JOURNAL OF ALGEBRA 99, 50-57 (1986)

Translation Planes of Order q^3 Which Admit SL(2, q)

C. BARTOLONE*

Istituto di Matematica, Universitá di Palermo, Palermo, Italy

AND

T. G. OSTROM[†]

Department of Mathematics, Washington State University, Pullman, Washington 99163

Communicated by Guido Zappa

Received June 25, 1983

Kantor [4, No. 7] describes a new class of translation planes of order q^3 , $q = 2^{2\omega+1} \equiv 2 \pmod{3}$, with kernel GF(q). A plane Π_1 in this class has several interesting properties, but we shall be only interested in the following one possessed by its collineation group: the linear translation complement of Π_1 contains a normal subgroup $G \simeq SL(2, q)$ whose involutions are affine elations. This property of Π_1 is somewhat remarkable: for it is well known that a translation plane of order q^2 , on which SL(2, q) acts as a collineation group generated by affine elations, is always desarguesian.

There are further translation planes of order q^3 admitting a collineation group $G \simeq SL(2, q)$ generated by affine elations (due to works of Dye [1] and Kantor [4, 5]): (a) the Dye-Kantor plane Π_2 of order 8³ having kernel *GF*(8) (admits *SL*(2, 8)) [1, No. 4] and [4, No. 9]; (b) the Dye-Kantor plane Π_3 of order $4^3 = 8^2$ having kernel *GF*(8) (admits *SL*(2, 4)) [1, No. 4] and [5, No. 8, 2]. In Π_1 and $\Pi_2 SL(2, q)$ is completely reducible on the underlying vector space; in Π_3 the action of *SL*(2, 4) is irreducible. All these planes are of even order.

This article is the report of an attempt to determine all the translation planes of order q^3 , with kernel $K \supseteq GF(q)$, admitting a collineation group $G \simeq SL(2, q)$, where the *p*-elements are affine elations if $q = p^{\omega}$. (From now on Π will denote such a plane.) We remark ((1.1) and (1.2); see also Schaeffer [8] for *q* even) that *G* must be completely reducible. The underlying vector space may be written, as a *G*-module, in the form

[†]This paper was written while this author was partially supported by the C.N.R. of Italy and the Istituto di Matematica dell'Università di Palermo.

^{*} This author is a member of the research group G.N.S.A.G.A. of C.N.R.

 $V_2 \oplus V_2^{\lambda} \oplus V_2^{\mu}$, where V_2 is the canonical representation and λ , μ are automorphisms of GF(q) such that the equations $xx^{\lambda} = 1$, $xx^{\mu} = 1$, and $x^{\lambda}x^{\mu} = 1$ have no solutions in GF(q) different from ± 1 (Theorem 1.7): in Kantor planes $\lambda = 1$ and μ is the squaring automorphism. Furthermore we determine (Theorem 1.6) the orbits of G on the line at infinity and examine completely the case $\lambda = 1 = \mu$: we prove (No. 2) that Π is desarguesian in such a case. Liebler in [6, No. 3] studies the case $\lambda = 1$ and, for q even, gives some necessary and sufficient conditions for the existence of Π . At the end of the article (No. 3) we introduce a new class of nondesarguesian translation planes for $q = p^{3\omega}$, p an arbitrary prime, which are an example for the case $\lambda \neq 1 \neq \mu \neq \lambda$. The even order planes of this class are not isomorphic to any Kantor plane Π_1 .

1. GENERAL CASE

Let q be a power of the prime p and Π denote a translation plane of order q^3 with kernel containing a field isomorphic to K = GF(q) (see Lüneburg [7] for basic concepts). We may assume that the vectors of $V_6(K)$ (vector space of dimension six over K) are the points of Π and that the cosets of the members of a spread Σ of $V_6(K)$ are the lines. We will write the points of Π as $(x_1, x_2, x_3, y_1, y_2, y_3)$, or (x, y) for short.

Assume Π admits a collineation group $G \simeq SL(2, K)$ such that its elements of order p are affine elations (*shears*): clearly G is contained in the linear translation complement of Π . By Hering [2, Lemma 7], we can choose a basis so that there is a field $K' \simeq K$ of 3×3 matrices such that G is represented by the maps

$$(x, y) \rightarrow (x, y) \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where A, B, C, $D \in K'$ and AD - BC = I (the unity matrix). The generator L of the multiplicative group of K' operates reducibly on $V_3(K)$ because, otherwise, $K' \neq \{aI/a \in K\}$ and the ring K[L], the polynomial extension of K by L, would be a field of order q^3 containing two subfields of order q. As q-1 is not divisible by p, $V_3(K)$ is a completely reducible L-module by Maschke's theorem: hence we may write the elements of K' in the form

$$A_{\alpha} = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha^{\lambda} & 0 \\ 0 & 0 & \alpha^{\mu} \end{pmatrix}, \qquad (1.1)$$

where $\alpha \in K$ and $\lambda, \mu \in Aut K$. So we have

(1.2) There exists a basis of $V_3(K)$ by which G is represented by the linear maps

$$g(\alpha, \beta, \gamma, \delta): (x, y) \to (x, y) \begin{pmatrix} A_{\alpha} & A_{\beta} \\ A_{\gamma} & A_{\delta} \end{pmatrix}$$

where α , β , γ , $\delta \in K$ and $\alpha \delta - \beta \gamma = 1$ (here A_{α} , A_{β} , etc., are used as in (1.1)).

The 3-spaces $W(\infty)$, W(O) and W(I) having equations, respectively, x = 0, y = 0 and y = x are members of Σ because they are axes of shears of G. For any $H \in GL(3, K)$, denote by W(H) the 3-space whose coordinates satisfy the equation y = xH and let $\Lambda = \{M \in GL(3, K) | W(M) \in \Sigma\}$. We have [7, No. 2, Chap. I]:

(1.3) Λ contains all the matrices (1.1) and satisfies the conditions:

(a) A is sharply transitive (as set of linear maps) on the nonzero vectors of $V_3(K)$;

(b) if $M_1, M_2 \in A, M_1 \neq M_2$, then $M_1 - M_2 \in GL(3, K)$;

(c) Π is desarguesian iff Λ is the multiplicative group of a field. The conditions (a) and (b) are also sufficient in order to define a spread by Λ .

Denote by Σ_0 the partial spread containing $W(\infty)$, W(0), and all the components $W(A_n)$ of Σ defined by matrices (1.1): Σ_0 is a G-orbit.

Each component of Σ_0 intersects the 4-space V_i satisfying the equations $x_i = y_i = 0$, i = 1, 2, 3, in a 2-space: hence Σ_0 "contains" $(q+1)^2$ 1-spaces of V_i . The number of 1-spaces of V_i which are not contained in Σ_0 is so $q^3 + q^2 + q + 1 - (q+1)^2 = q^3 - q$. Therefore

(1.4) If $S \in \Sigma - \Sigma_0$, $S \to s_i = S \cap V_i$ defines a 1-1 map of $\Sigma - \Sigma_0$ onto the set of 1-spaces of V_i not lying in components of Σ_0 .

As V_i is G-invariant and $x_i = y_i = 0$, we may omit x_i and y_i in the coordinates $(x_1, x_2, x_3, y_1, y_2, y_3)$ of a vector of V_i . Let $s = \langle (h, 0, 0, k) \rangle$ (resp. $\langle (0, -k, -h, 0) \rangle$) be a 1-space of V_i : if $hk \neq 0$ no component of Σ_0 contains this 1-space. We have $s^{g(\alpha\beta,\gamma,\delta)} = \langle (h\alpha^{\sigma_1'}, k\gamma^{\sigma_2'}, h\beta^{\sigma_1'}, k\delta^{\sigma_2'}) \rangle$ (resp. $\langle (-h\gamma^{\sigma_1'}, -k\alpha^{\sigma_2'}, -h\delta^{\sigma_1'}, -k\beta^{\sigma_2'}) \rangle$), where σ_1^i and σ_2^i take two different values in the set $\{1, \lambda, \mu\}$ (see (1.2)). Therefore

(1.5) Let Φ_i be the multiplicative homomorphism $x \to x^{\sigma_i^1} x^{\sigma_2^i}$, then the 1space $\langle (u, v, w, z) \rangle$ of V_i is contained in the G-orbit of $s = \langle (h, 0, 0, k) \rangle$ (resp. $\langle (0, -k, -h, 0) \rangle$), where $hk \neq 0$, iff $h^{-\sigma_2^i} k^{-\sigma_1^i} (u^{\sigma_2^i} z^{\sigma_1^i} - v^{\sigma_1^i} w^{\sigma_2^i}) \in$ Im Φ_i . Moreover $g(\alpha, \beta, \gamma, \delta) \in G_s$ iff $\beta = \gamma = 0$ and $\alpha \in \text{kern } \Phi_i$.

Proof. Suppose that $(u, v, w, z) = a(h\alpha^{\sigma_1^i}, k\gamma^{\sigma_2^i}, h\beta^{\sigma_1^i}, k\delta^{\sigma_2^i})$ for some

scalar a. Then, by calculation using $\alpha\delta - \beta\gamma = 1$ we get that $h^{-\sigma_2^i}k^{-\sigma_1^i}(u^{\sigma_2^i}z^{\sigma_1^i} - v^{\sigma_1^i}w^{\sigma_2^i}) = a^{\sigma_1^i}a^{\sigma_2^i}$. Note that in the case $(u, v, w, z) = a(h\alpha^{\sigma_1^i}, k\gamma^{\sigma_2^i}, h\beta^{\sigma_1^i}, k\delta^{\sigma_2^i})$ is a scalar multiple of (h, 0, 0, k) then $\beta = \gamma = 0, \ \delta = \alpha^{-1}$ and hence $\alpha \in \ker \Phi_i$. The rest of the proof is left to the reader.

By (1.4) we can determine the length of the G-orbit of a component $S \in \Sigma - \Sigma_0$ by computing the G-orbit of the intersection $s_i = V_i \cap S$: we have $|G_S| = |G_{s_i}|$. If kern $\Phi_i = \langle 1 \rangle$, i.e., Im $\Phi_i = K^*$ (the multiplicative group of K), then $|SL(2, K)| = q^3 - q$ and (1.5) imply G splits Σ into two orbits: Σ_0 and $\Sigma - \Sigma_0$ (q must be even in such a case). Therefore we may assume Im $\Phi_i \neq K^*$. Let $s_i = \langle (u, 0, 0, 1) \rangle$, $u \in K^*$, and let $s_j = \langle (a_j, b_j, c_j, d_j) \rangle$ for $j \neq i$. If $g(\alpha, \beta, \gamma, \delta) \in G_{s_i}$, from (1.5) it follows $\beta = \gamma = 0$ and $\alpha \in \ker \Phi_i$. Assume $\alpha \neq \pm 1$, then $G_{s_j} = G_S = G_{s_i}$ requires either $b_j = c_j = 0$ and $a_j \neq 0 \neq d_j$ or $a_j = d_j = 0$ and $b_j \neq 0 \neq c_j$ (the remaining possibilities cannot occur because, otherwise, s_j should be contained in a component of Σ_0). In any case, by (1.5), $\alpha \in \ker \Phi_j$. Thus we have $\alpha \alpha^{\lambda} = \alpha \alpha^{\mu} = \alpha^{\lambda} \alpha^{\mu} = 1$, i.e., $\alpha^2 = 1$: a contradiction since we assumed $\alpha \neq \pm 1$. Therefore $[K^*: \operatorname{Im} \Phi_i] = 2$ (hence q must be odd in this case) and the G-orbit of s_i has length $(q^3 - q)/2$. By (1.5) $\langle (u, 0, 0, 1) \rangle$ is in the same G-orbit of $\langle (1, 0, 0, 1) \rangle$ iff $u^{\sigma_2} \in \operatorname{Im} \Phi_i$: so the following theorem holds

THEOREM (1.6). G splits the components of Σ either into two orbits (q even) or into three orbits (q odd). One of these orbits is Σ_0 and, if q is odd, the remaining orbits have the same length $(q^3 - q)/2$.

In view of (1.4) and (1.5) we have as a direct consequence

THEOREM (1.7). If G is represented as in (1.1) and (1.2), then the equations $x^{\lambda}x^{\mu} = 1$, $xx^{\lambda} = 1$, $xx^{\mu} = 1$ have no solutions in K different from ± 1 .

2. DESARGUESIAN CASE

In this section we will assume $\lambda = 1 = \mu$ and show that Π is desarguesian in this case, First we prove

(2.1). If the 3-space W(H) intersects each component $W(A_{\alpha})$ of Σ_0 only trivially, the ring K[H] is a field of order q^3 . (See the definition preceding (1.3).)

Proof. $W(H) \cap W(A_{\alpha}) = \langle 0 \rangle$ requires $H - A_{\alpha} = H - \alpha I$ nonsingular. Hence H has no eigenvalues in K and the minimal polynomial for H is an irreducible cubic f(x): the ring K[H] is so isomorphic to the field K[x]/(f(x)).

Let $W(M) \in \Sigma - \Sigma_0$, then K[M] is a field by (2.1) whence $M' \in K[M]$ for each other component W(M') in the G-orbit of W(M). By (1.3; c) and theorem (1.6) Π is so desarguesian if q is even. Therefore we may assume q odd in the following of this section: Σ splits so into three G-orbits $\Sigma_0, \Sigma_1, \Sigma_2$.

Now we have

(2.2). There exists a 3-space W(H), intersecting trivially each component of Σ_0 , whose nonzero vectors are both in components of Σ , and in components of Σ_2 .

Proof. It is a direct consequence of the following Lemmas (2.3), (2.4), (2.5).

LEMMA (2.3). There exists a polynomial $f(x) = a_0 + a_1 x + a_2 x^2 + x^3$ over K such that f(x) is irreducible over K and $a_2 \neq 0$.

Proof. If $F \simeq GF(q^3)$ is an extension of K, it is well known that every cubic irreducible over K has three distinct roots in the $q^3 - q$ elements of F - K and every element of F - K satisfies such a cubic. Hence the number of irreducible cubics is $(q^3 - q)/3$. But this is greater than the number of polynomials of the form $a_0 + a_1x + x^3$.

LEMMA (2.4). Let f(x) be the irreducible cubic in (2.3); let $t \neq 0$ be an element of K, let $d = (t + a_0) a_2^{-1}$ and let $W(H) = \langle (0, d, -t^{-1}, 0, -a_0, a_2 t^{-1}), (-t, 0, 0, d(a_1 - d), 0, -1), (t^{-1}(a_1 - d), -1, 0, 1, 0, 0) \rangle$. Then the 3-space W(H) has only trivial intersection with each component of Σ_0 .

Proof. Suppose that some linear combination (with coefficients u, v, w) of the basis vectors in W(H) satisfies the equation y = xm for some m in K. Then u, v, w satisfy the equations

$$v(d(a_1 - d) + tm) + w(1 - t^{-1}(a_1 - d)m) = 0,$$

-u(a_0 + dm) + wm = 0,
u(a_2t^{-1} + mt^{-1}) - v = 0.

Using $d = (t + a_0) a_2^{-1}$, the determinant of this system reduces to $m^3 + a_2m^2 + a_1m + a_0$ and the determinant is not equal to zero for any m in K because f(x) is irreducible. The case where W(H) contains some point $(0, y), y \neq 0$, is left to the reader. This establishes (2.4).

Remark. In interpreting (1.5) and the preceding arguments for the case $\lambda = \mu = 1$, the requirement that σ_1 and σ_2 take two "different" values in the set $\{1, \lambda, \mu\}$ must not be taken to exclude cases such as $\sigma_1^i = 1$, $\sigma_2^i = \lambda = 1$. In the present context, the 1-space $\langle (u, v, w, z) \rangle$ of V_i is in the G-orbit of $\langle (1, 0, 0, 1) \rangle$ iff uz - vw is a square while $\langle (u, v, w, z) \rangle$ such that uz - vw is not a square form another G-orbit by (1.4) and Theorem (1.5). We shall say that a 1-space $\langle (u, v, w, z) \rangle$ of V_i is of type +, 0, - depending on whether uz - vw is a square, zero, or a non-square in K. Clearly, two components of Σ contain 1-spaces of V_i of the same type iff they are in the same partial spread $\Sigma_j, j = 0, 1, 2$.

LEMMA (2.5). The parameter t may be chosen so that W(H) of (2.4) contains nonzero vectors on components of Σ_1 and nonzero vectors on components of Σ_2 .

Proof. W(H) contains the subspaces $\langle (0, d, -t^{-1}, 0, -a_0, a_2t^{-1}) \rangle$ and $\langle (t^{-1}(a_1 - d), -1, 0, 1, 0, 0) \rangle$. In the condensed notation $\langle (d, -t^{-1}, -a_0, a_2t^{-1}) \rangle$ is in V_1 and $(t^{-1}(a_1 - d), -1, 1, 0)$ is in V_3 . Both are of type +. Also $W(H) \cap V_2 = \langle (-t, 0, d(a_1 - d), -1) \rangle$ which is of type + or - depending on whether t is a square or a non-square in K. Thus (2.5) is trivial.

Let $W(N_i) \in \Sigma_j$, i = 1, 2, and let M_i be a generator of the multiplicative group of the field $K[N_i]$. If $\langle M_1 \rangle = \langle M_2 \rangle$, then Π is desarguesian because we have $A = \langle M_i \rangle$. Suppose $\langle M_2 \rangle \neq \langle M_1 \rangle$ and let F be a field of 3×3 matrices over K maximal with respect to the condition that F is normalized by $\langle M_1, M_2 \rangle$: since F contains $\{aI/a \in K\}$, F is isomorphic either to GF(q) or to $GF(q^3)$. If $F \simeq GF(q^3)$, we may regard $\langle M_1, M_2 \rangle$ as a subgroup of $\Gamma L(1, F)$. But each element of order $q^3 - 1$ in $\Gamma L(1, F)$ is linear: therefore we have $\langle M_1 \rangle = \langle M_2 \rangle$, a contradiction. Thus $F \simeq GF(q)$. Now (1.3; a) and Hering [3, Lemma 5.7] imply

$$SL(3, K) \leq \langle M_1, M_2 \rangle \leq GL(3, K).$$
 (2.6)

Let W(H) be a 3-space satisfying (2.2); by (2.1) K[H] is a field. Let E be a generator of the multiplicative group of K[H] and U the Sylow *u*-subgroup of $\langle E \rangle$, where *u* is a *q*-primitive prime divisor of $q^3 - 1$ (see, e.g., [7, pp. 27–28]): U is also a Sylow *u*-subgroup of GL(3, K). Since Uoperates irreducibly on $V_3(K)$, Schur's lemma implies the centralizer of Uin GL(3, K) is $\langle E \rangle$. U is conjugate in GL(3, K) to the Sylow *u*-subgroup of $\langle M_i \rangle$ whence $\langle E \rangle$ and $\langle M_i \rangle$ are also conjugate because both centralizers of Sylow *u*-groups of GL(3, K). Now from (2.6) it follows $\langle E \rangle \leq \langle M_1, M_2 \rangle$ because the group $\langle M_1, M_2 \rangle$ must contain every element of GL(3, K) having the same determinant of some its element. The linear map

$$(x, y) \rightarrow (x, y) \begin{pmatrix} M_i & 0\\ 0 & M_i \end{pmatrix}$$

fixes each component of Σ_0 and Σ_i , hence leaves $\Sigma_0, \Sigma_1, \Sigma_2$ invariant as sets of vectors. Then the whole $\langle M_1, M_2 \rangle$ behaves in this way. But $V_3(K)$ is an irreducible *H*-module, hence the group of linear maps of $V_6(K)$ defined by

$$\left\langle \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix} \right\rangle$$

fixes W(H) and is transitive on its nonzero vectors: according to the choice of W(H), $\langle E \rangle \leq \langle M_1, M_2 \rangle$ cannot so happen. Thus $\langle M_1 \rangle = \langle M_2 \rangle$ and Π is desarguesian.

3. A CLASS OF TRANSLATION PLANES OF ORDER q^3 Admitting SL(2, q).

Let $F = GF(q_0)$, $q_0 = p^{\omega}$, and K be a cubic extension of $F: K \simeq GF(q)$, where $q = q_0^3$. Also let M be the matrix

$$\left(\begin{array}{rrrr} 0 & 0 & a \\ b & 0 & 0 \\ 0 & c & 0 \end{array}\right),$$

where a, b, $c \in K$ and $t = abc \notin F$. Consider the field of matrices $K' = \{A_{\alpha} | \alpha \in K\}$ (where A_{α} is the matrix (1.1)) and set $x^{\lambda} = x^{q_0}, x^{\mu} = x^{q_0^{\lambda}}$ for $x \in K$. We have

(3.1). The matrix $H(\alpha, \beta, \gamma) = M^2 A_{\alpha} + M A_{\beta} + A_{\gamma}$ is singular iff $\alpha = \beta = \gamma = 0$.

Proof. $H(\alpha, \beta, \gamma)$ has determinant $d(t) = t^2 \alpha^{q_0} \alpha^{q_0^2} + t(\beta \beta^{q_0} \beta^{q_0^2} - \alpha^{\beta q_0^2} \gamma^{q_0} - \alpha^{q_0} \beta \gamma^{q_0^2} - \alpha^{q_0^2} \beta^{q_0} \gamma) + \gamma \gamma^{q_0} \gamma^{q_0^2}$. Note that d(x) is a quadratic in F[x]. Hence if d(t) = 0, t is in a quadratic extension of F. But K is a cubic extension of F and $t \in K - F$. Hence if $H(\alpha, \beta, \gamma)$ is singular, $\alpha = \beta = \gamma = 0$.

Let $W(M') = W(M)^{g(\alpha,\beta,\gamma,\delta)}$, where $g(\alpha,\beta,\gamma,\delta)$ is defined as in (1.2). Since M normalizes K' (i.e., $A_{\eta}^{M} = A_{\eta}^{q_{0}}$), M - M' is singular (i.e., $W(M') \cap W(M) \neq \langle 0 \rangle$) iff $H(-\gamma^{q_{0}}, \delta - \alpha^{q_{0}}, \beta)$ is singular. Thus by (3.1) M - M' is singular iff $\beta = \gamma = 0$ and $\alpha \alpha^{q_{0}} = 1$. As $(q_{0} + 1, q_{0}^{3} - 1)$ is either 2 or 1 depending on whether q is odd or even, we infer $\alpha = \pm 1$; whence (3.2). The orbit of W(M) under the group $G = \{g(\alpha, \beta, \gamma, \delta) | \alpha, \beta, \gamma, \delta \in K, \alpha\delta - \delta\gamma = 1\}$ contains either $(q^3 - q)/2$ 3-spaces (q odd), or $q^3 - q$ 3-spaces (q even). Any two of these subspaces in the same orbit intersect trivially.

Suppose q odd and consider the 3-space $W(MA_{\xi})$, where $\xi \neq 0$. Assume that $W(MA_{\xi})$ intersects nontrivially some 3-space W(M') of the G-orbit containing W(M), say $W(M') = W(M)^{g(\alpha,\beta,\gamma,\delta)}$. This implies $H(-\xi\gamma^{q_0}, \delta - \xi\alpha^{q_0}, \beta)$ singular: by (3.1) $\beta = \gamma = 0$ and $\xi\alpha\alpha^{q_0} = 1$, whence ξ must be a square. Therefore

(3.3.) If q is odd and ξ is a nonsquare in K, $W(MA_{\xi})$ intersects trivially each 3-space of the G-orbit containing W(M).

Put $\Sigma_1 = \{ W(M)^g / g \in G \}, \Sigma_2 = \{ W(MA_\xi)^g / g \in G \}$ and let Σ_0 be as in no. 1; we have

THEOREM (3.4). If q is odd (resp. even) and ξ is a nonsquare in K, $\Sigma_0 \cup \Sigma_1 \cup \Sigma_2$ (resp. $\Sigma_0 \cup \Sigma_1$) is a spread of $V_6(K)$.

Proof. Since MA_{ξ} satisfies the same condition that M (i.e., $t \notin F$), the claim is a direct consequence of (3.1), (3.2), and (3.3).

Remark. The translation plane Π defined by the spread of Theorem (3.4) is not desarguesian because M does not centralize K'. If q is even, Π is not isomorphic to the Kantor plane Π_1 of the same order: for Π should admit a cyclic collineation group C of order q+1 fixing every line of Σ_0 , [4, Theorem 7.1]. Thus each element of C should be defined by a matrix centralizing K', i.e., a diagonal matrix. But a group of diagonal matrices cannot have order q+1.

REFERENCES

- 1. R. H. DYE, Partitions and their stabilizers for line complexes and quadrics. Ann. Mat. Pura Appl. 114 (1977), 173-194.
- C. HERING, On shears of translation planes. Abh. Math. Sem. Univ. Hamburg 37 (1972), 258-268.
- 3. C. HERING, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. Geom. Dedicata 2 (1974), 425-460.
- W. M. KANTOR, Spreads, translation planes and Kerdock sets I, SIAM J. Algebra Discrete Methods 3 (1982), 151-165.
- 5. W. M. KANTOR, Ovoids and translation planes. Canad. J. Math. 34 (1982), 1195-1207.
- R. A. LIEBLER, Combinatorial Representation theory and translation planes, in "Finite Geometries" (Johnson, Kallaher, and Long, Eds.), Dekkar, New York, 1982.
- 7. H. LÜNEBURG, "Translation Planes." Springer, New York, 1980.
- H. J. SCHAEFFER, "Translationsebenen, auf denen die Gruppe SL(2, pⁿ) operiert," Diplomarbeit, Tübingen, 1975.