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Abstract

We study the action of metaplectic operators on Wiener amalgam spaces, giving upper bounds for their
norms. As an application, we obtain new fixed-time estimates in these spaces for Schrodinger equations
with general quadratic Hamiltonians and Strichartz estimates for the Schrodinger equation with potentials
V(x) = %|x|%.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Wiener amalgam spaces were introduced by Feichtinger [13] in 1980 and soon they re-
vealed to be, together with the closely related modulation spaces, the natural framework for the
time-frequency analysis; see, e.g., [14,15,17,18] and Grochenig’s book [21]. These spaces are
modeled on the L? spaces but they turn out to be much more flexible, since they control the local
regularity of a function and its decay at infinity separately. For example, the Wiener amalgam
space W (B, L), in which typically B = L? or B = FLP, consists of functions which locally
have the regularity of a function in B but globally display a LY decay.
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In this paper we focus our attention on the action of the metaplectic representation on Wiener
amalgam spaces. The metaplectic representation w:Sp(d, R) — U (L*(R?)) of the symplectic
group Sp(d, R) (see the subsequent Section 2 and [19] for details), was first constructed by Se-
gal and Shale [30,31] in the framework of quantum mechanics (though on the algebra level the
first construction is due to van Hove [42]) and by Weil [43] in number theory. Since then the
metaplectic representation has attracted the attention of many people in different fields of mathe-
matics and physics. In particular, we highlight the applications in the framework of reproducing
formulae and wavelet theory [8], frame theory [16], quantum mechanics [12] and PDEs [24,25].

Fix a test function g € C5° and 1 < p, g < 0. Then the Wiener amalgam space W (FLP, LY)
with local component FL? and global component LY is defined as the space of all func-
tions/tempered distributions f such that

I llweELe, Loy = |1 fTegllFre g <09,
where T, g(t) := g(t — x) and the FLP? norm is defined in (6). To give a flavor of the type of
results:

Ifl1<p<g<ooand A= (é g) € Sp(d, R), with det B # 0, then the metaplectic operator
w(A) is a continuous mapping from W(FL4, L) into W(FLP, LY), that is

| f e 1oy < @CA P, DI f lwFLa,Lr)-

The norm upper bound @ = a (A, p, q) is explicitly expressed in terms of the matrix .4 and
the indices p, g (see Theorems 4.1 and 4.2).
This analysis generalizes the basic result [14]:

The Fourier transform F is a continuous mapping between W(F L4, L?) and W(FLP, L9)
if (and only if) 1 < p < g < 0.

Indeed, the Fourier transform F is a special metaplectic operator. If we introduce the sym-

plectic matrix
0 1
Jz[_ ) g] M

then F is (up to a phase factor) the unitary metaplectic operator corresponding to J,
n(J) = (=) F.

A fundamental tool to achieve these estimates is represented by the analysis of the dilation op-
erator f(x)+— f(Ax), for areal invertible d x d matrix A € GL(d, R), with bounds on its norm
in terms of spectral invariants of A. In the framework of modulation spaces such an investigation
was recently developed in the scalar case A = Al by Sugimoto and Tomita [35,36] and by Bényi
and Okoudjou [4]. In Section 3 we study this problem for a general matrix A € GL(d, R) for
both modulation and Wiener amalgam spaces. In particular, we extend the results in [35] to the
case of a symmetric matrix A.
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In the second part of the paper we present some natural applications to partial differential
equations with variable coefficients. Precisely, we study the Cauchy problem for the Schrodinger
equation with a quadratic Hamiltonian, namely

3

i L Hu=0,
ot

u(0, x) =up(x),

2

where H is the Weyl quantization of a quadratic form on R? x R?. The most interesting case is
certainly the Schrodinger equation with a quadratic potential. Indeed, the solution u(¢, x) to (2)
is given by

u(t, x) =e"Mug,

where the operator ¢! is a metaplectic operator, so that the estimates resulting from the previ-
ous sections provide at once fixed-time estimates for the solution u(¢, x), in terms of the initial
datum ug. An example is provided by the harmonic oscillator H = —%A + mlx|? (see, e.g.,
[19,23,29]), for which we deduce the dispersive estimate

itH : —d
”e” uo ||W(_7:L1,L°°) 5 |sinz| ”u()”W(]-'LOC,Ll)- 3)
Another Hamiltonian we take into accountis H = — %A —17|x|? (see [6]). In this case, we show
1 + [sinhe[\ 2
itH sinh# )
e"ug i S\——3—) luoll o L1y 4)
” ” W(FL,L®) < sinh2 ¢ W(FL*®,LY)

In Section 5 we shall combine these estimates with orthogonality arguments as in [9,27] to obtain
space—time estimates: the so-called Strichartz estimates (for the classical theory in Lebesgue
spaces, see [20,26,27,38,39,44]). For instance, the homogeneous Strichartz estimates achieved
for the harmonic oscillator H = —%A + m|x|? read

e g LerqoTywEL” L, < ol 2

forevery T > 0,4 <q,q <00,2<r, 7 <o0o,suchthat2/q+d/r =d/2, and, similarly, for g, 7.
In the endpoint case (g,r) = (4,2d/(d — 1)), d > 1, we prove the same estimate with F L
replaced by the slightly larger FL’-2, where L" 2 is a Lorentz space (Theorem 5.2).

The case of the Hamiltonian H = —éA — 7|x|? will be detailed in Section 5.2. Finally, we
shall compare all these estimates with the classical ones in the Lebesgue spaces (Section 5.3).

Our analysis combines techniques from time-frequency analysis (e.g., convolution relations,
embeddings and duality properties of Wiener amalgam and modulation spaces) with methods
from classical harmonic analysis and PDE’s theory (interpolation results, Holder-type inequali-
ties, fractional integration theory).

This study carries on the one in [9], developed for the usual Schrodinger equation (H = A).

We record that hybrid spaces like the Wiener amalgam ones had appeared before as a technical
tool in PDEs (see, e.g., Tao [37]). Notice that fixed-time estimates between modulation spaces in
the case H = A were first considered in [1] and, independently, in [3,4], and they were used to
obtain well-posedness results on such spaces [2,5].
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Finally we observe that, by combining the Strichartz estimates in the present paper with argu-
ments from functional analysis as in [11], well-posedness in suitable Wiener amalgam spaces
can also be proved for Schrédinger equations as above with an additional potential term in
LYW (FLP, LP), (see Remark 5.5).

Notation. We define |x |2 =x - x, for x € R¢, where x - y = xy is the scalar product on RY. The
space of smooth functions with compact support is denoted by C;° (R?), the Schwartz class is
S(RY), the space of tempered distributions S’ (R?Y. The Fourier transform is normalized to be
f&) =FfE) = [ f(t)e > dr. Translation and modulation operators (time and frequency
shifts) are defined, respectively, by

T f(t)=f(—x) and Mg f@) =" f(0).
We have the formulas (Txf)AzM,xf, (Mg fY = Tgf, and M:T, = e2mixE T, M. The notation
A < B means A < ¢B for a suitable constant ¢ > 0, whereas A =< B means ¢ 1A < B <cA,
for some ¢ > 1. The symbol B; < B, denotes the continuous embedding of the linear space B
into By.
2. Function spaces and preliminaries

2.1. Lorentz spaces [33,34]

We recall that the Lorentz space L7 on R? is defined as the space of temperate distributions

f such that
0 1/q
||f||;q=<%/ [1177 £* ()] ) < oo,
0

when 1 < p <00, 1< g < o0, and
£ 1%, = supt'/? f*(1) < o0,
t>0

when 1 < p < 00, g = 00. Here, as usual, A(s) = |{| f| > s}| denotes the distribution function
of f and f*(¢) =inf{s: A(s) <t}.

One has LP9" — LP92 if q; < g, and LPP = LP. Moreover, for 1 < p < 0o and 1 <
q < 00, LP1 is anormed space and its norm || - || . ».¢ is equivalent to the above quasi-norm || - || j,‘,q

We now recall the following generalized Hardy-Littlewood—Sobolev fractional integration
theorem (see, e.g., [32, p. 119] and [41, Theorem 2, p. 139]), which will be used in the sequel
(the original fractional integration theorem corresponds to the model case of convolution by
Kx)=|x|"%e LY*® 0 <a<d).

Proposition 2.1. Let 1 < p<qg <00, 0<a <d,withl/p=1/qg+ 1 —«a/d. Then,

LP(RY) % LY*®(R?) — L4 (RY). (5)
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2.2. Wiener amalgam spaces [13—-15,17,18]

Let g € Cy° be a test function that satisfies ||g|| ;2 = 1. We will refer to g as a window function.
For 1 < p < oo, recall the FL? spaces, defined by

FLP(RY) = {feS'(RY): Ine LP(RY), h=f}:
they are Banach spaces equipped with the norm

IfllFLe = IkllLe, withh = f. (6)

Let B be one of the following Banach spaces: L?, FLP, 1 < p < oo, LP9, 1 <p<o00,1<g <
00, possibly valued in a Banach space, or also spaces obtained from these by real or complex
interpolation. Let C be one of the following Banach spaces: L?, 1 < p <oo,or LP9, 1< p <
00, 1 < g < oo, scalar-valued. For any given function f which is locally in B (i.e. gf € B,
Vg € C37), weset fp(x) = fTxgllB-

The Wiener amalgam space W (B, C) with local component B and global component C is
defined as the space of all functions f locally in B such that fp € C. Endowed with the norm
I fllwes.c) = IlfBllc. W(B, C) is a Banach space. Moreover, different choices of g € C3° gen-
erate the same space and yield equivalent norms.

If B = FL' (the Fourier algebra), the space of admissible windows for the Wiener amalgam
spaces W(FL!, C) can be enlarged to the so-called Feichtinger algebra W (FL', L!). Recall
that the Schwartz class S is dense in W (FL', L1).

We use the following definition of mixed Wiener amalgam norms. Given a measurable func-
tion F of the two variables (¢, x) we set

IFllwa zoy,wereneo, = [[FC D o v lwan po),-

Observe that [9]
IFllwan o, wiren e, = Dl oy a1z 12y
The following properties of Wiener amalgam spaces will be frequently used in the sequel.

Lemma 2.1. Let B;, C;, i = 1,2,3, be Banach spaces such that W(B;, C;) are well defined.
Then:

(i) (Convolution) If By * By — B3 and C1 * Co — C3, we have
W(Bi1, C1) x W(Ba, C2) — W(B3, C3). (7N
In particular, for every 1 < p, g < 00, we have
I f*ullwEre.Lay < 1 fllwrre oy llullwFEre, Loy ®)
(ii) (Inclusions) If B| < By and C1 — C3,

W(B1, Cy) = W(B;, C2).
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Moreover, the inclusion of By into By need only hold “locally” and the inclusion of Ci
into Cy “globally.” In particular, for 1 < p;,q; < 00,1 =1, 2, we have

przpr and qi<q = W(LP', L")~ W(LP L®). ©)
(iii) (Complex interpolation) For 0 < 6 < 1, we have
[W(B1,C1), W(B, Cz)][e] = W ([Bi1. B2ljg. [C1. Caljay),
if C1 or Ca has absolutely continuous norm.
(iv) (Duality) If B, C’ are the topological dual spaces of the Banach spaces B, C, respectively,
and the space of test functions Cg° is dense in both B and C, then

W(B,C) =W (B, C). (10)

Proposition 2.2. For every 1 < p < g < oo, the Fourier transform F maps W(FL4, LP) in
W(FLP, L1) continuously.

The proof of all these results can be found in [13-15,22].
The subsequent result of real interpolation is proved in [9].

Proposition 2.3. Given two local components By, By as above, for every 1 < pg, p1 < 00,
0<0<1,1/p=10—-80)/po+6/p1, and p < q we have

W((Bo, B1),q. L?) < (W (Bo, L), W(By, LPl))M
2.3. Modulation spaces [21]

Let g € S be a non-zero window function. The short-time Fourier transform (STFT) V, f of
a function/tempered distribution f with respect to the window g is defined by

Vof(z,6) = / eI £ (y)g(y — 2)dy,

i.e., the Fourier transform F applied to f7.g.
For 1 < p, g < oo, the modulation space M?-9(R") is defined as the space of temperate
distributions f on R” such that the norm

1 lwara = [[Ve s ¢ &) o]

q
Lg

is finite. Among the properties of modulation spaces, we record that M>2 = L%, MP1-91 —
MP22 if p; < py and q| < q2. If p, g < oo, then (MP:4) = MP 1,
For comparison, notice that the norm in the Wiener amalgam spaces W (FL?, LY) reads

I lweFer,eo = || Vef @) Lo s

The relationship between modulation and Wiener amalgam spaces is expressed by the following
result.



512 E. Cordero, F. Nicola / Journal of Functional Analysis 254 (2008) 506-534

Proposition 2.4. The Fourier transform establishes an isomorphism F : MP1 — W (FLP, L9).

Consequently, convolution properties of modulation spaces can be translated into point-wise
multiplication properties of Wiener amalgam spaces, as shown below.

Proposition 2.5. For every 1 < p, g < 00 we have

| fullwFre.Lay < 1 lwre ooy llullwFLe Lay-
Proof. From Proposition 2.4, the estimate to prove is equivalent to

IS xdllgra <Iflpproo il prras

but this is a special case of [7, Proposition 2.4]. 0O

The characterization of the M%*°-norm in [35, Lemma 3.4], see also [28], can be rephrased
in our context as follows.

Lemma 2.2. Suppose that ¢ € S(R?) is a real-valued function satisfying ¢ > C on[—1/2,1/2]%,
for some constant C > 0, suppe C [—1, l]d, o) = ¢(—t) and Zkezd ot —k)=1 for all
t € RY. Then

1 £ ll a2 < sup | (Mx®@) % £ 2, (11)
kezd

forall f € M>®, where & = F~ L.

To compute the M?9-norm we shall often use the duality technique, justified by the result
below (see [21, Proposition 11.3.4 and Theorem 11.3.6] and [35, relation (2.1)]).

Lemma 2.3. Let ¢ € S(RY), with |¢lla =1, 1 < p,q < 00. Then (MP-9)* = MP"9, under the
duality

(f.8)= (Vo f. Vypg) = f Vo f(x,0)Vyg(x, w)dxds, 12)
R2d

for feMPi ge M
Lemma 2.4. Assume 1 < p,q < oo and f € MP49. Then

I fllmra = sup |(f.8)] (13)

gl pr g <1

Notice that (13) still holds true whenever p = 1 org = 1 and f € S(R?), simply by extending
[21, Theorem 3.2.1] to the duality s/ (-,-)s.

Finally we recall the behaviour of modulation spaces with respect to complex interpolation
(see [14, Corollary 2.3]).
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Proposition 2.6. Let 1 < p1, p2,q1,q2 < 00, with g < 0o. If T is a linear operator such that,
fori=1,2,

NTfllpgriai <Al fllpria Vf € MPH9E
then
ITfllsra <CAYASN fllagra Vf € MP,

where 1/p =1 —=0)/p1+6/p2, 1/g=00—-0)/q1 +60/q2, 0 <6 < 1, and C is independent
of T.

2.4. The metaplectic representation [19]
The symplectic group is defined by
Sp(d,R) ={g € GLQ2d,R): 'gJg=J},
where the symplectic matrix J is defined in (1). The metaplectic or Shale—Weil representation p
is a unitary representation of the (double cover of the) symplectic group Sp(d, R) on L?(R¢). For

elements of Sp(d, R) in special form, the metaplectic representation can be computed explicitly.
For f € L%(RY), we have

M([g lA(ll])f(x):(detA)]/zf(Alx)7
M<[é (;Df(x):ieiﬂcx’”f(x)- (14)

The symplectic algebra sp(d, R) is the set of all 2d x 2d real matrices A such that e’ Ae Sp(d,R)
forall t e R.

The following formulae for the metaplectic representation can be found in [19, Theorems 4.51
and 4.53].

Proposition 2.7. Let A= (£ B) € Sp(d, R).

(i) Ifdet B # O then
A f(x) =i det B) 2 / emmin DBl BTl B p () dy. (1)
(i) IfdetA #£0,
w(A) f(x) = (detA)71/2/efnix~CA*1x+2m'§~A*'x+m'§~A*1BEf(g)ds. (16)

The following hybrid formula will be also used in the sequel.
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Proposition 2.8. If A= (2 B) € Sp(d,R), det B # 0 and det A # 0, then

1(A) £ (x) = (=i det B) ™12 7 CATIx (o=miv BTIAY o £) (A1), (17)
Proof. By (16) we can write
H(A) f(x) = (detA)_l/ze_”ix‘CA_lx/eZ”is'A_le(]-'_le”iS‘A_lBs)f(é)d’g‘
= (—idetB)fl/zef’”'X'CAflx/eZ”is'Afle(e*”iy'BflAy *f)(é)dé,
where we used the formula (see [19, Theorem 2, p. 257])
F (AT BE) (y) = (—i det A1 B) T2y BT Ay,
Hence, from the Fourier inversion formula we obtain (17). O

3. Dilation of modulation and Wiener amalgam spaces

Given a function f on R? and A € GL(d,R), we set fa(t) = f(At). We also consider the
unitary operator 24 on L?(R9) defined by

Ua f (1) = |det A|'? f(Ar) = |det A|"/? fa(2). (18)

In this section we study the boundedness of this operator on modulation and Wiener amalgam
spaces. We need the following three lemmata.

Lemma 3.1. Let A € GL(d, R), ¢(t) = eV, then
—1/2 _ (A% -1y, _ * —lg,
Vopa(x, €) = (det(A* A + 1)) /2 j=m—(A*A+1)"Dx M_ (e a1y 1yee T(A*A+DTIEE
Proof. By definition of the STFT,
Vopa(r. ) = [[emdrire2nies —r0=0’ gy
R4
:e—nm2 /e—n(A*A+I)y‘y+271x~ye—271ié~y dy.
R4

Now, we rewrite the generalized Gaussian above using the translation and dilation operators, that
is

e—ﬂ(A*A+I))"y+27TX'_V — en(A*A+I)_1x~x (det(A*A + I))_1/4(T(A*A+[)*IXU(A*A+[)|/2)(p(y)

and use the properties FUp = Z/I(B*)q}', for every B € GL(d,R) and T, = M_,F. Thereby,
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—m(I—(A* -1y —1/4
Vowa(x, §) = e MU= ALDTDN (Geq(A* A 4+ 1)) T F(T o gy 1y 1l a1y 20 6)
_ e—n(l—(A*A+I)_])x-x (det(A*A + I))_I/ZM_(A*A+I)*1xe_n(A*A+I)_]E.g’
as desired. O

The result below generalizes [40, Lemma 1.8], recaptured in the special case A =11, A > 0.
Lemma 3.2. Let | < p,q < 00, A € GL(d, R) and ¢(t) = eI’ Then,
lgallpra = p~9/CP g~/ det A|~V/P (det(A* A + 1))~ 19712, (19)

Proof. Since the modulation space norm is independent of the choice of the window function,
we choose the Gaussian ¢, so that ||@a|lar.a < || Vp@allLra. Since

/e—np(l—(A*A-H)*l)xw dx = det([ _ (A*A + I)—l)_l/zp—d/z
R4
= p~|det A|”! (det(A*A + 1))/

and, analogously, [pa e TAATATDTIEE g (det(A*A + 1))/2¢=4/2 the result immediately
follows from Lemma 3.1. O

We record [21, Lemma 11.3.3]

Lemma 3.3. Let f € S'(R?) and ¢, ¥, y € S(R?). Then,

1

v (IVy f1% 1 Vey ) (x, &) V(x,8) e R¥.

|Vo f(x,8)] <

The results above are the ingredients for the first dilation property of modulation spaces we
are going to present.

Proposition 3.1. Let 1 < p, g < oo and A € GL(d, R). Then, for every f € MP4(R%),

I fallpra S 1det A|=O/P=1/4+D (det(T + A*A)) /2| fllpgra (20)

Proof. The proof follows the guidelines of [35, Lemma 3.2]. First, by a change of variable, the
dilation is transferred from the function f to the window ¢:

Vo falx, &) =|det A|™'V, _, f(Ax, (A)7'E).

Whence, performing the change of variables Ax = u, (A*)"'& = v,
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q/p 1/q
I fallsera = IdetAI1</</|V¢,A_,f(Ax,(A*)1§)|pdx) dg)
R4

Rd
= |det A|=VP=VIEDNY, | FllLea.

Now, Lemma 3.3, written for ¢ (1) =y (¢t) = p(t) = e~ " ’2, yields the following majorization

Vo1 £ 6| S IQI (Vo f 1% Ve, 0]) (5. 6).

Finally, Young’s Inequality and Lemma 3.2 provide the desired result:

I fallmra S1det APV £ 1V ol
Sidet A|~YPVIEV IV Fllna Ve, el

= |det A|~/P=VaD (det(T + A*A)) 2N fllyra. O

Proposition 3.1 generalizes [35, Lemma 3.2], that can be recaptured by choosing the matrix
A=Al A>0.

Corollary 3.2. Let 1 < p,q < 00 and A € GL(d, R). Then, for every f € W(FL?, L1)(R?),

_ _ 1/2
1 fallwrrr.cay S Idet AJY/P=14=D (det(r + A* A)) 211 £ llw L. Lo)- (21)

Proof. It follows immediately from the relation between Wiener amalgam spaces and modula-
tion spaces given by W (FL?, L9) = FMP-9 and by the relation (f4) = |det A|~! (Han-1- O

In what follows we give a more precise result about the behaviour of the operator norm
IDallpra—mra in terms of A, when A is a symmetric matrix, extending the diagonal case
A =M, A > 0, treated in [35]. We shall use the set and index terminology of the paper
above. Namely, for 1 < p < oo, let p’ be the conjugate exponent of p (1/p + 1/p’ = 1). For
(1/p,1/q) €10, 1] x [0, 1], we define the subsets

Iy =max(1/p,1/p") < 1/q, If =min(1/p,1/p") > 1/q,
L=max(1/g, /) <1/p, I} =min(l/q,1/2)>1/p/,
I3 =max(1/q,1/2) <1/p, I3 =min(l/q,1/2) > 1/p,

as shown in Fig. 1.
We introduce the indices:

-1/p if (1/p,1/q) €I},
wi(p,g)=11/9—-1 if (1/p,1/q) € 13,
—2/p+1/q if(1/p,1/q)€l],
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1/q 1/q
1 1
I
1 5| i
1/2 1/2
I I
2 3 I
0 1/2 1 1/p 0 1/2 1 1/p
0< A <1 I\ >1
Fig. 1. The index sets.
and
—1/p it (1/p,1/q) € I,
w2(p,q)=11/9 —1 if (1/p,1/q) € I,

—2/p+1/q if(1/p,1/q) € L.
The above mentioned result by [35, Theorem 3.1] reads as follows:

Theorem 3.3. Let 1 < p,qg < o0, and A =11, L #0.
(i) We have

I fallra S IMPD Fllygna,  YIA =1, Vf € MP9(RY).
Conversely, if there exists o« € R such that
I fallra SN fllmra,  YIAL =1, Vf € MP4(RY),

then o > duy(p, q).
(ii) We have

I fallara SIMH2PD| Fllyma, YO <A < 1, Ve MP4(RY).
Conversely, if there exists 8 € R such that
I fallsara SIMPNFlimpa, YO <Al <1, Vf € MP9(RY),

then B < dua(p, q).
Here is our extension.

Theorem 3.4. Let 1 < p, g < 0o. There exists a constant C > 0 such that, for every symmetric
matrix A € GL(d, R), with eigenvalues A1, ..., Aq, we have

I falligra < 1"[ (max{1, [2,;})"" "9 (min{1, [2,;1})"2 V1 £ laoa. (22)

for every f € MP9(RY).
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Conversely, if there exist aj € R, 8; € R such that, for every A # 0,
d
| fallarra < ]"[ max{1, 13, [})* (min{1, 1) 1 flra. V€ MP9(R),

with A =diag[A1, ..., q), then o; = pu1(p, q) and B; < ua(p, q).

Proof. The necessary conditions are an immediate consequence of the one-dimensional case, al-
ready contained in Theorem 3.3. Indeed, it can be seen by taking f as tensor product of functions
of one variable and by leaving free to vary just one eigenvalue, the remaining eigenvalues being
all equal to one.

Let us come to the first part of the theorem. It suffices to prove it in the diagonal case
A = D =diag[ry, ..., Aq]. Indeed, since A is symmetric, there exists an orthogonal matrix 7
such that A=T"'DT, and D is a diagonal matrix. On the other hand, by Proposition 3.1, we
have | fallmrs S I froipllra = (-0 pllurs and || fr—ilpra S Il fllsra: hence the gen-
eral case in (22) follows from the diagonal case A = D, with f replaced by fr-1.

From now onward, A = D = diag[Aq, ..., A4l

If the theorem holds true for a pair (p, q¢), with (1/p, 1/q) € [0, 1] x [0, 1], then it is also true
for their dual pair (p’, ¢’) (with f € Sif p’ =1 or ¢’ = 1, see (13)). Indeed,

I follywa = sup  |[(fp,g)|=IdetD|™"  sup |(f.gp-1)]
llgllpp.a<1 llgllpp.a <1

—1
< |det D| ”f”Mp’,q/ sup ”gD*l”MW
ligllarp.a <1

d
gt [T max{t, g =) min{ 1, g 7)) 0y
j=1

d
d r'.q" r'.q"

H max{1, [2;1})*1 4 (min{ 1, 1)) 2 f Ly
for the index functions | and w, fulfill

mpg)=—1—pa(p,q),  pm(p,q)=-1—pm(p, q. (23)

Hence it suffices to prove the estimate (22) for the case p > g. Notice that the estimate in M Lg'
q' > 1, are proved for Schwartz functions only, but they extend to all functions in M Lg', q' < oo,
for S(R?) is dense in M 1.4" The uncovered case (1, oo) will be verified directly at the end of the
proof.

From Fig. 1 it is clear that the estimate (22) for the points in the upper triangles follows
by complex interpolation (Proposition 2.6) from the diagonal case p = ¢, and the two cases
(p,q) = (00, 1) and (p, q) = (2, 1), see Fig. 2.

Case p =¢q. If d =1 the claim is true by Theorem 3.3 in dimension d = 1. We then use the
induction method. Namely, we assume that (22) is fulfilled in dimension d — 1 and prove that
still holds in dimension d.
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1/q 1/q
1 . 1
i
i
1
1
0
0 1/2 1 1/p 0 1/2 T 1/p
P2q P=q

Fig. 2. The complex interpolation and the duality method.

For x,& € R, we write x = (x',xg), € = (£/,&;), with x',& € R~ x;. & € R,
D’ = diag[A1,...,Ag—1], and choose the Gaussian @(x) = e TP = P p—mhxal® =
@' (x")pgq(xq) as window function. Observe that Vi, fp admits the two representations

thfD(xl,xdss/»éd)z/f()vltlv--~7)hdtd)Mé’Tx’Qo/(t/)MsdTx,;‘ﬂd(td)df/dla’
R4

= Vw’((de»SdJ»d)D’)
=V, ((GXCE’,D’)M)’

where

Fry g (0 = Vo, (£ (' 1a)) (xa, 80), Gy g0 (ta) = Vo (f(D"-, 1)) (X, §).

By the inductive hypothesis we have

I /Dl are.r ey = Ve FD Il Lp w24y

1/p
(/< / |V¢’((FXd,§d,xd)D’)(x/v5/)|pdx/d5/>dxddéd)

R2 R2d-D

Y
|

1
< (max{l, IAjI})M'(p’P)(min{l, Mj'})uz(p,p)

~.
I
_

1/p
' < / |V (Fug g 1) (' €D dx dg)
R2d

d
_ (max{l, I)»jl})“l(p’p)(min{l, Ml/'})uz(p,p)
j=1
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1/p
(] ([ vatGremon sl ads ) v ae

R2d-1) R2
d
< [T (max {1, 121" (minf 1 (211221 £y gy
j=l1

where in the last row we used Theorem 3.3 ford = 1.
Case (p,q) = (2, 1). First, we prove the case (p, g) = (2, 00) and then obtain the claim by
duality as above, since S is dense in M 2.1 Namely, we want to show that

d
1Dl S [T (max{1 2;1}) ™" (min{L, 131})) " £ . VF € MP.
j=l1

The arguments are similar to [35, Lemma 3.5]. We use the characterization of the M 2.9 _norm
in (11)

I fpllyzee S 1det D172 sup | o(D - —k) £ 2

kezd
=|det D|~/* sup | (D - —k)(Zw( —l)>f (24)
kezd lezd L?
Observe that
2
‘w(Dt - k)( D el l))f(t) <4 Y loDr —kpt = f o
leZd lezd
=47 " |p(Dt — k)g(
leAg
where
k 1
:{leZd: -1 <1+—}
j |21
and

d
#A; < C[[min{t, 2,0}~ vkezd
j=1
(C being a constant depending on d only). Since |A j| = max{l, |A |} min{1, |2 |}, the expression

on the right-hand side of (24) is dominated by

d
T man {1 i1 )7 st [ @) 7]

me

Thereby the norm equivalence (11) gives the desired estimate.
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Case (p, q) = (00, 1). We have to prove that

d
1 £pllygeot S [T max{ 1 (A0} Fllpgoer, ¥ f € M,
j=1
This estimate immediately follows from (20), written for A = D = diag[Aq, ..., Aql:

d d
1 lses < [0 +22)"2 < TT max {1 12 41l pgoea
j=1

j=1

Case (p,q) = (1, 00). We are left to prove that

d
1Dl e S ]_[ max {1, [3;1}) " (min{1, (111 U Fllppee,  VF € MBS

This is again the estimate (20), written for A = D = diag[Aq, ..., Aql:
d d
ol S TT1A 172 [ max{t 121} 1 flppee. O
Jj=1 Jj=1

Corollary 3.5. Let 1 < p, g < 00. There exists a constant C > 0 such that, for every symmetric
matrix A € GL(d, R), with eigenvalues A1, ..., Lg, we have

QU

( /’ /) . ( /’ /)
| fallwFLe,La) < l_[ max{1, ||} )M P (min{1, |)¥j|})m PN Fllwerre ey, (25)

for every f € W(FLP, L1)(R%).
Conversely, if there exist oj € R, B; € R such that, for every A; #0,

d
| fallwFLe,Le) < l_[ max{1, |A;] ) (min{l,|)»j|})ﬁj||f||W(pr,Lq),
for every f € W(FLP, L7)(R?), with A = diag[A1,...,Aq], then oj = ui(p'.q’) and B <

wa(p’, q").

Proof. It is a mere consequence of Theorem 3.4 and the index relation (23). Namely,

I fallwrre.zay = I Fallmra = [det A|7V | Famillprra
d d
< C T TTlmax{r 117 2 minf 1, 1= )PP f e

j=1 j=1
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d
= C [T (max{1, (x;1})" " (min{ 1, 12;1)*> "N flwerrr,1o)-

J=1
The necessary conditions use the same argument. O

4. Action of metaplectic operators on Wiener amalgam spaces

In this section we study the continuity property of metaplectic operators on Wiener amalgam

spaces, giving bounds on their norms. Here is our first result.

Theorem 4.1. Let A= (4 §) € Sp(d.R), and 1 < p < g < .
(1) If det B #£ 0, then

HM(A)f”W(pr’Lq) Sa(A, p. DI fllwFEre,Lry.
where
a(A, p, q) = |det B|'/97/P=32|det(I + B*B)(B +iA)(B +iD)|""*.
(ii) If det A, det B # 0, then

| CAF |y mrr ooy S BEANS Lo L
with

B(A) = |det A|>/2|det B| ™! |det(I + A*A)(B +iA)(A+iC)|"*.

If the matrices A or B are symmetric, Theorem 4.1 can be sharpened as follows.

Theorem 4.2. Let A= (4 5) € Sp(d.R), and 1 < p < g < .
(1) If det B # 0, B* = B, with eigenvalues 7y, ..., g, then

”M(A)f”W(]:Lp’Lq) 5 Ol/(A, p; Q)”f”W(qu,Ll’),
where
(A, p,q) =|det(B +iA)(B +iD)|"*

d
: H(max{l, |)»j|})”l(p’q)_1/2(min{l, |Aj|})“2(p’q)_l/2_
j=1

(ii) If det A, det B # 0, and A* = A with eigenvalues vy, ..., vy, then
||M(«4)f|}w(;L1 Loy S B AN fllwerres. Ly,

with

(26)

27

(28)

(29)

(30)

€1V

(32)
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B'(A) = |det B! |det(B + i A)(A +iC)|'/

d

T max{ 1, v;1}) ™2 (min{1, v 1}) 72 (33)

Jj=1
We now prove Theorems 4.1 and 4.2. We need the following preliminary result.

Lemma 4.1. Let R be a d x d real symmetric matrix, and f(y) = e " RYY Then,

. 1/2
1L et zoe) = |[det( +iR)|">, (34)

Proof. We first compute the short-time Fourier transform of f, with respect to the window
12
g(y) = e ™" We have

Vo f(x. &) :/67271ine*inRyyefn’lyfxlz dy
zefnlx\z/67271iy~(§+ix)771(1+iR)y-y dy
— e—”"“z(det(l + l-R))—1/2e—n(1+ue>*‘<s+ix>-<s+ix>’
where we used [19, Theorem 1, p. 256]. Hence
|V f (x, )| = |det(T + l-R)’—1/2e—n<1+R2>*‘(s+Rx>~(s+Rx>,

and, performing the change of variables (I + R?)~'/2(¢ + Rx) = y, with d& = |det(] +
R?)|'/2 dy, we obtain

1/2

/ Ve f (x, &) dE = |det(I +iR)| ™" (det(I + Rz))”z/e—"'y'2 dy = |det(I +iR)| (35)

R4 Rd
The last equality follows from (I +iR) = (I + Rz)(l — iR)_l, so that det(/ + iR)_1 =det(/ +

R*)~!det(I — iR). Now, relation (34) is proved by taking the supremum with the respect to
xeR?in(35). O

Proof of Theorem 4.1. (i) We use the expression of £ (A) f in formula (15). The estimates below
are obtained by using (in order): Proposition 2.5 with Lemma 4.1, the estimate (21), Proposi-
tion 2.2, and, finally, Proposition 2.5 combined with Lemma 4.1 again:

_ ix-DBVx 1{ —riy.B~! _
”/’L(A)f”W(]-'LP,L‘!):|detB| 1/2”e mixDB 1(9 B Ayf)(B IX)HW(]-‘LP,M)

< |detB|_1/2 He—ﬁl‘xl)Bilx HW(le)LOO)
A )

< Idet B|Y/41/P=12(deu(B*B + 1))'/*|det(1 +iDB~")|

B! ”W(}'LP,Lq)
172
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— j— V- _1
”]: 1(6 mivp Ayf)”W(pr,Lq)

< |det B4/~ (det(B* B + 1)) | det(1 +iDB )|/

—miv-B-]
'”"’ mip Ayf”vv(qu,LP)

SalA p. I fllwFLa,Lr
with « (A, p, q) given by (27).

(ii) In this case, we use formula (17). Then, proceeding likewise the case (i), we majorize as
follows:

A £ WFLLo) = |det B~/ ”e_nix'crlx(e_my'BilAy * ) (A7 \x) ”W(]—'L‘,L"o)

< |det B| /2| minCAT lwerer o)

—7iv.B~! y
|| (e B Ay *f)A*I ||W(_7-'L1,L°°)

< |det B~ 72|det A|7" (det(A* A + 1)) /?|det(1 +icA™")|'?

—miy-B~1A
. ”e iy y *f”W(]-'Ll,LOO)
S B lwrree Lty
where the last row is due to (8), with 8(A) defined in (29). O

Proof of Theorem 4.2. The proof uses the same arguments as in Theorem 4.1. Here, the estimate
(21) is replaced by (25). Besides, the index relation (23) is applied in the final step. In details,

| f lwprn oy < 1det BT [ PR 0
1/ —miv-B-1Ay
”(]: l(e B A}f))B*I “W(]—'LP,LG)

d
<1172 det(1 +iDB~Y) (1 + B~ A)['/?

j=1

(max{l |)\ |- 1})#1(17 q)(mln{l |)» I- 1})#2(1!7 q)”f”W(]-‘M L

,:1&

Il
-

J

= |det(B +iD)(B +iA)|"/*

(max{l |)\ |})ltl(pﬂ)—1/2(min{1’ |)"j|})MZ(p’q)_l/z“f”W(]-—L‘i,LI’),

:]&

.
I
—

that is case (i). Case (ii) indeed is not an improvement of (28) but is just (28) rephrased in terms
of the eigenvalues of A. O
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Remark 4.3. The above theorems require the condition det B # 0. However, in some special
cases with det B = 0, the previous results can still be used to obtain estimates between Wiener
amalgam spaces. For example, if A = (C 1) with C = C*, then u(A) f(x) = e T £(x)
(see (14)), so that, for every 1 < p, g < 00, Proposition 2.5 and the estimate (34) give

d
A F i1 S H (1+22) "1 flwerre Loy,

where the A ;’s are the eigenvalues of C (incidentally, this estimate was already shown in [1,3,9]).
5. Applications to the Schrodinger equation

In this section we apply the previous results to the analysis of the Cauchy problem of
Schrodinger equations with quadratic Hamiltonians, i.e.

O Hau=0
g T HAu=0, (36)

u(0,x) =up(x),

where H 4 is the Weyl quantization of a quadratic form on the phase space R?¢, defined from a
matrix A in the Lie algebra sp(d, R) of the symplectic group as follows (see [12,19]).
Any given matrix A € sp(d, R) defines a quadratic form P 4(x, &) in R*? via the formula

1
P.A(-x’ S) = _Et(-xv é)Aj(-xv 5),

where, as usual, J = (_01 (1)) (notice that 4.7 is symmetric). Explicitly, if A = (é g) esp(d,R)
then

1 1
PAGr.§)= 5§ BE —§-Ax— Jx - Cx. (37)

From the Weyl quantization, the quadratic polynomial P 4 in (37) corresponds to the Weyl oper-
ator P,lfl(D’ X) defined by

92 9 d
27 PY(D, X)_——Z ke 8xk+ ZA/kxka—+ Tr(A)—nZC/kaxk
J.k=1 J Jj.k=1

The operator H 4 :=27P (D, X) is called the Hamiltonian operator.
The evolution operator for (36) is related to the metaplectic representation via the following
key formula
PltHA — M(et.A)'
Consequently, Theorems 4.1 and 4.2 can be used in the study of fixed-time estimates for the
solution u(r) = e Ay to (36).
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As an example, consider the matrix 4 = (8 ) € sp(d, R), with B = B*. Then the Hamil-
tonian operator is H g4 = —%BV -V and A = ((I) ’IB) e Sp(d, R).

Fix t #£ 0. If det B # 0, and B has eigenvalues Ay, ..., A4, then the expression of ﬁ’(e”A) in
(33) is given by

| l+t2)h2 1/4
ﬂ/(e”A) 2d/4|dettB|7l}det(lB+l1)|1/2 2d/4l_[<7> .

4,4
t )‘j

Consequently, the fixed-time estimate (32) is

1222

itH 4 < d ! J 4
[ Flwerrm ST =7 ) 1 M.
j=1 J

which generalizes the dispersive estimate in [9], corresponding to B = 1.
In the next two sections we present new fixed-time estimates, and also Strichartz estimates, in
the cases of the Hamiltonian H 4 = ——A +m|x|>and Hy = ——A |x|?.

5.1. Schrodinger equation with Hamiltonian H 4 = —% A+mlx|?

Here we consider the Cauchy problem (36) With the Hamiltonian H 4 corresponding to the
matrix A = ( 0 I) € sp(d,R),namely Hg = — ;- A +7|x|?. Asa consequence of the estimates
proved in the previous section we obtain the followmg fixed-time estimates.

Proposition 5.1. For 2 < r < 0o, we have the fixed-time estimates

e 4uo ]y rrrr ey S 15001720 gy o) (38)

(cost)I (sint)] )

Proof. The symplectic matrix ¢’ reveals to be e'A = ( i1 (cosnl)-

First, using the estimate (32) we get
” ltHAMO”w(]_'LI L) ~ < Isint|~|cos |72 ||UO||W(]—‘Loc LY (39)
On the other hand, the estimate (30), for p = 1, ¢ = 0o, reads

e #4uo ||y zp1, ooy S It uolly rpoo, o) (40)
Since min{|sin¢|~¢|cos |34/, |sint|739/2} < |sint|~?, we obtain (38) for r = oo, which is the
dispersive estimate.

The estimates (38) for 2 < r < oo follow by complex interpolation from the dispersive esti-
mate and the L>—L? estimate

e At =1fl2. O (41)

The Strichartz estimates for the solutions to (36) are detailed as follows.
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Theorem 5.2. Let T > 0and 4 < q,q < 00, 2 < r, 7 < 00, such that

2 d d
- 42)
qg r 2
and similarly for q, 7. Then we have the homogeneous Strichartz estimates
itH
||el A”O ”Lq/z([O,T])W(_T‘L'J,Lr)X f, ”MO”L}%v (43)
the dual homogeneous Strichartz estimates
T
—isH
/e ' AF(S) ds 5 ”F”L(‘?/z)/([O,T])W(]-—L;,L;,)x ) (44)
0 L?
and the retarded Strichartz estimates
W=9HAR (5)d SIFIlLq oL (45)
e s)as S WENany qorywFLs i), -
Lal2([0,THW(FL" L"),
0s<t
Consider then the endpoint P .= (4,2d/(d — 1)). For (q,r) = P, d > 1, we have
itH
”el AMOHL2([O,T])W(.7-'L’/12,L’)X S ”u()”L% > (46)
T
/e_”HAF(s) ds § ”F“LZ([O,T])W(]:L'"*Z,L’/),\- . (47)
0 L

The retarded estimates (45) still hold with (q,r) satisfying (42), g >4, r =2, (q,r) =P, if
one replaces FL” by FL™2, Similarly it holds for (q,r) = P and (q,r) # P as above if one
replaces FL" by FL' 2 It holds for both (p,r) = (p,7) = P if one replaces FL" by FL2
and FL" by FL2.

In the previous theorem the bounds may depend on 7.

Proof. The arguments are essentially the ones in [9,27]. For the convenience of the reader, we
present the guidelines of the proof.

Due to the property group of the evolution operator e/#4, we can limit ourselves to the case
T = 1. Indeed, observe that, if (43) holds for a given T > 0, it holds for any 0 < T’ < T as well,
so that it suffices to prove (43) for T = N integer. Since

q N-l q

2 , — § ||eltH_AezkH_Au0||2 R

La/2([0,NDW(FL" L"), La/2([0,1DW (FL" L"),
k=0

itH 7

[ 4uol

the T = N case is reduced to the T = 1 case by using (43) for T = 1 and the conservation
law (41). The other estimates can be treated analogously. Whence from now on 7' = 1.



528 E. Cordero, F. Nicola / Journal of Functional Analysis 254 (2008) 506-534

Consider first the non-endpoint case. Set U (1) = X[(),]](t)e”HA. For 2 < r < oo, using rela-
tion (38), we get

[UOWE) F i S1= 52D e - 48)

By the TT* method! (see, e.g., [20, Lemma 2.1] or [32, p. 353]) the estimate (43) is equivalent
to

. SIF|
LYW (FL L7,

H / U@)(U(s)) F(s)ds (49)

L9 wEL L,

The estimate above is attained by applying Minkowski’s Inequality and the Hardy—Littlewood—
Sobolev inequality (5) to the estimate (48). The dual homogeneous estimates (44) follow
by duality. Finally, the retarded estimates (45), with (1/¢,1/r), (1/g,1/7) and (1/00,1/2)
collinear, follow by complex interpolation from the three cases (g, 7) = (¢, r), (g,r) = (00,2)
and (g, 7) = (00, 2), which in turns are a consequence of (49) (with s, F in place of F), (44)
(with ys<¢F in place of F) and the duality argument, respectively.

We are left to the endpoint case: (¢, 7) = (2,2d/(d — 1)). The estimate (46) is equivalent to
the bilinear estimate

//((U(s))*F(s), (U®) Gm)dsdt| SIFll 2y 1 NGl 2w i,

By symmetry, it is enough to prove

IT(F.G)| SIIFl2 (50)

W(]:Lr,z’u’)x ”G ||L,2W(.7:Lr-2,L’/)X 5

where

T(F,G)= /f((U(s))*F(s), (U®) G(1))ds dt.

s<t

To this aim, T'(F, G) is decomposed dyadically as T =) jez T;, with

Ti(F,G) = // (Us)) F(s), (U®)"G())ds dt. (51)
=20+ <5 e =27
By resorting on (44) one can prove exactly as in [27, Lemma 4.1] the following estimates:
|T;(F, G)| S 27PN Fl gy rpa 1o IG 2w o 1 (52)

. . . _ _ _ 4 _ 4
for (1/a, 1/b) in a neighborhood of (1/r,1/r), with B(a,b) =d —1 -4 — 7.
' This duality argument is generally established for L? spaces. Its use for Wiener amalgam spaces is similarly justified
thanks to the duality defined by the Holder-type inequality [9]

[(F, G>L,2L,%| < ||FHW(L“,L‘7),W(]—'L"/,L’)x ”G”W(LS/,Lq/),W(fo,Lf’)x'
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The estimate (50) is achieved by means of a real interpolation result, detailed in [27,
Lemma 6.1], and applied to the vector-valued bilinear operator T' = (7;) jez. Here, however,
we must observe that, if Ay = L?W(]-'L“k, L“k/)x, k=0,1, and 6y fulfills 1/r = (1 — 6p)/
aop + 6p/ay, then

LIW(FL™, L"), C (Ao, ADgy.2-

The above inclusion follows by [41, Theorem 1.18.4, p. 129] (with p = pg = p1 = 2) and Propo-
sition 2.3. This gives (46) and (47).

Consider now the endpoint retarded estimates. The case (g, 7) = (¢,r) = P is exactly (50).
The case (g,7) = P, (q,r) # P, can be obtained by a repeated use of Holder’s inequality to
interpolate from the case (¢,7) = (q,r) = P and the case (g,7) = P, (q,r) = (00,2) (that
is clear from (47)). Finally, the retarded estimate in the case (¢,r) = P, (q,7) # P, follows by
applying the arguments above to the adjoint operator G > ftn (U@))*U (s)G () dt, which gives
the dual estimate. O

5.2. Schrodinger equation with Hamiltonian H 4 = —é A —mlx|?

The Hamiltonian operator H 4 = —#A — m|x|? corresponds to the matrix A = ((I) (I)) €

sp(d, R). In this case,

tA _ [ (cosht)l (sinht)]
¢ < (sinh?)I (cosht)l) €Sp(d, R).

Fixed-time estimates for H 4 are as follows.

Proposition 5.3. For 2 <r < oo,

1 + |sinh?|

d(3—3)
itH
He AMOHW(]:L’/,L’) S ( sinhzt ) HMOHW(]:LV,LV/)' (53)

Proof. The estimate (32) yields the dispersive estimate

d
: 1 4 |sinh#] 2
tH

I AMOHW(le.,LOO) ~ ( sinh2 1 luollw(F Lo, L1y 54

(Observe that (30), with p = 1, g = 00, gives a bound worse than (54).)
The estimates (53) follow by complex interpolation between the dispersive estimate (54) and
the conservation law (41). O

We can now establish the corresponding Strichartz estimates.

Theorem 5.4. Let 4 < q,q < 00, 2 < r, 7 < 00, such that

d

2 d
4=
q r
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and similarly for g, 7. Then we have the homogeneous Strichartz estimates

itH
He MOHW(L‘I/z,LZ),W(]'—L’,,L’)x 5 ”uO”LEv (56)

the dual homogeneous Strichartz estimates

” f eHAR ) ds| S IFlly iy 1o, wres i, (57)
L
and the retarded Strichartz estimates
/ e =IHAF () d SIFlywans o wirr i (58)
W(L4/2, L), W(FL" L"),

s<t

Consider then the endpoint P .= (4,2d/(d — 1)). For (q,r) = P, d > 1, we have

||€itH'AuO“L[ZW(].‘LV/,Z,L;")X 5 ”u()”L%’ (59)

“fe_iSHAF(s)ds

§ ”F”L,ZW(]-'LM,L”)X . (60)
L2
The retarded estimates (58) still hold with (q,r) satisfying (55), ¢ >4, r > 2, (q,7) =P, if
one replaces FL” by FL2. Similarly it holds for (q,r) = P and (q,7) # P as above if one
replaces FL" by FL"2 It holds for both (p,r) = (p,r) = P if one replaces FL" by FL'?
and FL™ by FL™ 2.

Proof. Let us first prove (56). By the TT* method it suffices to prove

H/‘ei(tS)HAF(S)dS 5 ”F”W(L(z1/2)’,LZ)tW(}‘Lr’Lr’)X~ (61)

W(L4/2,L2), W (FL" L"),

For 0 < o < 1/2, let ¢y (¢) = |sinh¢|~® 4 |sinhz| 7>, r € R, t # 0. A direct computation shows
that ¢, € W (LY @x.00 11y Since L!x L2 < L2 (Young’s Inequality) and L(é)/ *Li’oo > Lé
(Proposition 2.1), Lemma 2.1(i) gives the convolution relation

IF *¢a||W(Ll/a,L2/a) S ”F”W(L(l/a)”LQ/a)/)‘ (62)

Fix now o =d(1/2 — 1/r) =2/q; then, by (53), (62) and Minkowski’s Inequality,

H/ei(’_S)HAF(s)ds

W(L4/2,L2),W(FL" L"),

< S =IHAE (5) oo ds
<|/1 e 45|

5 ” ||F(t) ”W(]‘—Lr/,Lr)x * ¢(¥(t) ||W(L‘1/2,L2)t

S | Fl W(L@/? [ L2),W(FL",L"),"
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This proves (61) and whence (56). The estimate (57) follows from (56) by duality. The proof
of (58) is analogous to (45) in Theorem 5.2.

For the endpoint case one can repeat essentially verbatim the arguments in the proof of Theo-
rem 5.2, upon setting U (¢) = ¢/'fA_ To avoid repetitions, we omit the details (see also the proof
of [9, Theorem 1.2]). O

Remark 5.5. As an application of the previous Strichartz estimates for the operators H =
—% A =+ 7|x|? we can study the well-posedness in L? for the following Cauchy problem:

{ia,u+Hu=V(t,x)u, t€l0,T]=Ir, x eRY, 63)
u(0, x) = uo(x),
for the class of potentials
, 1 d
VeL*(Ir; W(FLP,L?) ), —+—<1,1<a<00,d<p<oo. (64)
@ p

Namely, we have the following result.

Theorem 5.6. Let V satisfy (64). Then, for all (q,r) such that2/q +d/r =d/2, q >4, r =2,
the Cauchy problem (63) has a unique solution

(i) u € C(r; LAR) N LY (Ir; W(FL", L"), ifd = 1;
(i) u € C(Ir; LARY)) N L2 (Ip; W(FL™, L") N L2(Ip; W(FL2/@+D.2 [ 2d/@d=Dy) - if
d>1.

The proof is omitted, since it goes through exactly in the same manner as that detailed in [10,

Theorem 6.1], for the case H = A. Indeed, it relies entirely on the Strichartz estimates proved
above.

5.3. Comparison with the classical estimates in Lebesgue spaces

Here we compare the above estimates with the classical ones between Lebesgue spaces. For
the convenience of the reader we recall the following very general result by Keel and Tao [27,
Theorem 1.2].

Given o > 0, we say that an exponent pair (g, r) is sharp o-admissible if 1/q +o/r =0 /2,
q=2,r=2,(q,r,0)# (2,00, 1).

Theorem 5.7. Let (X, S, ) be a o-finite measured space, and U :R — B(L2(X, S, ) be a
weakly measurable map satisfying, for some o > 0,

oo fl S0 N2, 1€R,

and

JUSOUO [0 SlE=sI7Uf s, 1,5 €R
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Then for every sharp o -admissible pairs (q,r), (q,7), one has

vl g0, SN2,

’
q /9
Ly

H/ U(s)*F(s)ds

SIF
L2

H / UNU ) F(s)ds

s<t

L SIFN -
t=x

First we fix the attention to the case of the Hamiltonian H 4 = —#A + 77|x|*. One has the
following explicit formula for e" 4y = (e )ug in (15):

e”HAuo — l-d/Z(Sint)—d/Z / e—m(cott)(\xl +|yl )+2m(cosect)y‘xu0(y) dy.
Hereby it follows immediately the dispersive estimate
e Auo]| oo < Isin| =2 llu] 1. (65)

Notice that (3) (i.e. (38) with r = 00) represents an improvement of (65) for every fixed ¢ # 0,
since L' < W(FL*®, L") and W(FL', L®) — L. However, as might be expected, the
bound on the norm in (3) becomes worse than that in (65) as t — km, k € Z.

As a consequence of (65), Theorem 5.7 with U(¢) = e”HAX[o,l](t) and 0 = d/2, and the
group property of the operator ¢/’1A (as in the proof of Theorem 5.2 above) one deduces, for
example, the homogeneous Strichartz estimate

||€”HAMO||Lq([0‘T])L; 5 ”uO”L)zcv (66)
for every pair (q,r) satisfying 2/q +d/r =d/2, q =22, r > 2, (q,r,d) # (2,00,2). These
estimates were also obtained recently in [29] by different methods.

Hence, one sees that (43) predicts, for the solution to (36), a better local spatial regularity than
(66), but just after averaging on [0, T'] by the L4/? norm, which is smaller than the L7 norm.

We now consider the case of the Hamiltonian H 4 = — % A —|x|%

The dispersive estimate here reads

[ 4uo]] oo ay < Isinhe| =2 [lug]l 1 ray- (67)
This estimate follows immediately from the explicit expression of e/’ #Aug = p (e A)ug in (15):

. ) _ e 2 2 ; ).
EHHAL{() :id/z(SIIlht) d/Z/e mi(cotht)(|x|“+]y| )+2m(cosecht)yxu0(y) dy.

The corresponding Strichartz estimates between the Lebesgue spaces read

le" ™ Auo| ,a,, < luoll 2. (68)
LiLr X
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forg >2,r >22,with2/q +d/r =4d/2, (g,r,d) # (2, 00,2). These estimates are the issues of
Theorem 5.7 with U (1) = /"4 and the dispersive estimate (67) (indeed, |sinh#|~%/2 < |¢|~4/2).
These estimates are to be compared with (53) (with » = co) and (56), respectively.

One can do the same remarks as in the previous case. In addition here one should observe that
(56) displays a better time decay at infinity than the classical one (L? instead of L"), for a norm,
lucz, )y, (FLY Ly which is even bigger than L”. Notice however that our range of exponents is
restricted to g > 4.
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