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a b s t r a c t

In 1961, Paul Erdös posed the question whether abelian squares can be avoided in
arbitrarily long words over a finite alphabet. An abelian square is a non-empty word uv,
where u and v are permutations (anagrams) of each other. The case of the four letter
alphabetΣ4 = {a, b, c, d} turned out to be the most challenging and remained open until
1992 when the author presented an abelian square-free (a-2-free) endomorphism g85 of
Σ∗4 . The size of this g85, i.e., |g85(abcd)|, is equal to 4×85 (uniformmodulus). Until recently,
all knownmethods for constructing arbitrarily long a-2-free words onΣ4 have been based
on the structure of g85 and on the endomorphism g98 ofΣ∗4 found in 2002.
In this paper, a great many new a-2-free endomorphisms ofΣ∗4 are reported. The sizes

of these endomorphisms range from 4 × 102 to 4 × 115. Importantly, twelve of the new
a-2-free endomorphisms, of modulus m = 109, can be used to construct an a-2-free
(commutatively functional) substitution σ109 ofΣ∗4 with 12 image words for each letter.
The properties of σ109 lead to a considerable improvement for the lower bound of the

exponential growth of cn, i.e., of the number of a-2-free words over 4 letters of length n.
It is obtained that cn > β−50βn with β = 121/m ' 1.02306. Originally, in 1998, Carpi
established the exponential growth of cn by showing that cn > β−tβn with β = 219/t =
219/(85

3
−85)
' 1.000021, where t = 853 − 85 is the modulus of the substitution that he

constructs starting from g85.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The systematic study of word structures, i.e., combinatorics on words, was initiated by Axel Thue (1863–1922) at the
beginning of the 20th century in [1]. One of his discoveries was that the consecutive repetitions of non-empty factors
(squares) can be avoided in arbitrarily long words over a three letter alphabet. As a simple example of the square concept,
consider the words abacaba and ab cd cd ab. The first word does not contain any square, i.e., it is square-free, whereas the
second word contains the underlined square cd cd as a factor.
The above-mentioned square-freeness property of words is not trivial to prove. The tool, which Thue invented for

constructing square-free, and other repetition-free, words, namely the concept of a repetition-free morphism, is still today
a basic device in the study of avoidable patterns in words. Repetition-free morphisms (respectively substitutions) are
mappings between free monoids (respectively into monoid of subsets) that preserve the repetition-freeness of words. The
iteration of a non-trivial repetition-free endomorphism or a substitution produces repetition-free words of any length.
Dealing with substitutions somewhat later, we point out that repetition-free morphisms have been sharply characterised
in [2–9]. Those results concern different types of repetitions (k-repetitions for a given integer k ≥ 2) and alphabet sizes.
Informally speaking, most of the characterisational results for morphisms mean that in order to test the repetition-freeness
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of a given morphism, one only has to check whether the image words of short repetition-free words are also repetition-
free. A general survey of these and related results, achieved before 1984, is given in [10]. For a short survey of Thue’s
results concerning repetition-free words and their applications, see [11]. Fundamental topics are discussed in [12,13]. For a
connection to modern bioinformatics, see for example Mirkin [14]. Indeed, it has been noted that short repetitions in DNA
often lead to hypohelix structures (loops) that in turnmay be the cause of many diseases. For the case of abelian square-free
words, a number of visualisations of the structures and of the related processes can be found in [15].
In a paper from1961, see [16, p. 240], Paul Erdös (1913–1996) raised the questionwhether abelian squares can be avoided

in infinitely long words, i.e., whether there exist infinitely many abelian square-free words over a given alphabet. Here, an
abelian squaremeans a non-emptyword uv, where u and v are permutations (anagrams) of each other. For example, abc acb
is an abelian square. A word is called abelian square-free, if it does not contain any abelian square as a factor. For example,
the word abacaba is abelian square-free, while ab cabdc bcacd ac is not.
In 1970, Pleasants [17] proved that there exists an infinite abelian square-free word over five letters. Finally, in 1992, see

Keränen [18], the authormanaged to show that the sameholds true also in the case of four letters. It is easily seen that abelian
squares cannot be avoided over a three letter alphabet. Indeed, in this alphabet, each word of length 8 contains an abelian
square. Entringer et al. [19] proved that every infinite word over a binary alphabet contains arbitrarily long abelian squares.
Dekking [20] in turn proved that abelian repetitions to the fourth power can be avoided in infinite words over two letters,
and abelian repetitions to the third power (cubes) can be avoided in infinite words over three letters. Currie and Aberkane
[21] exhibited the smallest cyclic binary morphism avoiding abelian fourth powers. At any rate, their morphism is far larger
than the non-cyclic morphism presented by Dekking in [20]. For a generalisation of abelian squares, see Avgustinovich and
Frid [22]. Abelian fractional powers were studied by Cassaigne and Currie [23]. It was proved by Currie [24] that the number
of binarywords avoiding abelian fourth powers grows exponentially, and Aberkane, Currie, and Rampersad [25] proved that
the number of ternary words avoiding abelian cubes grows exponentially as well.
An application of Dekking’s result was given by Justin et al. [26], who showed that a finitely generated semigroup is

uniformly repetitive if and only if it is finite. Pirillo et al. [27] used similar kind of reasoning when proving, among other re-
sults, that the additive semigroupN

+

is not uniformly 4-repetitive. It seems to be an open problemwhetherN
+

is uniformly
2-repetitive or 3-repetitive. In all these considerations, the use of van der Waerden’s theorem has been central. In Lothaire
[12, pp. 55–62], van der Waerden’s theorem was used to show that every morphism from a free semigroup A+, where A
is finite, to N

+

is repetitive. This means that every long enough sequence on a finite set of integers contains two adjacent
segments (not necessarily of the same length) that have the same sum.
The original problem concerning abelian squares has attracted attention also in the study of free partially commutative

monoids, see for instance [28,29]. Moreover, abelian square-free words have aroused interest in algorithmic music, see e.g.
Laakso [30], and quite recently in cryptography, see Rivest [31] and Andreeva et al. [32].
In 1993, Carpi [2] gave sufficient conditions formorphisms to preserve abelian kth power-freeness of words. A conjecture

is that these conditions yield an effective characterisation also for abelian square-free endomorphisms on a four letter
alphabet Σ4 = {a, b, c, d}. However, new examples of relatively short abelian square-free endomorphisms g of Σ∗4 have
turned out to be extremely hard to find — and the same difficulty applies to every systematic attempt for constructing long
abelian square-free words over 4 letters. Before the results of this article, there was no evidence that it would be possible
to find more examples of abelian square-free endomorphisms — not to speak of proper substitutions of Σ∗4 . Thus far, after
1992, when the author [18] presented g85, the only new kind of abelian square-free endomorphisms and substitutions had
been found by Carpi [33], cf. also [34, pp. 80–81]. However, his mappings are all based on the structure of g85. Moreover,
the image words of these endomorphisms and substitutions are very long indeed. By using his substitutions, Carpi proved
that the number of abelian square-free words of each length grows exponentially, and that the monoid of (uniform) abelian
square-free endomorphisms ofΣ∗4 is not finitely generated.
The newest abelian square-free endomorphisms, 200 in number, that were recently found for a starting point regarding

our substitutions, have the following property: the image words g(x), x ∈ Σ4, are all obtained by cyclically permutating the
letters in g(a). The sizes of these endomorphisms range from 4×102 to 4×115 and the imagewords g(a) can be viewed and
copied from [35]. The same cyclic permutation property is true for g85 aswell, and thismethodwas already used by Pleasants
[17] in connection with five letters. Consequently, all of these endomorphisms have a uniform modulus and the generated
words are growing uniformly. The size of Pleasants’ endomorphism is 5 × 15 = 75. In the four letter case, the author has
checked, with computer, that the size 4 × 85 = 340 of g85, in spite of its largeness, is actually minimal, at least as far as
cyclic permutation method is used. Except for Carpi’s very large endomorphisms and substitutions, the earlier searches for
the other kind of abelian square-free endomorphisms ofΣ∗4 (not possessing the cyclic permutation property) have not been
successful, even the experiments have been quite extensive. However, in Section 4, the a-2-free endomorphisms, 20724
in number, indeed possess a different structure. Moreover, the author [36,37] found in 2002 a nice endomorphism g98 of
Σ∗4 that can be used in iterations, and also together with g85 to produce infinite abelian square-free DT0L-languages (i.e.,
languages obtained by using compositions of morphisms). This g98, in itself, is not an abelian square-free endomorphism,
as it does not preserve abelian square-freeness for all words (starting already from the length 7). The structure of the image
words of g98 also partly differs from the structure of g85 and of the above-mentioned 200 new cyclic endomorphisms.
Quite recently, we have also gained insight into why these abelian square-free structures are so rare over four letters.

The author in [38] (partially) explains this rareness of long words avoiding abelian squares by using the concept of an
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unfavourable factor. Working in a fixed alphabet, we take an abelian square-free word, and with computer try to extend
it in abelian square-free fashion to the right and to the left with all possible ways up to a given upper bound for the total
length. At each step, the length of the word increases only by a given fixed length. We extend alternately to right and left,
and backtrack if necessary. If the given upper bounds are reached then the original word is a so-far-favourable one (it may
still turn out to be unfavourable on later experiments). If there is noway to reach the upper bounds, then the original word is
classified, without any doubt, to be unfavourable. Thus there are three kinds of words: unfavourable (bad), so-far-favourable
(so-far-so-good), and favourable (good). It is a remarkable phenomenon that already relatively short so-far-favourable words
turn out to be unfavourable factors after being ‘safely’ extendable (to right and left) for quite a long distance and sometimes
with a really huge number of branches. Onemight have expected the quite long buffers to guarantee the further growth. It is
conjectured that the majority of abelian square-free words over four letters cannot occur as proper factors in the middle of
very long (infinite) abelian square-free words. In a way, this also explains why it has been so difficult to find abelian square-
free endomorphisms over four letters. At present, it is known, for example, that about 60 % of the abelian square-free words
of length 24 are indeed unfavourable in the four letter case. It will be interesting to study in a similar way also the three
letter case, for which an exciting open problem was posed by Mäkelä [39], who allows repetitions xx and xxx, for a letter x,
but no other abelian squares (or cubes).
Ochem and Reix in [40] presented efficient matrix methods for finding upper bounds for the growth of the number of

repetition-free words. Their approach is directly applicable also for the abelian square-freeness case by using the above-
mentioned so-far-favourable words. However, the involved computations are still going on, and therefore this topic is not
elaborated here.

2. Preliminaries

In this section, pertinent notation and terminology is presented. The readermight also consult this section later, if needed.
An alphabet Σ is a finite non-empty set of abstract symbols called letters. A word (string) over Σ is a finite (unless

otherwise indicated) string, or sequence, of letters belonging toΣ . The set of all words [non-emptywords] overΣ is denoted
byΣ∗[Σ+]. On theΣ∗, the associative binary operation of catenation is defined. For words u and v, it is the juxtaposition uv.
The empty word, which is the neutral element of catenation, is denoted by λ. The algebraic structuresΣ∗ andΣ+ are called,
respectively, the free monoid and the free semigroup generated by Σ . For a word w and a natural number n, the notation
wn is defined by w0 = λ and wn+1 = wwn.
Let w = x1 · · · xm, xi ∈ Σ . The length of the word w, denoted by |w|, is the number of occurrences of letters in w, i.e.,

|w| = m. Let Σ = {a1, . . . , an}. The number of occurrences of one letter x ∈ Σ in w is denoted by |w|x, or simply by |w|i,
if x = ai. The notation ψΣ (w) stands for the Parikh vector of w, i.e., ψΣ (w) = (|w|1, . . . , |w|n). Usually we will omit the
subscriptΣ and write simply ψ instead of ψΣ .
A word u is called a factor of a word w, if w = pus for some words p and s. The notation FACT(w) stands for the set of

all factors of w. If p = λ [s = λ], then u is called a prefix [suffix] of w. By PREF(w) [SUFF(w)] we mean the set of all prefixes
[suffixes] ofw. The notation pref(w) [suff(w)] denotes an element in PREF(w) [SUFF(w)]. In the casew 6= λ, we write first(w)
[last(w)] to denote the first [the last] letter of w.
Let k ≥ 2 be a given integer. A k-repetition is a non-empty word of the form Rk. An abelian k-repetition is a non-empty

word of the form P1 · · · Pk, where ψ(Pµ) = ψ(Pν) for all 1 ≤ µ < ν ≤ k, i.e., Pi:s are commutatively equivalent, that is, they
are permutations, or anagrams, of each other. Instead of [abelian] 2- and 3-repetitions, the terms [abelian] squares and cubes
are often used. A word, or an ω-word (defined below), is called k-repetition free, or k-free for short, if it does not contain
any k-repetition as a factor. A word sequence or a word set is k-free, if all words in it are k-free. Abelian analogs of these
terms and definitions also exist and are formed in a natural way by preceding any term with the word abelian, i.e., abelian
square, abelian cube, abelian k-repetition free, etc. The abelian analog of the short term, k-free is a-k-free. If, for a fixed k,
it is possible to construct arbitrarily long (infinite) a-k-free (or other pattern-free) words over a given alphabetΣ , then we
say that abelian k-repetitions (or those patterns) are avoidable overΣ .
Subsets of Σ∗ are called languages over Σ . The catenation of languages L and L1, denoted by LL1, is the language

{uv|u ∈ L, v ∈ L1}. The notation Li, where L is a language and i ∈ N, is defined as follows: L0 = {λ} and Li+1 = LiL. Let
L∗ = ∪∞i=0L

i and L+ = ∪∞i=1L
i. If a language contains only one word, say w, then we sometimes write w instead of {w};

especially,w∗ = {wi| i ≥ 0} andw+ = {wi| i ≥ 1}.
For a language L we write Q (L), where Q is FACT, PREF or SUFF, to denote the set ∪w∈L Q (w). Moreover, for n ∈ N,

we write Qn(L) to denote the words in Q (L) of length = n. The notation prefn(w) [suffn(w)] is used for an element in
PREFn(w) [SUFFn(w)].
A morphism h is a mapping between free monoids Σ∗ and ∆∗ satisfying h(uv) = h(u) h(v) for every u and v in Σ∗.

Especially, h(λ) = λ. A morphism h : Σ∗ → ∆∗, being compatible with the catenation of words, is uniquely defined, if the
word h(x) ∈ ∆∗ is (effectively) given for each x ∈ Σ . If ∆ = Σ , we call h an endomorphism (and usually write g instead of
h). For a morphism h and a language Lwe define h(L) = {h(w) |w ∈ L}. A morphism h is called uniformly growing, or, is said
to have a uniform modulus, if |h(x)| = |h(y)| ≥ 2 for every x and y ∈ Σ .
A substitution σ : Σ∗ → ∆∗ is monoid morphism of Σ∗ into a subset monoid of ∆∗. The substitution σ is finite, if

σ(Σ) is a finite subset of ∆∗. For a morphism h : Σ∗ → ∆∗, it holds that Card(h(Σ)) ≤ Card(Σ), and thus a morphism
is a special case of a finite substitution. Following the terminology of Carpi [34], a substitution σ : Σ∗ → ∆∗ is called
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commutatively functional, if dom(σ ) = Σ∗, and, for all x ∈ Σ, v, v′ ∈ σ(x), it holds that ψ(v) = ψ(v′) (this is also written
as v ∼ v′). In other words, a substitution is termed commutatively functional, if the image words of a fixed letter are all
commutatively equivalent. Moreover, for a commutatively functional substitution σ and any word w in Σ∗, all the words
σ(w) are commutatively equivalent.
For a given integer k ≥ 2, a substitution (or a morphism) σ : Σ∗ → ∆∗ is called k-free [a-k-free], if all the words σ(w)

are (or the word σ(w) is) k-free [a-k-free] for every k-free [a-k-free] word w ∈ Σ∗.
With regard to L-systems (Aristid Lindenmayer 1925–1989), we specify the following concepts. A D0L-system is a triple

G = (Σ, g, α0), whereΣ is an alphabet, g : Σ∗ → Σ∗ is an endomorphism, and α0, called the axiom, is a word overΣ . The
(word) sequence S(G) generated by G consists of the words

α0 = g0(α0), g1(α0), g2(α0), g3(α0), . . . ,

where g i(α0) = g(g i−1(α0)) for i ≥ 1. The language of G is defined by L(G) = {g i(α0)| i ≥ 0}. Languages [sequences]
defined by a D0L-system are referred to as D0L-languages [D0L-sequences]. D0L-systems provide a very convenient way for
defining languages and infinite words. Furthermore, if g and α0 are k-free [a-k-free], then the iteration of g will yield a k-free
[a-k-free] D0L-sequence. An HD0L-system is a 5-tuple G1 = (Σ,∆, g, h, α0), where (Σ, g, α0) is a D0L-system, called the
underlying D0L-system of G1,∆ is an alphabet, and h : Σ∗ → ∆∗ is a morphism. The HD0L-sequence S(G1) generated by G1
consists of the words

h(α0) = h(g0(α0)), h(g1(α0)), h(g2(α0)), h(g3(α0)), . . . ,

and the HD0L-language of G1 is the set L(G1) = {h(g i(α0))| i ≥ 0}. A DT0L-system is a triple G2 = (Σ,H, α0), where H is a
finite non-empty set of morphisms (called tables) and (Σ, h, α0) is a D0L-system for every h ∈ H . The DT0L-language of G2
is the set L(G2) = {w|w = α0 or w = hk · · · h1(α0)}, where the compositions hk · · · h1 of morphisms are constructed from
h1, . . . , hk ∈ H . Obviously, a DT0L-system can be regarded as a D0L-system, when H contains only one endomorphism. For
a thorough discussion of various L-systems the reader is referred to Rozenberg and Salomaa [41].
An ω-word is a right infinite sequence, of letters of an alphabetΣ . Thus an ω-word can be identified with a mapping of

N+ into Σ . One can construct an ω-word, for example, by iterating an endomorphism g : Σ∗ → Σ∗ such that λ /∈ g(Σ)
and g(x) = xw for some x ∈ Σ , w ∈ Σ+. Such a morphism g is called prefix preserving for the reason that g i(x) is a proper
prefix of g i+1(x)whenever i ≥ 0. An ω-word is obtained as the ‘‘limit’’ of the sequence g i(a); i = 0, 1, 2, . . ..

3. Carpi’s characterisations of a-2-free morphisms and substitutions

In this section, firstly, a result from [2], which characterises a-n-free morphisms, is restated. This result is then
reformulated in such a way that the a-2-freeness can be tested for a commutatively functional substitution.

Proposition 1 (Carpi [2]). Given an integer n ≥ 2, two alphabetsΣ and∆, and a morphism h : Σ∗ → ∆∗, let us denote by Gh
the subgroup of Z∆ generated byψ(h(Σ)). Then, the morphism h is abelian nth power-free (a-n-free) provided that the following
conditions are satisfied:

(i) h(w) is a-n-free for every a-n-free word w ∈ Σ∗ of length 2,
(ii) h is commutatively injective, i.e., the set ψ(h(Σ)) is linearly independent,
(iii) for all ai ∈ Σ, pi ∈ PREF(h(ai)) \ {h(ai)}; 0 ≤ i ≤ n; such that

ψ(pj+1)− 2ψ(pj)+ ψ(pj−1) ∈ Gh, j = 1, 2, . . . , n− 1,

there exist integers δi ∈ {0, 1} such that

ψ(pj+1)− 2ψ(pj)+ ψ(pj−1) = δj+1ψ(h(aj+1))− 2δjψ(h(aj))+ δj−1ψ(h(aj−1)), j = 1, 2, . . . , n− 1.

If Card(Σ) ≥ 6, then an a-n-free morphism h always satisfies conditions (i)–(iii). �

Informally speaking, the condition (iii) above means that if h(w) contains an abelian repetition as a factor, then there is
also an abelian repetition in the preimage word w. In this paper, we are interested in applying this characterisation when
n = 2 (and j = 1).
Independently of the author, Carpi in [2] verifiedwith computer that the endomorphism g85, presented in author’s earlier

publication [18], indeed satisfies the conditions (i)–(iii) of Proposition 1, for n = 2, and is therefore a-2-free.
Carpi characterised commutatively functional abelian square-free substitutions basically in a similar fashion in [34].

However, for our purpose, the notation in [34] is perhaps too plentiful and technical, cf. Proposition 7, Corollary 3 of
Proposition 8, and Proposition 9 therein. For a visualisation of the structures involved the reader is referred to [33, p. 159].
Indeed, Proposition 1 can be reformulated in a straightforward way for testing the a-2-freeness of a commutatively

functional substitution σ : Σ∗ → ∆∗. In this case, by definition, for all x ∈ Σ, v, v′ ∈ σ(x), it holds that ψ(v) = ψ(v′).
Consequently, for each letter x, the set ψ(σ(x)) simply consists of one single element, and thus ψ(h(Σ)) of Proposition 1
can be identified with ψ({σ(x)| x ∈ Σ}). This leads to
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Fig. 1. Depicting the idea of condition (iii) of Proposition 2.

Proposition 2. Given two alphabetsΣ and∆, and a commutatively functional substitution σ : Σ∗ → ∆∗, let us denote by Gσ
the subgroup of Z∆ generated by ψ({σ(x)| x ∈ Σ}). Then, the substitution σ is abelian square-free provided that the following
conditions are satisfied:

(i) σ(w) is an a-2-free set for every a-2-free wordw ∈ Σ∗ of length 2,
(ii) σ is commutatively injective, i.e., the set ψ({σ(x)| x ∈ Σ}) is linearly independent,
(iii) for all ai ∈ Σ, pi ∈ PREF(σ (ai)); i = 0, 1, 2; such that

ψ(p0)− 2ψ(p1)+ ψ(p2) ∈ Gσ ,

there exist integers δi ∈ {0, 1} such that

ψ(p0)− 2ψ(p1)+ ψ(p2) = δ0ψ(X0)− 2δ1ψ(X1)+ δ2ψ(X2),

where ψ(Xi) is the unique element in ψ(σ(ai)) for all i = 0, 1, 2. �

The idea of condition (iii) of Proposition 2 (and Proposition 1) can be explained as follows. Consider an image word
X0 UX1VX2 ∈ σ(w) of the word w = a0u1a1v1a2 ∈ Σ∗, where Xi ∈ σ(ai), ai ∈ Σ, U ∈ σ(u1), V ∈ σ(v1), u1, v1 ∈ Σ∗.
Suppose there is an abelian square uv as a factor of X0 UX1VX2.Without loss of generality, one can restrict the study to just
the cases depicted in Fig. 1, where X0 = p0s0 ∈ σ(a0), X1 = p1s1 ∈ σ(a1), X2 = p2s2 ∈ σ(a2), with some of the pi or si
being possibly the empty word, and ψ(v)− ψ(u) = 0.
Now it is derived that

0 = ψ(v)− ψ(u)
= ψ(s1Vp2)− ψ(s0 Up1)
= ψ(V )− ψ(U)+ ψ(s1)+ ψ(p2)− ψ(s0)− ψ(p1)
= ψ(V )− ψ(U)+ (ψ(X1)− ψ(p1))+ ψ(p2)− (ψ(X0)− ψ(p0))− ψ(p1)
= ψ(V )− ψ(U)+ ψ(X1)− ψ(X0)+ (ψ(p0)− 2ψ(p1)+ ψ(p2)),

that is,ψ(p0)− 2ψ(p1)+ψ(p2) = ψ(U)−ψ(V )+ψ(X0)−ψ(X1) ∈ Gσ . In case there exist integers δi ∈ {0, 1} such that
ψ(p0)− 2ψ(p1)+ ψ(p2) = δ0 ψ(X0)− 2δ1ψ(X1)+ δ2ψ(X2), one obtains

ψ(U)− ψ(V ) = δ0ψ(X0)− 2 δ1ψ(X1)+ δ2ψ(X2)+ ψ(X1)− ψ(X0), for δi ∈ {0, 1},

and listing all the possible combinations for δ0, δ1, δ2 ∈ {0, 1}, it is found that

ψ(U)− ψ(V ) ∈ {ψ(X1)− ψ(X0), ψ(X1X2)− ψ(X0),−ψ(X0X1), ψ(X2)− ψ(X0X1), ψ(X1), ψ(X1X2),
−ψ(X1), ψ(X2)− ψ(X1)}

Remembering the a-2-freeness in condition (i), and the linear independence of the set ψ({σ(x)| x ∈ Σ}) in condition
(ii), it is established that whenever conditions (i)–(iii) are satisfied, the existence of an abelian square uv as a factor of
X0 UX1VX2 ∈ σ(w) implies the existence of an abelian-square in the preimage w = a0u1a1v1a2.

4. The new a-2-free substitution σ109 over 4 letters

Let Σ4 = {a, b, c, d}. Define the substitution σ109 : Σ∗4 → Σ∗4 as follows. First, let the 12 image words of σ109(a), say
{A1, A2, . . . , A12}, have the form

Ai = p16w4u27w3s59
= abcacdcbcdcadcdb w4 badacdadbdcdbdabdbcbabcbdcb w3
bdcdadcdbcbabcbdcbcacdcacbadabcbdcbcadbabcbabdbcdbdadbdcbca, (1)

with 12 different factor pairs (w4, w3), taken in the natural lexicographical order form {abcd, abdc, adbc, dabc} × {acd,
adc, cad}. The subscripts of the factors p16, w4, u27, w3, s59 indicate their lengths. Note that all the words in {abcd,
abdc, adbc, dabc}, and respectively in {acd, adc, cad}, are commutatively equivalent and differ only by the movement of
the letter d or c that creates the needed delicate mutations for the words of σ109(a).
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To complete the definition of σ109, let σ109(φ(x)) = φ(σ109(x)) for all x ∈ {a, b, c, d}, where φ : Σ∗4 → Σ∗4 is the circular
letter-to-letter endomorphism defined by φ(a) = b, φ(b) = c, φ(c) = d, φ(d) = a. Thus, informally, the set of image
words for b, c , d are obtained, at a time, by cyclic permutation of letters of all the words in {A1, A2, . . . , A12}. Obviously,
σ109 is a commutatively functional substitution ofΣ∗4 . The Parikh vectors for the image words of letters are the rows of the
matrix below:ψ(A)ψ(B)

ψ(C)
ψ(D)

 =
21 31 29 28
28 21 31 29
29 28 21 31
31 29 28 21

 ,

whenever

A ∈ σ109(a), B ∈ σ109(b), C ∈ σ109(c),D ∈ σ109(d).

The author has checked the a-2-freeness of σ109 with computer in two albeit not completely different ways. One
way was a direct but long method similar to that the author used in [18]. This method allowed us to make most of
the computational steps visible, and provided a means of rechecking the computations. The other method in turn is an
application of Proposition 2. In fact, Proposition 1 can also be utilised. One possible procedure regarding this latter method
is explained here. However, for rechecking the properties of σ109, one might like to use a slightly different approach than
we describe. Indeed, it can be desirable to use just one endomorphism, say g109,1 in (2) below, as a starting point, and then
proceed to check all the cases in one run.
Let us recall, once again, that σ109 is a commutatively functional substitution. In what follows, Proposition 1 will be used

firstly to test the a-2-freeness of endomorphisms in (2) and (3). One may start by checking that the conditions (i)–(iii) of
Proposition 1 are satisfied for the 12 endomorphisms g109,i ofΣ∗4 , defined by

g109,i(a) = Ai, g109,i(b) = Bi = φ(Ai), g109,i(c) = Ci = φ(Bi), (2)
g109,i(d) = Di = φ(Ci), i = 1, . . . , 12.

Indeed, the necessary computations can be accomplished quite quickly, because thesemorphisms have the same uniform
modulus, and, for eachmorphism, the imagewords are obtained by cyclic permutation of letters. This is noticeable especially
for condition (iii) of Proposition 1. These 12 endomorphisms g109,i were found in extensive computer searches and they are
almost the same, apart from the slight mutations. Next, one checks that the conditions (i) and (iii) of Proposition 1 are
satisfied for all the remaining combinations of the 124 − 12 = 20724 endomorphisms g109,ijkl ofΣ∗4 , defined by

g109,ijkl(a) = Ai, g109,ijkl(b) = Bj, g109,ijkl(c) = Ck, (3)
g109,ijkl(d) = Dl, i, j, k, l = 1, . . . , 12,

where the case i = j = k = l, due to (2), can be excluded.
Here the computations do not take a long time, because one can restrict testing of prefixes in condition (iii) of

Proposition 1 to the lengths 17, 18, 19, 48, 49, i.e., one only needs to study those prefixes the endpoints ofwhich are inside the
(possibly) changing occurrences ofw4 andw3, and their cyclic permutations (the occurrences of p16, u27, s59 and their cyclic
permutations are the same in all the cases). These affirmative checkings guarantee that there exists at least 124 = 20736
structurally different abelian square-free endomorphisms ofΣ∗4 of uniformmodulus 109. One still has to use condition (iii)
of Proposition 2, and to check separately those cases of the prefixes (of length 17, 18, 19, 48, 49), in which two or three of
the letters a0, a1, a2 (in (iii) of Proposition 2) are the same but the image words are different. Note that these combinations
cannot appear for the endomorphisms in (2) and (3) alone. However, these cases pose no extra difficulties. Now that all the
possible prefix combinations have been checked, it is derived that if an abelian square is a factor of any of the σ109(w) ∈ Σ∗4 ,
then the preimage w contains an abelian square as well.
In conclusion, we obtain the following

Proposition 3. The substitution σ109 : Σ∗4 → Σ∗4 defined above is abelian square-free.

Most likely, also new abelian square-free substitutions ofΣ∗4 can be constructed from the other (than g109,i, g109,ijkl) a-2-
free endomorphisms that were recently found. The image word g(a) for all the new (original) 200 a-2-free endomorphisms,
the sizes of which range from 4 × 102 to 4 × 115, g85 (found in 1990), and g98 (found in 2002), can be viewed and copied
from [35].

5. A new lower bound for the exponential growth of a-2-free words over 4 letters

The properties of σ109 lead to a considerably sharper lower bound for the exponential growth of cn, i.e., of the number
of a-2-free words over 4 letters of length n. It is obtained that cn > β−50βn with β = 121/m ' 1.02306. Originally, the
exponential growth of cn was proved by Carpi [4], who showed that cn > β−tβn with β = 219/t = 219/(85

3
−85)
' 1.000021,

where t = 853 − 85 is the modulus of his substitution constructed from g85.
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The explanation for the new lower bound is as follows. Let m = 109, β = 121/m ' 1.02306, and an integer
n ≥ 50 be given. Note that in (1) we have |p16w4u27w3| = 50. Furthermore, let q be the quotient of n − 50 by m, i.e.,
n − 50 = qm + r, 0 ≤ r < m. There are at least (βm)q+1 = βqm+m a-2-free words of length qm + 50, which are prefixes
of some of the (infinite) a-2-free words X1X2 · · · Xi · · · , where Xi ∈ σ109(xi), xi ∈ Σ4, for all i ≥ 1. Thus there are at least
βqm+m = β(n−50−r)+m = βm−rβn−50 > βn−50 = β−50βn words of length n ≥ 50 that are prefixes of an a-2-free word
X1X2 · · · Xi with i > q.
The number of all a-2-free words over 4 letters up to the length 60 can be found from [35].
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