(B∗)−1F , for every B ∈ GL(d,R) and FTx = M−xF . Thereby,
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VϕϕA(x, ξ) = e−π(I−(A∗A+I )−1)x·x(det(A∗A + I )
)−1/4F(T(A∗A+I )−1xU(A∗A+I )1/2ϕ(ξ)

= e−π(I−(A∗A+I )−1)x·x(det(A∗A + I )
)−1/2

M−(A∗A+I )−1xe
−π(A∗A+I )−1ξ ·ξ ,

as desired. �
The result below generalizes [40, Lemma 1.8], recaptured in the special case A = λI , λ > 0.

Lemma 3.2. Let 1 � p,q � ∞, A ∈ GL(d,R) and ϕ(t) = e−π |t |2 . Then,

‖ϕA‖Mp,q = p−d/(2p)q−d/(2q)|detA|−1/p
(
det(A∗A + I )

)−(1−1/q−1/p)/2
. (19)

Proof. Since the modulation space norm is independent of the choice of the window function,
we choose the Gaussian ϕ, so that ‖ϕA‖Mp,q 
 ‖VϕϕA‖Lp,q . Since

∫
Rd

e−πp(I−(A∗A+I )−1)x·x dx = det
(
I − (A∗A + I )−1)−1/2

p−d/2

= p−d/2|detA|−1(det(A∗A + I )
)1/2

and, analogously,
∫

Rd e−πq(A∗A+I )−1ξ ·ξ dξ = (det(A∗A + I ))1/2q−d/2, the result immediately
follows from Lemma 3.1. �

We record [21, Lemma 11.3.3]

Lemma 3.3. Let f ∈ S ′(Rd) and ϕ,ψ,γ ∈ S(Rd). Then,

∣∣Vϕf (x, ξ)
∣∣ � 1

〈γ,ψ〉
(|Vψf | ∗ |Vϕγ |)(x, ξ) ∀(x, ξ) ∈ R

2d .

The results above are the ingredients for the first dilation property of modulation spaces we
are going to present.

Proposition 3.1. Let 1 � p,q � ∞ and A ∈ GL(d,R). Then, for every f ∈ Mp,q(Rd),

‖fA‖Mp,q � |detA|−(1/p−1/q+1)
(
det(I + A∗A)

)1/2‖f ‖Mp,q . (20)

Proof. The proof follows the guidelines of [35, Lemma 3.2]. First, by a change of variable, the
dilation is transferred from the function f to the window ϕ:

VϕfA(x, ξ) = |detA|−1Vϕ
A−1 f

(
Ax, (A∗)−1ξ

)
.

Whence, performing the change of variables Ax = u, (A∗)−1ξ = v,
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‖fA‖Mp,q = |detA|−1
( ∫

Rd

( ∫
Rd

∣∣Vϕ
A−1 f

(
Ax, (A∗)−1ξ

)∣∣p dx

)q/p

dξ

)1/q

= |detA|−(1/p−1/q+1)‖Vϕ
A−1 f ‖Lp,q .

Now, Lemma 3.3, written for ψ(t) = γ (t) = ϕ(t) = e−πt2
, yields the following majorization∣∣Vϕ

A−1 f (x, ξ)
∣∣ � ‖ϕ‖−2

L2

(|Vϕf | ∗ |Vϕ
A−1 ϕ|)(x, ξ).

Finally, Young’s Inequality and Lemma 3.2 provide the desired result:

‖fA‖Mp,q � |detA|−(1/p−1/q+1)
∥∥|Vϕf | ∗ |Vϕ

A−1 ϕ|∥∥
Lp,q

� |detA|−(1/p−1/q+1)‖Vϕf ‖Lp,q ‖Vϕ
A−1 ϕ‖L1


 |detA|−(1/p−1/q+1)
(
det(I + A∗A)

)1/2‖f ‖Mp,q . �
Proposition 3.1 generalizes [35, Lemma 3.2], that can be recaptured by choosing the matrix

A = λI , λ > 0.

Corollary 3.2. Let 1 � p,q � ∞ and A ∈ GL(d,R). Then, for every f ∈ W(FLp,Lq)(Rd),

‖fA‖W(FLp,Lq) � |detA|(1/p−1/q−1)
(
det(I + A∗A)

)1/2‖f ‖W(FLp,Lq). (21)

Proof. It follows immediately from the relation between Wiener amalgam spaces and modula-
tion spaces given by W(FLp,Lq) = FMp,q and by the relation (f̂A) = |detA|−1(f̂ )(A∗)−1 . �

In what follows we give a more precise result about the behaviour of the operator norm
‖DA‖Mp,q→Mp,q in terms of A, when A is a symmetric matrix, extending the diagonal case
A = λI , λ > 0, treated in [35]. We shall use the set and index terminology of the paper
above. Namely, for 1 � p � ∞, let p′ be the conjugate exponent of p (1/p + 1/p′ = 1). For
(1/p,1/q) ∈ [0,1] × [0,1], we define the subsets

I1 = max(1/p,1/p′) � 1/q, I ∗
1 = min(1/p,1/p′) � 1/q,

I2 = max(1/q,1/2) � 1/p′, I ∗
2 = min(1/q,1/2) � 1/p′,

I3 = max(1/q,1/2) � 1/p, I ∗
3 = min(1/q,1/2) � 1/p,

as shown in Fig. 1.
We introduce the indices:

μ1(p, q) =

⎧⎪⎨⎪⎩
−1/p if (1/p,1/q) ∈ I ∗

1 ,

1/q − 1 if (1/p,1/q) ∈ I ∗
2 ,

−2/p + 1/q if (1/p,1/q) ∈ I ∗,
3
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Fig. 1. The index sets.

and

μ2(p, q) =
⎧⎨⎩

−1/p if (1/p,1/q) ∈ I1,

1/q − 1 if (1/p,1/q) ∈ I2,

−2/p + 1/q if (1/p,1/q) ∈ I3.

The above mentioned result by [35, Theorem 3.1] reads as follows:

Theorem 3.3. Let 1 � p,q � ∞, and A = λI , λ �= 0.
(i) We have

‖fA‖Mp,q � |λ|dμ1(p,q)‖f ‖Mp,q , ∀|λ| � 1, ∀f ∈ Mp,q
(
R

d
)
.

Conversely, if there exists α ∈ R such that

‖fA‖Mp,q � |λ|α‖f ‖Mp,q , ∀|λ| � 1, ∀f ∈ Mp,q
(
R

d
)
,

then α � dμ1(p, q).
(ii) We have

‖fA‖Mp,q � |λ|dμ2(p,q)‖f ‖Mp,q , ∀0 < |λ| � 1, ∀f ∈ Mp,q
(
R

d
)
.

Conversely, if there exists β ∈ R such that

‖fA‖Mp,q � |λ|β‖f ‖Mp,q , ∀0 < |λ| � 1, ∀f ∈ Mp,q
(
R

d
)
,

then β � dμ2(p, q).

Here is our extension.

Theorem 3.4. Let 1 � p,q � ∞. There exists a constant C > 0 such that, for every symmetric
matrix A ∈ GL(d,R), with eigenvalues λ1, . . . , λd , we have

‖fA‖Mp,q � C

d∏
j=1

(
max

{
1, |λj |

})μ1(p,q)(min
{
1, |λj |

})μ2(p,q)‖f ‖Mp,q , (22)

for every f ∈ Mp,q(Rd).
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Conversely, if there exist αj ∈ R, βj ∈ R such that, for every λj �= 0,

‖fA‖Mp,q � C

d∏
j=1

(
max

{
1, |λj |

})αj
(
min

{
1, |λj |

})βj ‖f ‖Mp,q , ∀f ∈ Mp,q
(
R

d
)
,

with A = diag[λ1, . . . , λd ], then αj � μ1(p, q) and βj � μ2(p, q).

Proof. The necessary conditions are an immediate consequence of the one-dimensional case, al-
ready contained in Theorem 3.3. Indeed, it can be seen by taking f as tensor product of functions
of one variable and by leaving free to vary just one eigenvalue, the remaining eigenvalues being
all equal to one.

Let us come to the first part of the theorem. It suffices to prove it in the diagonal case
A = D = diag[λ1, . . . , λd ]. Indeed, since A is symmetric, there exists an orthogonal matrix T

such that A = T −1DT , and D is a diagonal matrix. On the other hand, by Proposition 3.1, we
have ‖fA‖Mp,q � ‖fT −1D‖Mp,q = ‖(fT −1)D‖Mp,q and ‖fT −1‖Mp,q � ‖f ‖Mp,q ; hence the gen-
eral case in (22) follows from the diagonal case A = D, with f replaced by fT −1 .

From now onward, A = D = diag[λ1, . . . , λd ].
If the theorem holds true for a pair (p, q), with (1/p,1/q) ∈ [0,1]× [0,1], then it is also true

for their dual pair (p′, q ′) (with f ∈ S if p′ = 1 or q ′ = 1, see (13)). Indeed,

‖fD‖
Mp′,q′ = sup

‖g‖Mp,q �1

∣∣〈fD,g〉∣∣ = |detD|−1 sup
‖g‖Mp,q �1

∣∣〈f,gD−1〉∣∣
� |detD|−1‖f ‖

Mp′,q′ sup
‖g‖Mp,q �1

‖gD−1‖Mp,q

�
d∏

j=1

|λj |−1
d∏

j=1

(
max

{
1, |λj |−1})μ1(p,q)(min

{
1, |λj |−1})μ2(p,q)‖f ‖

Mp′,q′

=
d∏

j=1

(
max

{
1, |λj |

})μ1(p
′,q ′)(min

{
1, |λj |

})μ2(p
′,q ′)‖f ‖

Mp′,q′ ,

for the index functions μ1 and μ2 fulfill

μ1(p
′, q ′) = −1 − μ2(p, q), μ2(p

′, q ′) = −1 − μ1(p, q). (23)

Hence it suffices to prove the estimate (22) for the case p � q . Notice that the estimate in M1,q ′
,

q ′ > 1, are proved for Schwartz functions only, but they extend to all functions in M1,q ′
, q ′ < ∞,

for S(Rd) is dense in M1,q ′
. The uncovered case (1,∞) will be verified directly at the end of the

proof.
From Fig. 1 it is clear that the estimate (22) for the points in the upper triangles follows

by complex interpolation (Proposition 2.6) from the diagonal case p = q , and the two cases
(p, q) = (∞,1) and (p, q) = (2,1), see Fig. 2.

Case p = q . If d = 1 the claim is true by Theorem 3.3 in dimension d = 1. We then use the
induction method. Namely, we assume that (22) is fulfilled in dimension d − 1 and prove that
still holds in dimension d .
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Fig. 2. The complex interpolation and the duality method.

For x, ξ ∈ R
d , we write x = (x′, xd), ξ = (ξ ′, ξd), with x′, ξ ′ ∈ R

d−1, xd, ξd ∈ R,
D′ = diag[λ1, . . . , λd−1], and choose the Gaussian ϕ(x) = e−π |x|2 = e−π |x′|2e−π |xd |2 =
ϕ′(x′)ϕd(xd) as window function. Observe that VϕfD admits the two representations

VϕfD(x′, xd, ξ ′, ξd) =
∫
Rd

f (λ1t1, . . . , λd td)Mξ ′Tx′ϕ′(t ′)Mξd
Txd

ϕd(td) dt ′ dtd

= Vϕ′
(
(Fxd ,ξd ,λd

)D′
)

= Vϕd

(
(Gx′,ξ ′,D′)λd

)
,

where

Fxd,ξd ,λd
(t ′) = Vϕd

(
f (t ′, λd ·))(xd, ξd), Gx′,ξ ′,D′(td) = Vϕ′

(
f (D′·, td)

)
(x′, ξ ′).

By the inductive hypothesis we have

‖fD‖Mp,p(Rd ) = ‖VϕfD‖Lp(R2d )

=
( ∫

R2

( ∫
R2(d−1)

∣∣Vϕ′
(
(Fxd ,ξd ,λd

)D′
)
(x′, ξ ′)

∣∣p dx′ dξ ′
)

dxd dξd

)1/p

�
d−1∏
j=1

(
max

{
1, |λj |

})μ1(p,p)(min
{
1, |λj |

})μ2(p,p)

·
( ∫

R2d

∣∣Vϕ′(Fxd ,ξd ,λd
)(x′, ξ ′)

∣∣p dx dξ

)1/p

=
d−1∏(

max
{
1, |λj |

})μ1(p,p)(min
{
1, |λj |

})μ2(p,p)
j=1
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·
( ∫

R2(d−1)

( ∫
R2

∣∣Vϕd

(
(Gx′,ξ ′,I )λd

)
(xd, ξd)

∣∣p dxd dξd

)
dx′ dξ ′

)1/p

�
d∏

j=1

(
max

{
1, |λj |

})μ1(p,p)(min
{
1, |λj |

})μ2(p,p)‖f ‖Mp,p(Rd ),

where in the last row we used Theorem 3.3 for d = 1.
Case (p, q) = (2,1). First, we prove the case (p, q) = (2,∞) and then obtain the claim by

duality as above, since S is dense in M2,1. Namely, we want to show that

‖fD‖M2,∞ �
d∏

j=1

(
max

{
1, |λj |

})−1/2(min
{
1, |λj |

})−1‖f ‖M2,∞, ∀f ∈ M2,∞.

The arguments are similar to [35, Lemma 3.5]. We use the characterization of the M2,∞-norm
in (11)

‖fD‖M2,∞ � |detD|−1/2 sup
k∈Zd

∥∥ϕ(D · −k)f̂
∥∥

L2

= |detD|−1/2 sup
k∈Zd

∥∥∥∥ϕ(D · −k)

( ∑
l∈Zd

ϕ(· − l)

)
f̂

∥∥∥∥
L2

. (24)

Observe that∣∣∣∣ϕ(Dt − k)

( ∑
l∈Zd

ϕ(t − l)

)
f̂ (t)

∣∣∣∣2

� 4d
∑
l∈Zd

∣∣ϕ(Dt − k)ϕ(t − l)f̂ (t)
∣∣2

= 4d
∑
l∈Λk

∣∣ϕ(Dt − k)ϕ(t − l)f̂ (t)
∣∣2

,

where

Λk =
{
l ∈ Z

d :

∣∣∣∣lj − kj

λj

∣∣∣∣ � 1 + 1

|λj |
}

and

#Λk � C

d∏
j=1

min
{
1, |λj |

}−1
, ∀k ∈ Z

d

(C being a constant depending on d only). Since |λj | = max{1, |λj |}min{1, |λj |}, the expression
on the right-hand side of (24) is dominated by

C′
d∏

j=1

(
max

{
1, |λj |

})−1/2(min
{
1, |λj |

})−1 sup
m∈Zd

∥∥(MmΦ) ∗ f
∥∥

L2 .

Thereby the norm equivalence (11) gives the desired estimate.
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Case (p, q) = (∞,1). We have to prove that

‖fD‖M∞,1 �
d∏

j=1

max
{
1, |λj |

}‖f ‖M∞,1, ∀f ∈ M∞,1.

This estimate immediately follows from (20), written for A = D = diag[λ1, . . . , λd ]:

‖fD‖M∞,1 �
d∏

j=1

(
1 + λ2

j

)1/2 �
d∏

j=1

max
{
1, |λj |

}‖f ‖M∞,1 .

Case (p, q) = (1,∞). We are left to prove that

‖fD‖M1,∞ �
d∏

j=1

(
max

{
1, |λj |

})−1(min
{
1, |λj |

})−2‖f ‖M1,∞, ∀f ∈ M1,∞.

This is again the estimate (20), written for A = D = diag[λ1, . . . , λd ]:

‖fD‖M1,∞ �
d∏

j=1

|λj |−2
d∏

j=1

max
{
1, |λj |

}‖f ‖M1,∞ . �

Corollary 3.5. Let 1 � p,q � ∞. There exists a constant C > 0 such that, for every symmetric
matrix A ∈ GL(d,R), with eigenvalues λ1, . . . , λd , we have

‖fA‖W(FLp,Lq) � C

d∏
j=1

(
max

{
1, |λj |

})μ1(p
′,q ′)(min

{
1, |λj |

})μ2(p
′,q ′)‖f ‖W(FLp,Lq), (25)

for every f ∈ W(FLp,Lq)(Rd).
Conversely, if there exist αj ∈ R, βj ∈ R such that, for every λj �= 0,

‖fA‖W(FLp,Lq) � C

d∏
j=1

(
max

{
1, |λj |

})αj
(
min

{
1, |λj |

})βj ‖f ‖W(FLp,Lq),

for every f ∈ W(FLp,Lq)(Rd), with A = diag[λ1, . . . , λd ], then αj � μ1(p
′, q ′) and βj �

μ2(p
′, q ′).

Proof. It is a mere consequence of Theorem 3.4 and the index relation (23). Namely,

‖fA‖W(FLp,Lq) = ‖f̂A‖Mp,q = |detA|−1‖f̂A−1‖Mp,q

� C

d∏
|λj |−1

d∏(
max

{
1, |λj |−1})μ1(p,q)(min

{
1, |λj |−1})μ2(p,q)‖f̂ ‖Mp,q
j=1 j=1
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= C

d∏
j=1

(
max

{
1, |λj |

})μ1(p
′,q ′)(min

{
1, |λj |

})μ2(p
′,q ′)‖f ‖W(FLp,Lq).

The necessary conditions use the same argument. �
4. Action of metaplectic operators on Wiener amalgam spaces

In this section we study the continuity property of metaplectic operators on Wiener amalgam
spaces, giving bounds on their norms. Here is our first result.

Theorem 4.1. Let A = (
A B
C D

) ∈ Sp(d,R), and 1 � p � q � ∞.
(i) If detB �= 0, then∥∥μ(A)f

∥∥
W(FLp,Lq)

� α(A,p, q)‖f ‖W(FLq,Lp), (26)

where

α(A,p, q) = |detB|1/q−1/p−3/2
∣∣det(I + B∗B)(B + iA)(B + iD)

∣∣1/2
. (27)

(ii) If detA,detB �= 0, then∥∥μ(A)f
∥∥

W(FL1,L∞)
� β(A)‖f ‖W(FL∞,L1), (28)

with

β(A) = |detA|−3/2|detB|−1
∣∣det(I + A∗A)(B + iA)(A + iC)

∣∣1/2
. (29)

If the matrices A or B are symmetric, Theorem 4.1 can be sharpened as follows.

Theorem 4.2. Let A = (
A B
C D

) ∈ Sp(d,R), and 1 � p � q � ∞.
(i) If detB �= 0, B∗ = B , with eigenvalues λ1, . . . , λd , then∥∥μ(A)f

∥∥
W(FLp,Lq)

� α′(A,p, q)‖f ‖W(FLq,Lp), (30)

where

α′(A,p, q) = ∣∣det(B + iA)(B + iD)
∣∣1/2

·
d∏

j=1

(
max

{
1, |λj |

})μ1(p,q)−1/2(min
{
1, |λj |

})μ2(p,q)−1/2
. (31)

(ii) If detA,detB �= 0, and A∗ = A with eigenvalues ν1, . . . , νd , then∥∥μ(A)f
∥∥

W(FL1,L∞)
� β ′(A)‖f ‖W(FL∞,L1), (32)

with
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β ′(A) = |detB|−1
∣∣det(B + iA)(A + iC)

∣∣1/2

·
d∏

j=1

(
max

{
1, |νj |

})−1/2(min
{
1, |νj |

})−3/2
. (33)

We now prove Theorems 4.1 and 4.2. We need the following preliminary result.

Lemma 4.1. Let R be a d × d real symmetric matrix, and f (y) = e−πiRy·y . Then,

‖f ‖W(FL1,L∞) = ∣∣det(I + iR)
∣∣1/2

. (34)

Proof. We first compute the short-time Fourier transform of f , with respect to the window
g(y) = e−π |y|2 . We have

Vgf (x, ξ) =
∫

e−2πiyξ e−iπRy·ye−π |y−x|2 dy

= e−π |x|2
∫

e−2πiy·(ξ+ix)−π(I+iR)y·y dy

= e−π |x|2(det(I + iR)
)−1/2

e−π(I+iR)−1(ξ+ix)·(ξ+ix),

where we used [19, Theorem 1, p. 256]. Hence∣∣Vgf (x, ξ)
∣∣ = ∣∣det(I + iR)

∣∣−1/2
e−π(I+R2)−1(ξ+Rx)·(ξ+Rx),

and, performing the change of variables (I + R2)−1/2(ξ + Rx) = y, with dξ = |det(I +
R2)|1/2 dy, we obtain∫
Rd

Vgf (x, ξ) dξ = ∣∣det(I + iR)
∣∣−1/2(det

(
I + R2))1/2

∫
Rd

e−π |y|2 dy = ∣∣det(I + iR)
∣∣1/2

. (35)

The last equality follows from (I + iR) = (I +R2)(I − iR)−1, so that det(I + iR)−1 = det(I +
R2)−1 det(I − iR). Now, relation (34) is proved by taking the supremum with the respect to
x ∈ R

d in (35). �
Proof of Theorem 4.1. (i) We use the expression of μ(A)f in formula (15). The estimates below
are obtained by using (in order): Proposition 2.5 with Lemma 4.1, the estimate (21), Proposi-
tion 2.2, and, finally, Proposition 2.5 combined with Lemma 4.1 again:∥∥μ(A)f

∥∥
W(FLp,Lq)

= |detB|−1/2
∥∥e−πix·DB−1xF−1(e−πiy·B−1Ayf

)(
B−1x

)∥∥
W(FLp,Lq)

� |detB|−1/2
∥∥e−πix·DB−1x

∥∥
W(FL1,L∞)

· ∥∥(
F−1(e−πiy·B−1Ayf

))
B−1

∥∥
W(FLp,Lq)

� |detB|1/q−1/p−1/2(det(B∗B + I )
)1/2∣∣det

(
I + iDB−1)∣∣1/2
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· ∥∥F−1(e−πiy·B−1Ayf
)∥∥

W(FLp,Lq)

� |detB|1/q−1/p−1/2(det(B∗B + I )
)1/2∣∣det

(
I + iDB−1)∣∣1/2

· ∥∥e−πiy·B−1Ayf
∥∥

W(FLq,Lp)

� α(A,p, q)‖f ‖W(FLq,Lp)

with α(A,p, q) given by (27).
(ii) In this case, we use formula (17). Then, proceeding likewise the case (i), we majorize as

follows:

∥∥μ(A)f
∥∥

W(FL1,L∞)
= |detB|−1/2

∥∥e−πix·CA−1x
(
e−πiy·B−1Ay ∗ f

)(
A−1x

)∥∥
W(FL1,L∞)

� |detB|−1/2
∥∥e−πix·CA−1x

∥∥
W(FL1,L∞)

· ∥∥(
e−πiy·B−1Ay ∗ f

)
A−1

∥∥
W(FL1,L∞)

� |detB|−1/2|detA|−1(det(A∗A + I )
)1/2∣∣det

(
I + iCA−1)∣∣1/2

· ∥∥e−πiy·B−1Ay ∗ f
∥∥

W(FL1,L∞)

� β(A)‖f ‖W(FL∞,L1),

where the last row is due to (8), with β(A) defined in (29). �
Proof of Theorem 4.2. The proof uses the same arguments as in Theorem 4.1. Here, the estimate
(21) is replaced by (25). Besides, the index relation (23) is applied in the final step. In details,

∥∥μ(A)f
∥∥

W(FLp,Lq)
� |detB|−1/2

∥∥e−πix·DB−1x
∥∥

W(FL1,L∞)

· ∥∥(
F−1(e−πiy·B−1Ayf

))
B−1

∥∥
W(FLp,Lq)

�
d∏

j=1

|λj |−1/2
∣∣det

(
I + iDB−1)(I + iB−1A

)∣∣1/2

·
d∏

j=1

(
max

{
1, |λj |−1})μ1(p

′,q ′)(min
{
1, |λj |−1})μ2(p

′,q ′)‖f ‖W(FLq,Lp)

= ∣∣det(B + iD)(B + iA)
∣∣1/2

·
d∏

j=1

(
max

{
1, |λj |

})μ1(p,q)−1/2(min
{
1, |λj |

})μ2(p,q)−1/2‖f ‖W(FLq,Lp),

that is case (i). Case (ii) indeed is not an improvement of (28) but is just (28) rephrased in terms
of the eigenvalues of A. �



E. Cordero, F. Nicola / Journal of Functional Analysis 254 (2008) 506–534 525
Remark 4.3. The above theorems require the condition detB �= 0. However, in some special
cases with detB = 0, the previous results can still be used to obtain estimates between Wiener
amalgam spaces. For example, if A = (

I 0
C I

)
, with C = C∗, then μ(A)f (x) = ±e−πiCx·xf (x)

(see (14)), so that, for every 1 � p,q � ∞, Proposition 2.5 and the estimate (34) give

∥∥μ(A)f
∥∥

W(FLp,Lq)
�

d∏
j=1

(
1 + λ2

j

)1/4‖f ‖W(FLp,Lq),

where the λj ’s are the eigenvalues of C (incidentally, this estimate was already shown in [1,3,9]).

5. Applications to the Schrödinger equation

In this section we apply the previous results to the analysis of the Cauchy problem of
Schrödinger equations with quadratic Hamiltonians, i.e.⎧⎨⎩ i

∂u

∂t
+ HAu = 0,

u(0, x) = u0(x),

(36)

where HA is the Weyl quantization of a quadratic form on the phase space R
2d , defined from a

matrix A in the Lie algebra sp(d,R) of the symplectic group as follows (see [12,19]).
Any given matrix A ∈ sp(d,R) defines a quadratic form PA(x, ξ) in R

2d via the formula

PA(x, ξ) = −1

2
t(x, ξ)AJ (x, ξ),

where, as usual, J = (
0 I−I 0

)
(notice that AJ is symmetric). Explicitly, if A = (

A B
C D

) ∈ sp(d,R)

then

PA(x, ξ) = 1

2
ξ · Bξ − ξ · Ax − 1

2
x · Cx. (37)

From the Weyl quantization, the quadratic polynomial PA in (37) corresponds to the Weyl oper-
ator Pw

A(D,X) defined by

2πPw
A(D,X) = − 1

4π

d∑
j,k=1

Bj,k

∂2

∂xj ∂xk

+ i

d∑
j,k=1

Aj,kxk

∂

∂xj

+ i

2
Tr(A) − π

d∑
j,k=1

Cj,kxj xk.

The operator HA := 2πPw
A(D,X) is called the Hamiltonian operator.

The evolution operator for (36) is related to the metaplectic representation via the following
key formula

eitHA = μ
(
etA)

.

Consequently, Theorems 4.1 and 4.2 can be used in the study of fixed-time estimates for the
solution u(t) = eitHAu0 to (36).
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As an example, consider the matrix A = (
0 B
0 0

) ∈ sp(d,R), with B = B∗. Then the Hamil-
tonian operator is HA = − 1

4π
B∇ · ∇ and eitA = (

I tB
0 I

) ∈ Sp(d,R).
Fix t �= 0. If detB �= 0, and B has eigenvalues λ1, . . . , λd , then the expression of β ′(eitA) in

(33) is given by

β ′(eitA) = 2d/4|det tB|−1
∣∣det(tB + iI )

∣∣1/2 = 2d/4
d∏

j=1

(1 + t2λ2
j

t4λ4
j

)1/4

.

Consequently, the fixed-time estimate (32) is

∥∥eitHAf
∥∥

W(FL1,L∞)
�

d∏
j=1

(1 + t2λ2
j

t4λ4
j

)1/4

‖f ‖W(FL∞,L1),

which generalizes the dispersive estimate in [9], corresponding to B = I .
In the next two sections we present new fixed-time estimates, and also Strichartz estimates, in

the cases of the Hamiltonian HA = − 1
4π

� + π |x|2 and HA = − 1
4π

� − π |x|2.

5.1. Schrödinger equation with Hamiltonian HA = − 1
4π

� + π |x|2

Here we consider the Cauchy problem (36) with the Hamiltonian HA corresponding to the
matrix A = (

0 I−I 0

) ∈ sp(d,R), namely HA = − 1
4π

�+π |x|2. As a consequence of the estimates
proved in the previous section we obtain the following fixed-time estimates.

Proposition 5.1. For 2 � r � ∞, we have the fixed-time estimates∥∥eitHAu0
∥∥

W(FLr′ ,Lr )
� |sin t |−2d( 1

2 − 1
r
)‖u0‖W(FLr ,Lr′ ). (38)

Proof. The symplectic matrix etA reveals to be etA = (
(cos t)I (sin t)I

(− sin t)I (cos t)I

)
.

First, using the estimate (32) we get∥∥eitHAu0
∥∥

W(FL1,L∞)
� |sin t |−d |cos t |− 3

2 d‖u0‖W(FL∞,L1). (39)

On the other hand, the estimate (30), for p = 1, q = ∞, reads∥∥eitHAu0
∥∥

W(FL1,L∞)
� |sin t |−5d/2‖u0‖W(FL∞,L1). (40)

Since min{|sin t |−d |cos t |−3d/2, |sin t |−5d/2} 
 |sin t |−d , we obtain (38) for r = ∞, which is the
dispersive estimate.

The estimates (38) for 2 � r � ∞ follow by complex interpolation from the dispersive esti-
mate and the L2–L2 estimate ∥∥eitHAf

∥∥
L2 = ‖f ‖L2 . � (41)

The Strichartz estimates for the solutions to (36) are detailed as follows.
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Theorem 5.2. Let T > 0 and 4 < q, q̃ � ∞, 2 � r, r̃ � ∞, such that

2

q
+ d

r
= d

2
, (42)

and similarly for q̃, r̃ . Then we have the homogeneous Strichartz estimates∥∥eitHAu0
∥∥

Lq/2([0,T ])W(FLr′ ,Lr )x
� ‖u0‖L2

x
, (43)

the dual homogeneous Strichartz estimates

∥∥∥∥∥
T∫

0

e−isHAF(s) ds

∥∥∥∥∥
L2

� ‖F‖
L(q̃/2)′ ([0,T ])W(FLr̃ ,Lr̃′ )x , (44)

and the retarded Strichartz estimates∥∥∥∥ ∫
0�s<t

ei(t−s)HAF(s) ds

∥∥∥∥
Lq/2([0,T ])W(FLr′ ,Lr )x

� ‖F‖
L(q̃/2)′ ([0,T ])W(FLr̃ ,Lr̃′ )x . (45)

Consider then the endpoint P := (4,2d/(d − 1)). For (q, r) = P , d > 1, we have∥∥eitHAu0
∥∥

L2([0,T ])W(FLr′,2,Lr )x
� ‖u0‖L2

x
, (46)

∥∥∥∥∥
T∫

0

e−isHAF(s) ds

∥∥∥∥∥
L2

� ‖F‖
L2([0,T ])W(FLr,2,Lr′ )x . (47)

The retarded estimates (45) still hold with (q, r) satisfying (42), q > 4, r � 2, (q̃, r̃) = P , if
one replaces FLr̃ ′

by FLr̃ ′,2. Similarly it holds for (q, r) = P and (q̃, r̃) �= P as above if one
replaces FLr ′

by FLr ′,2. It holds for both (p, r) = (p̃, r̃) = P if one replaces FLr ′
by FLr ′,2

and FLr̃ ′
by FLr̃ ′,2.

In the previous theorem the bounds may depend on T .

Proof. The arguments are essentially the ones in [9,27]. For the convenience of the reader, we
present the guidelines of the proof.

Due to the property group of the evolution operator eitHA , we can limit ourselves to the case
T = 1. Indeed, observe that, if (43) holds for a given T > 0, it holds for any 0 < T ′ � T as well,
so that it suffices to prove (43) for T = N integer. Since

∥∥eitHAu0
∥∥ q

2

Lq/2([0,N ])W(FLr′ ,Lr )x
=

N−1∑
k=0

∥∥eitHAeikHAu0
∥∥ q

2

Lq/2([0,1])W(FLr′ ,Lr )x
,

the T = N case is reduced to the T = 1 case by using (43) for T = 1 and the conservation
law (41). The other estimates can be treated analogously. Whence from now on T = 1.
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Consider first the non-endpoint case. Set U(t) = χ[0,1](t)eitHA . For 2 � r � ∞, using rela-
tion (38), we get ∥∥U(t)

(
U(s)

)∗
f

∥∥
W(FLr′ ,Lr )

� |t − s|−2d( 1
2 − 1

r
)‖f ‖

W(FLr ,Lr′ ). (48)

By the T T ∗ method1 (see, e.g., [20, Lemma 2.1] or [32, p. 353]) the estimate (43) is equivalent
to ∥∥∥∥∫

U(t)
(
U(s)

)∗
F(s) ds

∥∥∥∥
L

q/2
t W(FLr′ ,Lr )x

� ‖F‖
L

(q/2)′
t W(FLr̃ ,Lr′ )x

. (49)

The estimate above is attained by applying Minkowski’s Inequality and the Hardy–Littlewood–
Sobolev inequality (5) to the estimate (48). The dual homogeneous estimates (44) follow
by duality. Finally, the retarded estimates (45), with (1/q,1/r), (1/q̃,1/r̃) and (1/∞,1/2)

collinear, follow by complex interpolation from the three cases (q̃, r̃) = (q, r), (q, r) = (∞,2)

and (q̃, r̃) = (∞,2), which in turns are a consequence of (49) (with χs<tF in place of F ), (44)
(with χs<tF in place of F ) and the duality argument, respectively.

We are left to the endpoint case: (q, r) = (2,2d/(d − 1)). The estimate (46) is equivalent to
the bilinear estimate∣∣∣∣∫ ∫ 〈(

U(s)
)∗

F(s),
(
U(t)

)∗
G(t)

〉
ds dt

∣∣∣∣ � ‖F‖
L2

t W(FLr,2,Lr′ )x ‖G‖
L2

t W(FLr,2,Lr′ )x .

By symmetry, it is enough to prove∣∣T (F,G)
∣∣ � ‖F‖

L2
t W(FLr,2,Lr′ )x ‖G‖

L2
t W(FLr,2,Lr′ )x , (50)

where

T (F,G) =
∫ ∫
s<t

〈(
U(s)

)∗
F(s),

(
U(t)

)∗
G(t)

〉
ds dt.

To this aim, T (F,G) is decomposed dyadically as T = ∑
j∈Z

Tj , with

Tj (F,G) =
∫ ∫

t−2j+1<s�t−2j

(
U(s)

)∗
F(s),

(
U(t)

)∗
G(t)〉ds dt. (51)

By resorting on (44) one can prove exactly as in [27, Lemma 4.1] the following estimates:∣∣Tj (F,G)
∣∣ � 2−jβ(a,b)‖F‖

L2
t W(FLa,La′

)
‖G‖

L2
t W(FLb,Lb′

)
, (52)

for (1/a,1/b) in a neighborhood of (1/r,1/r), with β(a, b) = d − 1 − d
a

− d
b

.

1 This duality argument is generally established for Lp spaces. Its use for Wiener amalgam spaces is similarly justified
thanks to the duality defined by the Hölder-type inequality [9]∣∣〈F,G〉

L2
t L2

x

∣∣ � ‖F‖
W(Ls,Lq )tW(FLr′ ,Lr )x

‖G‖
W(Ls′ ,Lq′

)tW(FLr ,Lr′ )x .
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The estimate (50) is achieved by means of a real interpolation result, detailed in [27,
Lemma 6.1], and applied to the vector-valued bilinear operator T = (Tj )j∈Z. Here, however,
we must observe that, if Ak = L2

t W(FLak ,Lak
′
)x , k = 0,1, and θ0 fulfills 1/r = (1 − θ0)/

a0 + θ0/a1, then

L2
t W

(
FLr,2,Lr ′)

x
⊂ (A0,A1)θ0,2.

The above inclusion follows by [41, Theorem 1.18.4, p. 129] (with p = p0 = p1 = 2) and Propo-
sition 2.3. This gives (46) and (47).

Consider now the endpoint retarded estimates. The case (q̃, r̃) = (q, r) = P is exactly (50).
The case (q̃, r̃) = P , (q, r) �= P , can be obtained by a repeated use of Hölder’s inequality to
interpolate from the case (q̃, r̃) = (q, r) = P and the case (q̃, r̃) = P , (q, r) = (∞,2) (that
is clear from (47)). Finally, the retarded estimate in the case (q, r) = P , (q̃, r̃) �= P , follows by
applying the arguments above to the adjoint operator G �→ ∫

t>s
(U(t))∗U(s)G(t) dt , which gives

the dual estimate. �
5.2. Schrödinger equation with Hamiltonian HA = − 1

4π
� − π |x|2

The Hamiltonian operator HA = − 1
4π

� − π |x|2 corresponds to the matrix A = (
0 I
I 0

) ∈
sp(d,R). In this case,

etA =
(

(cosh t)I (sinh t)I

(sinh t)I (cosh t)I

)
∈ Sp(d,R).

Fixed-time estimates for HA are as follows.

Proposition 5.3. For 2 � r � ∞,

∥∥eitHAu0
∥∥

W(FLr′ ,Lr )
�

(
1 + |sinh t |

sinh2 t

)d( 1
2 − 1

r
)

‖u0‖W(FLr ,Lr′ ). (53)

Proof. The estimate (32) yields the dispersive estimate

∥∥eitHAu0
∥∥

W(FL1,L∞)
�

(
1 + |sinh t |

sinh2 t

) d
2 ‖u0‖W(FL∞,L1). (54)

(Observe that (30), with p = 1, q = ∞, gives a bound worse than (54).)
The estimates (53) follow by complex interpolation between the dispersive estimate (54) and

the conservation law (41). �
We can now establish the corresponding Strichartz estimates.

Theorem 5.4. Let 4 < q, q̃ � ∞, 2 � r, r̃ � ∞, such that

2 + d = d
, (55)
q r 2
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and similarly for q̃, r̃ . Then we have the homogeneous Strichartz estimates∥∥eitHAu0
∥∥

W(Lq/2,L2)tW(FLr′ ,Lr )x
� ‖u0‖L2

x
, (56)

the dual homogeneous Strichartz estimates∥∥∥∥∫
e−isHAF(s) ds

∥∥∥∥
L2

� ‖F‖
W(L(q̃/2)′ ,L2)tW(FLr̃ ,Lr̃′ )x , (57)

and the retarded Strichartz estimates∥∥∥∥∥
∫

s<t

ei(t−s)HAF(s) ds

∥∥∥∥∥
W(Lq/2,L2)tW(FLr′ ,Lr )x

� ‖F‖
W(L(q̃/2)′ ,L2)tW(FLr̃ ,Lr̃′ )x . (58)

Consider then the endpoint P := (4,2d/(d − 1)). For (q, r) = P , d > 1, we have∥∥eitHAu0
∥∥

L2
t W(FLr′,2,Lr )x

� ‖u0‖L2
x
, (59)∥∥∥∥∫

e−isHAF(s) ds

∥∥∥∥
L2

� ‖F‖
L2

t W(FLr,2,Lr′ )x . (60)

The retarded estimates (58) still hold with (q, r) satisfying (55), q > 4, r � 2, (q̃, r̃) = P , if
one replaces FLr̃ ′

by FLr̃ ′,2. Similarly it holds for (q, r) = P and (q̃, r̃) �= P as above if one
replaces FLr ′

by FLr ′,2. It holds for both (p, r) = (p̃, r̃) = P if one replaces FLr ′
by FLr ′,2

and FLr̃ ′
by FLr̃ ′,2.

Proof. Let us first prove (56). By the T T ∗ method it suffices to prove∥∥∥∥∫
ei(t−s)HAF(s) ds

∥∥∥∥
W(Lq/2,L2)tW(FLr′ ,Lr )x

� ‖F‖
W(L(q/2)′ ,L2)tW(FLr ,Lr′ )x . (61)

For 0 < α < 1/2, let φα(t) = |sinh t |−α + |sinh t |−2α , t ∈ R, t �= 0. A direct computation shows

that φα ∈ W(L1/(2α),∞,L1). Since L1 ∗L2 ↪→ L2 (Young’s Inequality) and L( 1
α
)′ ∗L

1
2α

,∞ ↪→ L
1
α

(Proposition 2.1), Lemma 2.1(i) gives the convolution relation

‖F ∗ φα‖W(L1/α,L2/α) � ‖F‖
W(L(1/α)′ ,L(2/α)′ ). (62)

Fix now α = d(1/2 − 1/r) = 2/q; then, by (53), (62) and Minkowski’s Inequality,∥∥∥∥∫
ei(t−s)HAF(s) ds

∥∥∥∥
W(Lq/2,L2)tW(FLr′ ,Lr )x

�
∥∥∥∥∫ ∥∥ei(t−s)HAF(s)

∥∥
W(FLr′ ,Lr )x

ds

∥∥∥∥
W(Lq/2,L2)t

�
∥∥∥∥F(t)

∥∥
W(FLr′ ,Lr )x

∗ φα(t)
∥∥

W(Lq/2,L2)t

� ‖F‖ (q/2)′ 2 r r′ .

W(L ,L )tW(FL ,L )x
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This proves (61) and whence (56). The estimate (57) follows from (56) by duality. The proof
of (58) is analogous to (45) in Theorem 5.2.

For the endpoint case one can repeat essentially verbatim the arguments in the proof of Theo-
rem 5.2, upon setting U(t) = eitHA . To avoid repetitions, we omit the details (see also the proof
of [9, Theorem 1.2]). �
Remark 5.5. As an application of the previous Strichartz estimates for the operators H =
− 1

4π
� ± π |x|2 we can study the well-posedness in L2 for the following Cauchy problem:

{
i∂tu + Hu = V (t, x)u, t ∈ [0, T ] = IT , x ∈ R

d,

u(0, x) = u0(x),
(63)

for the class of potentials

V ∈ Lα
(
IT ;W (

FLp′
,Lp

)
x

)
,

1

α
+ d

p
� 1, 1 � α < ∞, d < p � ∞. (64)

Namely, we have the following result.

Theorem 5.6. Let V satisfy (64). Then, for all (q, r) such that 2/q + d/r = d/2, q > 4, r � 2,
the Cauchy problem (63) has a unique solution

(i) u ∈ C(IT ;L2(R)) ∩ Lq/2(IT ;W(FLr ′
,Lr)), if d = 1;

(ii) u ∈ C(IT ;L2(Rd)) ∩ Lq/2(IT ;W(FLr ′
,Lr)) ∩ L2(IT ;W(FL2d/(d+1),2,L2d/(d−1))), if

d > 1.

The proof is omitted, since it goes through exactly in the same manner as that detailed in [10,
Theorem 6.1], for the case H = �. Indeed, it relies entirely on the Strichartz estimates proved
above.

5.3. Comparison with the classical estimates in Lebesgue spaces

Here we compare the above estimates with the classical ones between Lebesgue spaces. For
the convenience of the reader we recall the following very general result by Keel and Tao [27,
Theorem 1.2].

Given σ > 0, we say that an exponent pair (q, r) is sharp σ -admissible if 1/q + σ/r = σ/2,
q � 2, r � 2, (q, r, σ ) �= (2,∞,1).

Theorem 5.7. Let (X,S,μ) be a σ -finite measured space, and U : R → B(L2(X,S,μ)) be a
weakly measurable map satisfying, for some σ > 0,∥∥U(t)f

∥∥
L2 � ‖f ‖L2, t ∈ R,

and ∥∥U(s)U(t)∗f
∥∥ ∞ � |t − s|−σ ‖f ‖L1, t, s ∈ R.
L
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Then for every sharp σ -admissible pairs (q, r), (q̃, r̃), one has

∥∥U(t)f
∥∥

L
q
t Lr

x
� ‖f ‖L2,∥∥∥∥∫

U(s)∗F(s) ds

∥∥∥∥
L2

� ‖F‖
L

q′
t Lr′

x

,∥∥∥∥ ∫
s<t

U(t)U(s)∗F(s) ds

∥∥∥∥
L

q
t Lr

x

� ‖F‖
Lq̃′

Lr̃′ .

First we fix the attention to the case of the Hamiltonian HA = − 1
4π

� + π |x|2. One has the
following explicit formula for eitHAu0 = μ(eitA)u0 in (15):

eitHAu0 = id/2(sin t)−d/2
∫

e−πi(cot t)(|x|2+|y|2)+2πi(cosec t)y·xu0(y) dy.

Hereby it follows immediately the dispersive estimate∥∥eitHAu0
∥∥

L∞ � |sin t |−d/2‖u‖L1 . (65)

Notice that (3) (i.e. (38) with r = ∞) represents an improvement of (65) for every fixed t �= 0,
since L1 ↪→ W(FL∞,L1) and W(FL1,L∞) ↪→ L∞. However, as might be expected, the
bound on the norm in (3) becomes worse than that in (65) as t → kπ , k ∈ Z.

As a consequence of (65), Theorem 5.7 with U(t) = eitHAχ[0,1](t) and σ = d/2, and the
group property of the operator eitHA (as in the proof of Theorem 5.2 above) one deduces, for
example, the homogeneous Strichartz estimate∥∥eitHAu0

∥∥
Lq([0,T ])Lr

x
� ‖u0‖L2

x
, (66)

for every pair (q, r) satisfying 2/q + d/r = d/2, q � 2, r � 2, (q, r, d) �= (2,∞,2). These
estimates were also obtained recently in [29] by different methods.

Hence, one sees that (43) predicts, for the solution to (36), a better local spatial regularity than
(66), but just after averaging on [0, T ] by the Lq/2 norm, which is smaller than the Lq norm.

We now consider the case of the Hamiltonian HA = − 1
4π

� − π |x|2.
The dispersive estimate here reads∥∥eitHAu0

∥∥
L∞(Rd )

� |sinh t |−d/2‖u0‖L1(Rd ). (67)

This estimate follows immediately from the explicit expression of eitHAu0 = μ(eitA)u0 in (15):

eitHAu0 = id/2(sinh t)−d/2
∫

e−πi(coth t)(|x|2+|y|2)+2πi(cosech t)y·xu0(y) dy.

The corresponding Strichartz estimates between the Lebesgue spaces read∥∥eitHAu0
∥∥ q r � ‖u0‖L2 , (68)
Lt Lx x
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for q � 2, r � 2, with 2/q + d/r = d/2, (q, r, d) �= (2,∞,2). These estimates are the issues of
Theorem 5.7 with U(t) = eitHA , and the dispersive estimate (67) (indeed, |sinh t |−d/2 � |t |−d/2).
These estimates are to be compared with (53) (with r = ∞) and (56), respectively.

One can do the same remarks as in the previous case. In addition here one should observe that
(56) displays a better time decay at infinity than the classical one (L2 instead of Lr ), for a norm,
‖u(t, ·)‖

W(FLr′ ,Lr )
, which is even bigger than Lr . Notice however that our range of exponents is

restricted to q � 4.
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