Translation Planes of Order q^{3} Which Admit $S L(2, q)$

C. Bartolone*
Istituto di Matematica, Universitá di Palermo, Palermo, Italy

AND
T. G. Ostrom ${ }^{\dagger}$

Department of Mathematics, Washington State University, Pullman, Washington 99163

Communicated by Guido Zappa
Received June 25, 1983

Kantor [4, No. 7] describes a new class of translation planes of order q^{3}, $q=2^{2 \omega+1} \equiv 2(\bmod 3)$, with kernel $G F(q)$. A plane Π_{1} in this class has several interesting properties, but we shall be only interested in the following one possessed by its collineation group: the linear translation complement of Π_{1} contains a normal subgroup $G \simeq S L(2, q)$ whose involutions are affine elations. This property of Π_{1} is somewhat remarkable: for it is well known that a translation plane of order q^{2}, on which $S L(2, q)$ acts as a collineation group generated by affine elations, is always desarguesian.

There are further translation planes of order q^{3} admitting a collineation group $G \simeq S L(2, q)$ generated by affine elations (due to works of Dye [1] and Kantor $[4,5]$): (a) the Dye-Kantor plane Π_{2} of order 8^{3} having kernel $G F(8)$ (admits $S L(2,8)$) [1, No. 4] and [4, No. 9]; (b) the Dye-Kantor plane Π_{3} of order $4^{3}=8^{2}$ having kernel $G F(8)$ (admits $S L(2,4)$) [1, No. 4] and [5, No. 8,.2]. In Π_{1} and $\Pi_{2} S L(2, q)$ is completely reducible on the underlying vector space; in Π_{3} the action of $S L(2,4)$ is irreducible. All these planes are of even order.

This article is the report of an attempt to determine all the translation planes of order q^{3}, with kernel $K \supseteq G F(q)$, admitting a collineation group $G \simeq S L(2, q)$, where the p-elements are affine elations if $q=p^{\omega}$. (From now on Π will denote such a plane.) We remark ($(1.1$) and (1.2); see also Schaeffer [8] for q even) that G must be completely reducible. The underlying vector space may be written, as a G-module, in the form

[^0]$V_{2} \oplus V_{2}^{\lambda} \oplus V_{2}^{\mu}$, where V_{2} is the canonical representation and λ, μ are automorphisms of $G F(q)$ such that the equations $x x^{\lambda}=1, x x^{\mu}=1$, and $x^{\lambda} x^{\mu}=1$ have no solutions in $G F(q)$ different from ± 1 (Theorem 1.7): in Kantor planes $\lambda=1$ and μ is the squaring automorphism. Furthermore we determine (Theorem 1.6) the orbits of G on the line at infinity and examine completely the case $\lambda=1=\mu$: we prove (No. 2) that Π is desarguesian in such a case. Liebler in [6, No. 3] studies the case $\lambda=1$ and, for q even, gives some necessary and sufficient conditions for the existence of Π. At the end of the article (No.3) we introduce a new class of nondesarguesian translation planes for $q=p^{3 \omega}, p$ an arbitrary prime, which are an example for the case $\lambda \neq 1 \neq \mu \neq \lambda$. The even order planes of this class are not isomorphic to any Kantor plane Π_{1}.

1. General Case

Let q be a power of the prime p and Π denote a translation plane of order q^{3} with kernel containing a field isomorphic to $K=G F(q)$ (see Lüneburg [7] for basic concepts). We may assume that the vectors of $V_{6}(K)$ (vector space of dimension six over K) are the points of Π and that the cosets of the members of a spread Σ of $V_{6}(K)$ are the lines. We will write the points of Π as $\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)$, or (x, y) for short.

Assume Π admits a collineation group $G \simeq S L(2, K)$ such that its elements of order p are affine elations (shears): clearly G is contained in the linear translation complement of Π. By Hering [2, Lemma 7], we can choose a basis so that there is a field $K^{\prime} \simeq K$ of 3×3 matrices such that G is represented by the maps

$$
(x, y) \rightarrow(x, y)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where $A, B, C, D \in K^{\prime}$ and $A D-B C=I$ (the unity matrix). The generator L of the multiplicative group of K^{\prime} operates reducibly on $V_{3}(K)$ because, otherwise, $K^{\prime} \neq\{a l / a \in K\}$ and the ring $K[L]$, the polynomial extension of K by L, would be a field of order q^{3} containing two subfields of order q. As $q-1$ is not divisible by $p, V_{3}(K)$ is a completely reducible L-module by Maschke's theorem: hence we may write the elements of K^{\prime} in the form

$$
A_{\alpha}=\left(\begin{array}{lll}
\alpha & 0 & 0 \tag{1.1}\\
0 & \alpha^{\lambda} & 0 \\
0 & 0 & \alpha^{\mu}
\end{array}\right)
$$

where $\alpha \in K$ and $\lambda, \mu \in$ Aut K. So we have
(1.2) There exists a basis of $V_{3}(K)$ by which G is represented by the linear maps

$$
g(\alpha, \beta, \gamma, \delta):(x, y) \rightarrow(x, y)\left(\begin{array}{ll}
A_{x} & A_{\beta} \\
A_{y} & A_{\delta}
\end{array}\right)
$$

where $\alpha, \beta, \gamma, \delta \in K$ and $\alpha \delta-\beta \gamma=1$ (here A_{α}, A_{β}, etc., are used as in (1.1)).
The 3 -spaces $W(\infty), W(O)$ and $W(I)$ having equations, respectively, $x=0, y=0$ and $y=x$ are members of Σ because they are axes of shears of G. For any $H \in G L(3, K)$, denote by $W(H)$ the 3 -space whose coordinates satisfy the equation $y=x H$ and let $A=\{M \in G L(3, K) / W(M) \in \Sigma\}$. We have [7, No. 2, Chap. I]:
(1.3) A contains all the matrices (1.1) and satisfies the conditions:
(a) A is sharply transitive (as set of linear maps) on the nonzero vectors of $V_{3}(K)$;
(b) if $M_{1}, M_{2} \in A, M_{1} \neq M_{2}$, then $M_{1}-M_{2} \in G L(3, K)$;
(c) Π is desarguesian iff A is the multiplicative group of a field. The conditions (a) and (b) are also sufficient in order to define a spread by \boldsymbol{A}.

Denote by Σ_{0} the partial spread containing $W(\infty), W(0)$, and all the components $W\left(A_{\alpha}\right)$ of Σ defined by matrices (1.1): Σ_{0} is a G-orbit.

Each component of Σ_{0} intersects the 4 -space V_{i} satisfying the equations $x_{i}=y_{i}=0, i=1,2,3$, in a 2 -space: hence Σ_{0} "contains" $(q+1)^{2} 1$-spaces of V_{i}. The number of 1-spaces of V_{i} which are not contained in Σ_{0} is so $q^{3}+q^{2}+q+1-(q+1)^{2}=q^{3}-q$. Therefore
(1.4) If $S \in \Sigma-\Sigma_{0}, S \rightarrow s_{i}=S \cap V_{i}$ defines a $1-1$ map of $\Sigma-\Sigma_{0}$ onto the set of 1 -spaces of V_{i} not lying in components of Σ_{0}.

As V_{i} is G-invariant and $x_{i}=y_{i}=0$, we may omit x_{i} and y_{i} in the coordinates $\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)$ of a vector of V_{i}. Let $s=\langle(h, 0,0, k)\rangle$ (resp. $\langle(0,-k,-h, 0)\rangle)$ be a 1 -space of V_{i} : if $h k \neq 0$ no component of Σ_{0} contains this 1 -space. We have $s^{g(\alpha \beta, \gamma, \delta)}=\left\langle\left(h x^{\sigma_{1}^{i}}, k \gamma^{\sigma_{2}^{i}}, h \beta^{\sigma_{1}^{i}}, k \delta^{\sigma_{2}^{i}}\right)\right\rangle$ (resp. $\left.\left\langle\left(-h \gamma^{\sigma_{1}^{i}},-k \alpha^{\sigma_{2}},-h \delta^{\sigma_{1}^{i}},-k \sigma^{\sigma_{2}^{i}}\right)\right\rangle\right)$, where σ_{1}^{i} and σ_{2}^{i} take two different values in the set $\{1, \lambda, \mu\}$ (see (1.2)). Therefore
(1.5) Let Φ_{i} be the multiplicative homomorphism $x \rightarrow x^{\sigma_{1}^{i}} x^{\sigma_{2}^{i}}$, then the 1 space $\langle(u, v, w, z)\rangle$ of V_{i} is contained in the G-orbit of $s=\langle(h, 0,0, k)\rangle$ (resp. $\langle(0,-k,-h, 0)\rangle$), where $h k \neq 0$, iff $h^{-\sigma_{2}^{\prime}} k^{-\sigma_{1}^{\prime}}\left(u^{\sigma_{2}^{\prime}} z^{\sigma_{1}^{\prime}}-v^{\sigma_{1}^{\prime}} w^{\sigma_{2}^{\prime}}\right) \in$ $\operatorname{Im} \Phi_{i}$. Moreover $g(\alpha, \beta, \gamma, \delta) \in G_{s}$ iff $\beta=\gamma=0$ and $\alpha \in \operatorname{kern} \Phi_{i}$.

Proof. Suppose that $(u, v, w, z)=a\left(h \alpha^{\sigma_{1}^{i}}, k \gamma^{\sigma_{2}^{i}}, h \beta^{\sigma_{i}^{i}}, k \delta^{\sigma_{2}^{i}}\right)$ for some
scalar a. Then, by calculation using $\alpha \delta-\beta \gamma=1$ we get that $h^{-\sigma_{2}^{i}} k^{-\sigma_{1}^{i}}\left(u^{\sigma_{2}^{i}} z^{\sigma_{1}^{i}}-v^{\sigma_{1}^{i}} w^{\sigma_{2}^{i}}\right)=a^{\sigma_{1}^{i}} a^{\sigma_{2}^{i}}$. Note that in the case $(u, v, w, z)=a\left(h \alpha^{\sigma_{1}^{i}}, k \gamma^{\sigma_{2}^{i}}, h \beta^{\sigma_{1}^{i}}, k \delta^{\sigma_{2}^{i}}\right.$) is a scalar multiple of $(h, 0,0, k)$ then $\beta=\gamma=0, \delta=\alpha^{-1}$ and hence $\alpha \in \operatorname{kern} \Phi_{i}$. The rest of the proof is left to the reader.

By (1.4) we can determine the length of the G-orbit of a component $S \in \Sigma-\Sigma_{0}$ by computing the G-orbit of the intersection $s_{i}=V_{i} \cap S$: we have $\left|G_{S}\right|=\left|G_{s_{i}}\right|$. If $\operatorname{kern} \Phi_{i}=\langle 1\rangle$, i.e., $\operatorname{Im} \Phi_{i}=K^{*}$ (the multiplicative group of K), then $|S L(2, K)|=q^{3}-q$ and (1.5) imply G splits Σ into two orbits: Σ_{0} and $\Sigma-\Sigma_{0}$ (q must be even in such a case). Therefore we may assume $\operatorname{Im} \Phi_{i} \neq K^{*}$. Let $s_{i}=\langle(u, 0,0,1)\rangle, u \in K^{*}$, and let $s_{j}=\left\langle\left(a_{j}, b_{j}, c_{j}, d_{j}\right)\right\rangle$ for $j \neq i$. If $g(\alpha, \beta, \gamma, \delta) \in G_{s_{i}}$, from (1.5) it follows $\beta=\gamma=0$ and $\alpha \in \operatorname{kern} \Phi_{i}$. Assume $\alpha \neq \pm 1$, then $G_{s_{j}}=G_{S}=G_{s_{i}}$ requires either $b_{j}=c_{j}=0$ and $a_{j} \neq 0 \neq d_{j}$ or $a_{j}=d_{j}=0$ and $b_{j} \neq 0 \neq c_{j}$ (the remaining possibilities cannot occur because, otherwise, s_{j} should be contained in a component of Σ_{0}). In any case, by (1.5), $\alpha \in \operatorname{kern} \Phi_{j}$. Thus we have $\alpha \alpha^{\lambda}=\alpha \alpha^{\mu}=\alpha^{\lambda} \alpha^{\mu}=1$, i.e., $\alpha^{2}=1$: a contradiction since we assumed $\alpha \neq \pm 1$. Therefore $\left[K^{*}: \operatorname{Im} \Phi_{i}\right]=2$ (hence q must be odd in this case) and the G-orbit of s_{i} has length $\left(q^{3}-q\right) / 2$. By (1.5) $\langle(u, 0,0,1)\rangle$ is in the same G-orbit of $\langle(1,0,0,1)\rangle$ iff $u^{\sigma_{2}} \in \operatorname{Im} \Phi_{i}$: so the following theorem holds

Theorem (1.6). G splits the components of Σ either into two orbits (q even) or into three orbits (q odd). One of these orbits is Σ_{0} and, if q is odd, the remaining orbits have the same length $\left(q^{3}-q\right) / 2$.

In view of (1.4) and (1.5) we have as a direct consequence
Theorem (1.7). If G is represented as in (1.1) and (1.2), then the equations $x^{\lambda} x^{\mu}=1, x x^{\lambda}=1, x x^{\mu}=1$ have no solutions in K different from ± 1.

2. Desarguesian Case

In this section we will assume $\lambda=1=\mu$ and show that Π is desarguesian in this case, First we prove
(2.1). If the 3-space $W(H)$ intersects each component $W\left(A_{\alpha}\right)$ of Σ_{0} only trivially, the ring $K[H]$ is a field of order q^{3}. (See the definition preceding (1.3).)

Proof. $W(H) \cap W\left(A_{\alpha}\right)=\langle 0\rangle$ requires $H-A_{\alpha}=H-\alpha I$ nonsingular. Hence H has no eigenvalues in K and the minimal polynomial for H is an
irreducible cubic $f(x)$: the ring $K[H]$ is so isomorphic to the field $K[x] /(f(x))$.

Let $W(M) \in \Sigma-\Sigma_{0}$, then $K[M]$ is a field by (2.1) whence $M^{\prime} \in K[M]$ for each other component $W\left(M^{\prime}\right)$ in the G-orbit of $W(M)$. By $(1.3 ; \mathrm{c})$ and theorem (1.6) Π is so desarguesian if q is even. Therefore we may assume q odd in the following of this section: Σ splits so into three G-orbits $\Sigma_{0}, \Sigma_{1}, \Sigma_{2}$.

Now we have
(2.2). There exists a 3-space $W(H)$, intersecting trivially each component of Σ_{0}, whose nonzero vectors are both in components of Σ, and in components of Σ_{2}.

Proof. It is a direct consequence of the following Lemmas (2.3), (2.4), (2.5).

Lemma (2.3). There exists a polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+x^{3}$ over K such that $f(x)$ is irreducible over K and $a_{2} \neq 0$.

Proof. If $F \simeq G F\left(q^{3}\right)$ is an extension of K, it is well known that every cubic irreducible over K has three distinct roots in the $q^{3}-q$ elements of $F-K$ and every element of $F-K$ satisfies such a cubic. Hence the number of irreducible cubics is $\left(q^{3}-q\right) / 3$. But this is greater than the number of polynomials of the form $a_{0}+a_{1} x+x^{3}$.

Lemma (2.4). Let $f(x)$ be the irreducible cubic in (2.3); let $t \neq 0$ be an element of K, let $d=\left(t+a_{0}\right) a_{2}^{-1} \quad$ and \quad let $\quad W(H)=\left\langle\left(0, d,-t^{-1}\right.\right.$, $\left.\left.0,-a_{0}, a_{2} t^{-1}\right),\left(-t, 0,0, d\left(a_{1}-d\right), 0,-1\right),\left(t^{-1}\left(a_{1}-d\right),-1,0,1,0,0\right)\right\rangle$. Then the 3-space $W(H)$ has only trivial intersection with each component of Σ_{0}.

Proof. Suppose that some linear combination (with coefficients u, v, w) of the basis vectors in $W(H)$ satisfies the equation $y=x m$ for some m in K. Then u, v, w satisfy the equations

$$
\begin{array}{r}
v\left(d\left(a_{1}-d\right)+t m\right)+w\left(1-t^{-1}\left(a_{1}-d\right) m\right)=0 \\
-u\left(a_{0}+d m\right)+w m=0 \\
u\left(a_{2} t^{-1}+m t^{-1}\right)-v=0
\end{array}
$$

Using $d=\left(t+a_{0}\right) a_{2}^{-1}$, the determinant of this system reduces to $m^{3}+a_{2} m^{2}+a_{1} m+a_{0}$ and the determinant is not equal to zero for any m in K because $f(x)$ is irreducible. The case where $W(H)$ contains some point $(0, y), y \neq 0$, is left to the reader. This establishes (2.4).

Remark. In interpreting (1.5) and the preceding arguments for the case $\lambda=\mu=1$, the requirement that σ_{1} and σ_{2} take two "different" values in the set $\{1, \lambda, \mu\}$ must not be taken to exclude cases such as $\sigma_{1}^{i}=1, \sigma_{2}^{i}=\lambda=1$. In the present context, the 1 -space $\langle(u, v, w, z)\rangle$ of V_{i} is in the G-orbit of $\langle(1,0,0,1)\rangle$ iff $u z-v w$ is a square while $\langle(u, v, w, z)\rangle$ is in a member of Σ_{0} iff $u z-v w=0$. Thus the 1 -spaces $\langle(u, v, w, z)\rangle$ such that $u z-v w$ is not a square form another G-orbit by (1.4) and Theorem (1.5). We shall say that a 1 -space $\langle(u, v, w, z)\rangle$ of V_{i} is of type,+ 0 , - depending on whether $u z-v w$ is a square, zero, or a non-square in K. Clearly, two components of Σ contain 1 -spaces of V_{i} of the same type iff they are in the same partial spread $\Sigma_{j}, j=0,1,2$.

Lemma (2.5). The parameter t may be chosen so that $W(H)$ of (2.4) contains nonzero vectors on components of Σ_{1} and nonzero vectors on components of Σ_{2}.

Proof. $W(H)$ contains the subspaces $\left\langle\left(0, d,-t^{-1}, 0,-a_{0}, a_{2} t^{-1}\right)\right\rangle$ and $\left\langle\left(t^{-1}\left(a_{1}-d\right),-1,0,1,0,0\right)\right\rangle$. In the condensed notation $\left\langle\left(d,-t^{-1},-a_{0}, a_{2} t^{-1}\right)\right\rangle$ is in V_{1} and $\left(t^{-1}\left(a_{1}-d\right),-1,1,0\right)$ is in V_{3}. Both are of type + . Also $W(H) \cap V_{2}=\left\langle\left(-t, 0, d\left(a_{1}-d\right),-1\right)\right\rangle$ which is of type + or - depending on whether t is a square or a non-square in K. Thus (2.5) is trivial.

Let $W\left(N_{i}\right) \in \Sigma_{j}, i=1,2$, and let M_{i} be a generator of the multiplicative group of the field $K\left[N_{i}\right]$. If $\left\langle M_{1}\right\rangle=\left\langle M_{2}\right\rangle$, then Π is desarguesian because we have $\Lambda=\left\langle M_{i}\right\rangle$. Suppose $\left\langle M_{2}\right\rangle \neq\left\langle M_{1}\right\rangle$ and let F be a field of 3×3 matrices over K maximal with respect to the condition that F is normalized by $\left\langle M_{1}, M_{2}\right\rangle$: since F contains $\{a I / a \in K\}, F$ is isomorphic either to $G F(q)$ or to $G F\left(q^{3}\right)$. If $F \simeq G F\left(q^{3}\right)$, we may regard $\left\langle M_{1}, M_{2}\right\rangle$ as a subgroup of $\Gamma L(1, F)$. But each element of order $q^{3}-1$ in $\Gamma L(1, F)$ is linear: therefore we have $\left\langle M_{1}\right\rangle=\left\langle M_{2}\right\rangle$, a contradiction. Thus $F \simeq G F(q)$. Now (1.3; a) and Hering [3, Lemma 5.7] imply

$$
\begin{equation*}
S L(3, K) \unlhd\left\langle M_{1}, M_{2}\right\rangle \leqslant G L(3, K) \tag{2.6}
\end{equation*}
$$

Let $W(H)$ be a 3-space satisfying (2.2); by (2.1) $K[H]$ is a field. Let E be a generator of the multiplicative group of $K[H]$ and U the Sylow u-subgroup of $\langle E\rangle$, where u is a q-primitive prime divisor of $q^{3}-1$ (see, e.g., [7, pp. 27-28]): U is also a Sylow u-subgroup of $G L(3, K)$. Since U operates irreducibly on $V_{3}(K)$, Schur's lemma implies the centralizer of U in $G L(3, K)$ is $\langle E\rangle . U$ is conjugate in $G L(3, K)$ to the Sylow u-subgroup of $\left\langle M_{i}\right\rangle$ whence $\langle E\rangle$ and $\left\langle M_{i}\right\rangle$ are also conjugate because both centralizers of Sylow u-groups of $G L(3, K)$. Now from (2.6) it follows $\langle E\rangle \leqslant\left\langle M_{1}, M_{2}\right\rangle$
because the group $\left\langle M_{1}, M_{2}\right\rangle$ must contain every element of $G L(3, K)$ having the same determinant of some its element. The linear map

$$
(x, y) \rightarrow(x, y)\left(\begin{array}{cc}
M_{i} & 0 \\
0 & M_{i}
\end{array}\right)
$$

fixes each component of Σ_{0} and Σ_{i}, hence leaves $\Sigma_{0}, \Sigma_{1}, \Sigma_{2}$ invariant as sets of vectors. Then the whole $\left\langle M_{1}, M_{2}\right\rangle$ behaves in this way. But $V_{3}(K)$ is an irreducible H-module, hence the group of linear maps of $V_{6}(K)$ defined by

$$
\left\langle\left(\begin{array}{ll}
E & 0 \\
0 & E
\end{array}\right)\right\rangle
$$

fixes $W(H)$ and is transitive on its nonzero vectors: according to the choice of $W(H),\langle E\rangle \leqslant\left\langle M_{1}, M_{2}\right\rangle$ cannot so happen. Thus $\left\langle M_{1}\right\rangle=\left\langle M_{2}\right\rangle$ and Π is desarguesian.

3. A Class of Translation Planes of Order q^{3} Admitting $S L(2, q)$.

Let $F=G F\left(q_{0}\right), q_{0}=p^{\omega}$, and K be a cubic extension of $F: K \simeq G F(q)$, where $q=q_{0}^{3}$. Also let M be the matrix

$$
\left(\begin{array}{lll}
0 & 0 & a \\
b & 0 & 0 \\
0 & c & 0
\end{array}\right)
$$

where $a, b, c \in K$ and $t=a b c \notin F$. Consider the field of matrices $K^{\prime}=\left\{A_{\alpha} / \alpha \in K\right\}$ (where A_{α} is the matrix (1.1)) and set $x^{\lambda}=x^{q_{0}}, x^{\mu}=x^{q_{0}^{2}}$ for $x \in K$. We have
(3.1). The matrix $H(\alpha, \beta, \gamma)=M^{2} A_{\alpha}+M A_{\beta}+A_{\gamma}$ is singular iff $\alpha=\beta=\gamma=0$.

Proof. $H(\alpha, \beta, \gamma)$ has determinant $d(t)=t^{2} \alpha^{q_{0}} \alpha^{q_{0}^{2}}+t\left(\beta \beta^{q_{0}} \beta^{q_{0}^{2}}-\right.$ $\left.\alpha \beta^{q_{0}^{2}} \gamma^{q_{0}}-\alpha^{q_{0}} \beta \gamma^{q_{0}}-\alpha^{q_{0}^{2}} \beta^{q_{0}} \gamma\right)+\gamma \gamma^{q_{0}} q^{q_{0}^{2}}$. Note that $d(x)$ is a quadratic in $F[x]$. Hence if $d(t)=0, t$ is in a quadratic extension of F. But K is a cubic extension of F and $t \in K-F$. Hence if $H(\alpha, \beta, \gamma)$ is singular, $\alpha=\beta=\gamma=0$.

Let $W\left(M^{\prime}\right)=W(M)^{g\left(\alpha_{*}, \gamma, \delta\right)}$, where $g(\alpha, \beta, \gamma, \delta)$ is defined as in (1.2). Since M normalizes K^{\prime} (i.e., $A_{\eta}^{M}=A_{\eta}^{q_{0}}$), $M-M^{\prime}$ is singular (i.e., $\left.W\left(M^{\prime}\right) \cap W(M) \neq\langle 0\rangle\right)$ iff $H\left(-\gamma^{q_{0}}, \delta-\alpha^{q_{0}}, \beta\right)$ is singular. Thus by (3.1) $M-M^{\prime}$ is singular iff $\beta=\gamma=0$ and $\alpha \alpha^{q_{0}}=1$. As $\left(q_{0}+1, q_{0}^{3}-1\right)$ is either 2 or 1 depending on whether q is odd or even, we infer $\alpha= \pm 1$; whence
(3.2). The orbit of $W(M)$ under the group $G=\{g(\alpha, \beta, \gamma, \delta) /$ $\alpha, \beta, \gamma, \delta \in K, \alpha \delta-\delta \gamma=1\}$ contains either $\left(q^{3}-q\right) / 23$-spaces (q odd), or $q^{3}-q$ 3-spaces (q even). Any two of these subspaces in the same orbit intersect trivially.

Suppose q odd and consider the 3 -space $W\left(M A_{\xi}\right)$, where $\xi \neq 0$. Assume that $W\left(M A_{\xi}\right)$ intersects nontrivially some 3 -space $W\left(M^{\prime}\right)$ of the G-orbit containing $\quad W(M)$, say $\quad W\left(M^{\prime}\right)=W(M)^{g(\alpha, \beta, \gamma, \delta)}$. This implies $H\left(-\xi \gamma^{q_{0}}, \delta-\xi \alpha^{q_{0}}, \beta\right)$ singular: by (3.1) $\beta=\gamma=0$ and $\xi \alpha \alpha^{q_{0}}=1$, whence ξ must be a square. Therefore
(3.3.) If q is odd and ξ is a nonsquare in $K, W\left(M A_{\xi}\right)$ intersects trivially each 3-space of the G-orbit containing $W(M)$.

Put $\Sigma_{1}=\left\{W(M)^{g} / g \in G\right\}, \Sigma_{2}=\left\{W\left(M A_{\xi}\right)^{g} / g \in G\right\}$ and let Σ_{0} be as in no. 1; we have

Theorem (3.4). If q is odd (resp. even) and ξ is a nonsquare in K, $\Sigma_{0} \cup \Sigma_{1} \cup \Sigma_{2}\left(\right.$ resp. $\left.\Sigma_{0} \cup \Sigma_{1}\right)$ is a spread of $V_{6}(K)$.

Proof. Since $M A_{\xi}$ satisfies the same condition that M (i.e., $t \notin F$), the claim is a direct consequence of (3.1), (3.2), and (3.3).

Remark. The translation plane Π defined by the spread of Theorem (3.4) is not desarguesian because M does not centralize K^{\prime}. If q is even, Π is not isomorphic to the Kantor plane Π_{1} of the same order: for Π should admit a cyclic collineation group C of order $q+1$ fixing every line of Σ_{0}, [4, Theorem 7.1]. Thus each element of C should be defined by a matrix centralizing K^{\prime}, i.e., a diagonal matrix. But a group of diagonal matrices cannot have order $q+1$.

References

1. R. H. Dye, Partitions and their stabilizers for line complexes and quadrics. Ann. Mat. Pura Appl. 114 (1977), 173-194.
2. C. Hering, On shears of translation planes. Abh. Math. Sem. Univ. Hamburg 37 (1972), 258-268.
3. C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. Geom. Dedicata 2 (1974), 425-460.
4. W. M. Kantor, Spreads, translation planes and Kerdock sets I, SIAM J. Algebra Discrete Methods 3 (1982), 151-165.
5. W. M. Kantor, Ovoids and translation planes. Canad. J. Math. 34 (1982), 1195-1207.
6. R. A. Liebler, Combinatorial Representation theory and translation planes, in "Finite Geometries" (Johnson, Kallaher, and Long, Eds.), Dekkar, New York, 1982.
7. H. Lüneburg, "Translation Planes." Springer, New York, 1980.
8. H. J. Schaeffer, "Translationsebenen, auf denen die Gruppe $S L\left(2, p^{n}\right)$ operiert," Diplomarbeit, Tübingen, 1975.

[^0]: * This author is a member of the research group G.N.S.A.G.A. of C.N.R.
 ${ }^{+}$This paper was written while this author was partially supported by the C.N.R. of Italy and thé Istituto di Matematica dell'Università di Palermo.

