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Kantor [4, No. 71 describes a new class of translation planes of order q3, 
q=2 2w+1 = 2(mod 3) with kernel GF(q). A plane 17, in this class has 
several interesting properties, but we shall be only interested in the follow- 
ing one possessed by its collineation group: the linear translation com- 
plement of Z7, contains a normal subgroup G 2: Si(2, q) whose involutions 
are afftne elations. This property of I7, is somewhat remarkable: for it is 
well known that a translation plane of order q*, on which SL(2, q) acts as a 
collineation group generated by afftne elations, is always desarguesian. 

There are further translation planes of order q3 admitting a collineation 
group G N SL(2, q) generated by afine elations (due to works of Dye [l] 
and Kantor [4,S]): (a) the Dye-Kantor plane II, of order 83 having ker- 
nel GF(8) (admits SL(2,8)) [I, No. 43 and [4, No. 91; (b) the Dye-Kan- 
tor plane 17, of order 43= 8* having kernel GF(8) (admits SL(2,4)) 
[ 1, No. 41 and [5, No. 8,.2]. In I7, and l7* SL(2, q) is completely reducible 
on the underlying vector space; in Z7, the action of SL(2,4) is irreducible. 
All these planes are of even order. 

This article is the report of an attempt to determine all the translation 
planes of order q3, with kernel KzGF(q), admitting a collineation group 
G N SL(2, q), where the p-elements are afine elations if q =p”. (From now 
on I7 will denote such a plane.) We remark (( 1.1) and (1.2); see also 
Schaeffer [8] for q even) that G must be completely reducible. The 
underlying vector space may be written, as a G-module, in the form 
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I/, @ Vi 0 V-j, where V, is the canonical representation and I, ZI are 
automorphisms of GF(q) such that the equations xx’ = 1, xx” = 1, and 
x1x” = 1 have no solutions in GF(q) different from ) 1 (Theorem 1.7): in 
Kantor planes 2 = 1 and p is the squaring automorphism. Furthermore we 
determine (Theorem 1.6) the orbits of G on the line at infinity and examine 
completely the case I = 1 = p: we prove (No. 2) that 17 is desarguesian in 
such a case. Liebler in [6, No. 31 studies the case ,I = 1 and, for q even, 
gives some necessary and sufficient conditions for the existence of ZZ. At the 
end of the article (No. 3) we introduce a new class of nondesarguesian 
translation planes for q = p30, p an arbitrary prime, which are an example 
for the case ,I # 1 #p #A. The even order planes of this class are not 
isomorphic to any Kantor plane ZZ,. 

1. GENERAL CASE 

Let q be a power of the prime p and 17 denote a translation plane of 
order q3 with kernel containing a field isomorphic to K= GF(q) (see 
Liineburg [7] for basic concepts). We may assume that the vectors of 
V,(K) (vector space of dimension six over K) are the points of I!’ and that 
the cosets of the members of a spread ,Y of V,(K) are the lines. We will 
write the points of Z7 as (x,, x2, x3, y,, y,, y3), or (x, y) for short. 

Assume Z7 admits a collineation group G ‘v SL(2, K) such that its 
elements of order p are affrne elations (shears): clearly G is contained in the 
linear translation complement of ZZ. By Hering [2, Lemma 73, we can 
choose a basis so that there is a field K’ N K of 3 x 3 matrices such that G is 
represented by the maps 

(x,Y)+(x,Y) “c ; > ( ) 
where A, B, C, DE R and AD - BC = I (the unity matrix). The generator 
L of the multiplicative group of K’ operates reducibly on V,(K) because, 
otherwise, K’ # {al/a E K} and the ring K[L], the polynomial extension of 
K by L, would be a field of order q3 containing two subfields of order q. As 
q - 1 is not divisible by p, V,(K) is a completely reducible L-module by 
Maschke’s theorem: hence we may write the elements of K’ in the form 

(1.1) 

where a E K and A, ~1 E Aut K. So we have 
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(1.2) There exists a basis of V,(K) hy which G is represented Hal the linear 
maps 

where a, /I, y, SE K and crb - By = 1 (here A,, A,, etc., are used us in (1.1)). 

The 3-spaces @‘(co), W(Q) and H’(l) having equations, respectively, 
x = 0, y = 0 and y = x are members of Z because they are axes of shears of 
G. For any HE GL(3, K), denote by W(H) the 3-space whose coordinates 
satisfy the equation y=xH and let n = {ME GL(3, K)/W(M)EZ}. We 
have [7, No. 2, Chap. I]: 

(1.3) A contains all the matrices (1.1) aEd satis~es the conditions: 

(a) A is sharply transitive (as set of linear maps) on the nonzero vec- 
tors of V,(K); 

(b) if M,, Mz E A, M, # MZ, then MI - Mz E GL(3, K); 

(c) 17 is desarg~esian iff A is the rn~~tipl~~ative group of a field. The 
conditions (a) and (b) are also sufficient in order to define a spread by A. 

Denote by Co the partial spread containing W(co), W(O), and all the 
components W(A,) of C defined by matrices (1.1): C, is a G-orbit. 

Each component of Z, intersects the 4-space Vi satisfying the equations 
xi=yi= 0, i= 1,2,3, in a 2-space: hence C, *‘contains” (q + l)2 l-spaces of 
Vi. The number of l-spaces of Vi which are not contained in C, is so 
q3+q2+q+ 1 -(q+ l)‘=q3-q. Therefore 

(1.4) I~SEZ-Z~, S-+s,=Sn Vi defines a 1-l map of C-C, onto the 
set of l-spaces of Vi not tying in components of ZO. 

As Vi is G-invariant and xi = yi = 0, we may omit xi and yi in the coor- 
dinates (x,,x,,x,,y,,y,,y,)ofa vector of Vi. Let s=((h,O,O,k)) (resp. 
((0, -k, -k 0))) b e a l-space of VI: if hk # 0 no component of Co con- 
tains this l-space. We have s~(‘~*~s~) = ((hex”;, ky”;, h/?“;, k&)) (resp. 
(( -hf;, -k&, -h6 4 , -kpi))), where oi and a$ take two different 
values in the set f I,& p > (see (1.2)). Therefore 

(1.5) Let Qlj be the multiplicative homomorphism x + xb;xui, then the l- 
space ( (u, v, w, z) > of Vi is contained in the G-orbit of s = ( (h, 0, 0, k) ) 
(resp. ((0, -k, -h,O))), h w ere hk#O, ifs h-“~k-“~(u”~z”~-v”~w”~)~ 
Im di,. Moreover g(a, p, y. 6) E G, iff p = y = 0 and c1 E kern Qi. 

ProoJ: Suppose that (u, v, w, z) = a(hc&, ky”i, hour, kS”i) for some 
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scalar a. Then, by calculation using a6 -fly = 1 we get that 
h-“~k-“:(U”;z~;_,v~:W~:)=a~;a”:. Note that in the case 
(u, u, w, z) = a(ha”;, ky”i, h/T’ 1, k@) is a scalar multiple of (h, 0, 0, k) then 
fi = y = 0,6 = a-’ and hence a E kern cPi. The rest of the proof is left to the 
reader. 

By (1.4) we can determine the length of the G-orbit of a component 
SE C - Co by computing the G-orbit of the intersection si = Vi n S: we have 
/G, / = 1 G,$ (. If kern Qi = ( 1 ), i.e., Im CD i = K* (the multiplicative group of 
fo, then ISL(2, K)I =q3 -q and (1.5) imply G splits C into two orbits: Co 
and E-C, (q must be even in such a case). Therefore we may assume 
Im @i#K*. Let si= ((u,O,O, I)), UEK*, and let sj= ((ai, bj, cj, dj)) for 
j # i. If g(a, /I, y, 6) E G,, from (1.5) it follows /? = y = 0 and a E kern Gi. 
Assume a # + 1, then G, = G, = G,VI requires either bj = cj = 0 and aj # 0 # dj 
or uj = dj = 0 and bj # 0 # Cj (the remaining possibilities cannot occur 
because, otherwise, sj should be contained in a component of Xc,). In any 
case, by (l.S), a E kern @j. Thus we have axn = WY = aLaP = 1, i.e., a2 = 1: a 
contradiction since we assumed a# rfil. Therefore [K*: Im Qj] = 2 (hence 
q must be odd in this case) and the G-orbit of fi has length (q3 - q)/2. By 
(1.5)((~,0,0,1)) is in the same G-orbit of ((l,O,O, 1)) iff zP~ImQii: so 
the following theorem holds 

THEOREM (1.6). G splits the components of C either into two orbits 
(q even) or into three orbits (q odd). One of these orbits is X0 and, if q is odd, 
the remaining orbits have the same length (q3 - q)/2. 

In view of (1.4) and (1.5) we have as a direct consequence 

THEOREM (1.7). Zf G is represented us in (1.1) and (1.2), then the 
equations x1x@ = 1, xx ’ = 1 xx’ = 1 have no solutions in K different from , 
+1. 

2. DESARGUESIAN CASE 

In this section we will assume I = 1 = 11 and show that 17 is desarguesian 
in this case, First we prove 

(2.1). Zf the 3-space W(H) intersects each component W(A,) of L’, only 
trivially, the ring K[H] is a field of order q3. (See the definition preceding 
(1.3)) 

Proof: W(H) n W( A,) = (0) requires H - A, = H - al nonsingular. 
Hence H has no eigenvalues in K and the minimal polynomial for H is an 
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irreducible cubic f’(x): the ring K[H] is so isomorphic to the field 
axll(f(x)). 

Let W(M) E C - C,, then K[M] is a field by (2.1) whence M’ E K[M] 
for each other component W(W) in the G-orbit of W(M). By (1.3; c) and 
theorem (1.6) I7 is so desarguesian if q is even. Therefore we may assume q 
odd in the following of this section: C splits so into three G-orbits 
&, xc, 5 z2. 

Now we have 

(2.2). There exists a 3-space W(H), intersecting trivially each component 
of Co, whose nonzero vectors are both in components of C, and in com- 
ponents of Z:,. 

Proof: It is a direct consequence of the following Lemmas (2.3), (2.4), 
(2.5). 

LEMMA (2.3). There exists a polynomial f(x) = a0 + a, x + a2x2 +x3 
over K such that f (x) is irreducible over K and a2 # 0. 

ProofI If FE GF(q3) is an extension of K, it is well known that every 
cubic irreducible over K has three distinct roots in the q3-q elements of 
F- K and every element of F-K satisfies such a cubic. Hence the number 
of irreducible cubits is (q3 - q)/3. But this is greater than the number of 
polynomials of the form a,, + a, x + x3. 

LEMMA (2.4). Let f(x) be the irreducible cubic in (2.3); let t # 0 be an 
element of K, let d=(t+a,)a;’ and let W(H)=((O,d,-to’, 
0, -a,,a,t-‘), (-t,O,O,d(a,-d),O, -l),(t~‘(a~-d), -1, 0, 1, 0, 0)). 
Then the 3-space W(H) has only trivial intersection with each component of 
ccl. 

Proof: Suppose that some linear combination (with coefficients u, v, w) 
of the basis vectors in W(H) satisfies the equation y = xm for some m in K. 
Then u, v, w satisfy the equations 

v(d(a, - d) + tm) + w( 1 - t -‘(a1 - d) m) = 0, 

-u(a,+dm)+wm=O, 

u(aZ t-’ +mt-I)-v=O. 

Using d=(t+a,)a;‘, the determinant of this system reduces to 
m3 + a2m2 + a, m + a, and the determinant is not equal to zero for any m 
in K becauseS is irreducible. The case where W(H) contains some point 
(0, y), y # 0, is left to the reader. This establishes (2.4). 
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Remark. In interpreting (1.5) and the preceding arguments for the case 
A = ,U = 1, the requirement that (r, and (TV take two “different” values in the 
set ( 1,1, p} must not be taken to exclude cases such as 0: = 1, r+ = ,J = 1. 
In the present context, the l-space ((a, u, w, z) ) of Vi is in the G-orbit of 
((l,O,O, 1)) iff uz-uw is a square while ((u,u, w,z)) is in a member of 
C, iff uz - DW = 0. Thus the l-spaces ((u, u, w, z)) such that uz-DW is not a 
square form another G-orbit by (1.4) and Theorem (1.5). We shall say that 
a l-space ((u, v, w, z) ) of Vi is of type + , 0, - depending on whether 
uz - uw is a square, zero, or a non-square in K. Clearly, two components of 
C contain l-spaces of I’; of the same type iff they are in the same partial 
spread C;, j=O, 1,2. 

LEMMA (2.5). The parameter t may be chosen so that W(H) of (2.4) con- 
tains nonzero vectors on components of C, and nonzero vectors on com- 
ponents of C,. 

Proof: W(H) contains the subspaces ((0, d, -t-l, 0, -a,, 4-l)) 
and ((t-‘(aI -d), -1, 0, 1, 0, 0)). In the condensed notation 
((d, --t-l, --a,, a,t-‘)) is in V, and (t-‘(a, -d), -1, LO) is in V3. Both 
are of type + . Also W(H) n I’, = ( ( - t, 0, d(a i - d), - 1) ) which is of type 
+ or - depending on whether t is a square or a non-square in K. Thus 
(2.5) is trivial. 

Let W(N,) E Cj, i = 1,2, and let Mi be a generator of the multiplicative 
group of the field K[N,]. If (M, ) = (M, ), then 17 is desarguesian 
because we have A = ( Mi ). Suppose (M, ) # (M, ) and let F be a field of 
3 x 3 matrices over K maximal with respect to the condition that F is nor- 
malized by (M, , Mz ): since F contains {&/a E K}, F is isomorphic either 
to GF(q) or to GF(q3). If 101: GF(q3), we may regard (M,, M2) as a sub- 
group of TL( 1, F). But each element of order q3 - 1 in TL( 1, F) is linear: 
therefore we have (M, ) = (M, ), a contradiction. Thus FE GF(q). Now 
(1.3; a) and Hering [3, Lemma 5.71 imply 

sL(3, K) 9 CM,, M2) < GL(3, K). (2.6) 

Let W(H) be a 3-space satisfying (2.2); by (2.1) K[ H] is a field. Let E be 
a generator of the multiplicative group of K[H] and U the Sylow u-sub- 
group of (E), where u is a q-primitive prime divisor of q3 - 1 (see, e.g., 
[7, pp. 27-281): U is also a Sylow u-subgroup of GL(3, K). Since U 
operates irreducibly on V,(K), Schur’s lemma implies the centralizer of U 
in GL(3, K) is (E). U is conjugate in GL(3, K) to the Sylow u-subgroup of 
( Mi) whence (E) and (Ml ) are also conjugate because both centralizers 
of Sylow u-groups of GL(3, K). Now from (2.6) it follows (E) < (M,,M,) 
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because the group (M, , Mz ) must contain every element of GL(3, K) 
having the same determinant of some its element. The linear map 

fixes each component of C, and Zi, hence leaves C,, Z,, Cz invariant as 
sets of vectors. Then the whole (M,, M2) behaves in this way. But V,(K) 
is an irreducible I-Z-module, hence the group of linear maps of V,(K) 
defined by 

fixes W(H) and is transitive on its nonzero vectors: according to the choice 
of W(H), (E) < (M, , M, > cannot so happen. Thus (M, ) = ( Mz ) and 
II is desarguesian. 

3. A CLASS OF TRANSLATION PLANES OF ORDER q3 ADMITTING SL(2,q). 

Let F= GF(qo), q. =p”, and K be a cubic extension of Fz Kz GF(q), 
where q = q& Also let A4 be the matrix 

where a, b, c E K and t = abc$ F. Consider the field of matfices 
R = (A,/a E K) (where A, is the matrix (1.1)) and set xi = x@*, x9 = x@ for 
XEK. We have 

(3.1). The matrix H(a, p, y) = M’A, -I- MA, + A, is singular iff 
a=p=y=o. 

pf: H(a,/% Y) 2 has determinant d(t) = t2a-a4: + t(~~q*~~~ - 
a/Pyq* - a4*/?y4* - a4*pq0y) + yy Q y qi. Note that d(x) is a quadratic in F[x]. 
Hence if d(t) = 0, t is in a quadratic extension of F. But K is a cubic exten- 
sion of F and t E K- F. Hence if H(a, /?, y) is singular, a = /I = y = 0. 

Let W(M) = ~~~)g~a,~,y,~), where g(a, p, y, 6) is defined as in (1.2). 
Since M normalizes R (i.e., A: =A?), M-M’ is singular {i.e., 
W(M) n W(M) # (0) ) iff H( --y’@, 6 - a’+, 8) is singular. Thus by (3.1) 
M- M’ is singular iff b = y = 0 and aa@ = 1. As (q,, f 1, qi - 1) is either 2 
or 1 depending on whether q is odd or even, we infer a = + 1; whence 
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(3.2). The orbit of W(M) under the group G = ( g(a, fi, y, S)/ 
a,@,r,6EK, a&-6y=l) contains either (q3 - q)/2 3-spaces (q odd), or 
q3 -q 3-spaces (q even). Any two of these subspaces in the same orbit inter- 
sect triGally. 

Suppose q odd and consider the 3-space W(MA{), where 15 # 0. Assume 
that W(MA() intersects nontrivially some 3-space W(M) of the G-orbit 
containing ww, say W(M) = W(M)g(a,B,v,a). This implies 
H( - &“a, 6 - <c@, 8) singular: by (3.1) @ = y = 0 and <aa@ = I, whence 5 
must be a square. Therefore 

(3.3.) ff q is odd and c is a ~o~sq~are in K, W(~A~) intersects trivially 
each 3-space of the G-orbit containing W(M). 

PutC,=(W(M)g/gEGf,~,=(W(MAr)g/gEGfandletC,beasinno. 
1; we have 

THEOREM (3.4). Zf q is odd (resp. even) and 5 is a nonsquare in K, 
C,, u L+;, u EC, (resp. E,, u C, ) is a spread of V,(K). 

Proof: Since MA, satisfies the same condition that A4 (i.e., t 4 F), the 
claim is a direct consequence of (3.1), (3.2), and (3.3). 

Remark. The translation plane I7 defined by the spread of Theorem 
(3.4) is not desarguesian because M does not centralize R. If q is even, fl is 
not isomorphic to the Kantor plane Z7, of the same order: for f7 should 
admit a cyclic coilineation group C of order q + 1 fixing every line of C,, 
[4, Theorem 7.11. Thus each element of C should be defined by a matrix 
centralizing K’, i.e., a diagonal matrix. But a group of diagonal matrices 
cannot have order q + 1. 
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