JOURNAL OF COMBINATORIAL THEORY (B) 14, 259-262 (1973)

Relative Colorings of Graphs

PAUL C. KAINEN*

Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106 Communicated by Frank Harary

Received October 5, 1972

In this paper, the notion of relative chromatic number $\chi(G, H)$ for a pair of graphs G, H, with H a full subgraph of G, is formulated; namely, $\chi(G, H)$ is the minimum number of new colors needed to extend any coloring of H to a coloring of G. It is shown that the four color conjecture (4CC) is equivalent to the conjecture (R4CC) that $\chi(G, H) \leq 4$ for any (possibly empty) full subgraph H of a planar graph G and also to the conjecture (CR3CC) that $\chi(G, H) \leq 3$ if H is a connected and nonempty full subgraph of planar G . Finally, relative coloring theorems on surfaces other than the plane or sphere are proved.

INTRODUCTION

A pair of graphs (G, H) consists of a graph G and a full (or section) subgraph H of G. We allow the empty graph \varnothing which has no vertices or edges and which is a full subgraph of any graph. An r -coloring c of a graph G for some nonnegative integer r is an assignment of r colors c_1 ,..., c_r to the vertices of G in such a way that whenever v and w are vertices of $G(v, w \in V(G))$ and v is adjacent to $w([v, w] \in E(G)), c(v) \neq c(w)$. We also assume that each color c_i is actually used. If c is an r-coloring we write $|c| = r$.

As always, $\chi(G)$ denotes the chromatic number of G; i.e., the minimum r for which G has an r-coloring. If (G, H) is a pair of graphs, c is a coloring of G and d a coloring of H, we say that c extends d if $c \mid H = d$. We define the *relative chromatic number* $\chi(G, H)$ of the pair (G, H) to be

inf sup $|c| - |d|$,

where d is any coloring of H and c is any coloring of G extending d. Thus $\chi(G, H)$ is the minimum number of *new* colors which will be needed to extend any coloring of H to a coloring of G .

* Research partially supported by NSF Grant GP 29551.

Copyright \oslash 1973 by Academic Press, Inc. All rights of reproduction in any form reserved.

260 KAINEN

 $\bar{\mathbf{x}}$

It is a pleasure to acknowledge stimulating conversations with Thomas Saaty and Frank Bernhart during the preparation of this paper.

1. RELATIVE FOUR COLOR CONJECTURE

Consider a triple of graphs (G, H, K) where K is full in H and H is full in G. If c is an r-coloring of K, then c can be extended to d , an s-coloring of H, where $s \le r + \chi(H, K)$. Now d can be extended to e, a t-coloring of G, where $t \leq s + \chi(G, H)$. Therefore, $t \leq r + \chi(G, H) + \chi(H, K)$ and hence we have proved the following lemma.

LEMMA 1. For any triple (G, H, K) , $\chi(G, K) \leq \chi(G, H) + \chi(H, K)$.

COROLLARY 1. For any pair (G, H) , $\chi(G) \leq \chi(G, H) + \chi(H)$.

LEMMA 2. For any pair $(G, H), \chi(G, H) \leq \chi(G - H).$

COROLLARY 2. For any pair $(G, H), \chi(G) - \chi(H) \leq \chi(G, H) \leq \chi(G - H).$

Now suppose that G is planar. Then $G - H$ is planar so by the five color theorem $\chi(G, H) \leq 5$ for any H. Conversely, if $\chi(G, H) \leq 5$ for all H, then in particular $\chi(G) = \chi(G, \varnothing) \leq 5$. This suggests the following.

CONJECTURE 1 (R4CC). Let G be planar. Then $\chi(G, H) \leq 4$ for all pairs (G, H).

Of course the preceding argument proves that R4CC is equivalent to 4cc.

THEOREM 1. 4CC holds if and only if R4CC holds.

2. RELATIVE THREE COLOR CONJECTURE

Suppose now that G is planar and that H is a connected (nonempty) full subgraph of G. One then finds oneself unable to construct an example in which even four new colors are needed to extend some coloring of H to a coloring of G ; in fact, three always seem to suffice. Hence, a new conjecture.

CONJECTURE 2 (CR3CC). Let G be planar. Then $\chi(G, H) \leq 3$ for all pairs (G, H) in which H is connected (and nonempty).

THEOREM 2. 4CC is equivalent to CR3CC.

We first conjectured the preceding theorem in a preprint of this (see

also [4]). It was then proved by Roy Levow [3] and independently by Frank Bernhart. Bernhart's proof has the virtue that if H is k -colored for $k \geq 3$, then the existence of an r-coloring of G, which extends the given coloring of H and with $r \leq k + 3$, does not depend on the validity of 4CC. Moreover, his proof may well go through when $k = 2$. Of course, $k = 1$ is a different matter! The proof given below is different from that of Levow and also from the original version of Bernhart's proof. Later, Bernhart [l] independently found the same proof as we give here.

Proof. One half of the theorem is trivial. For suppose that G is any planar graph and let H be a single vertex. By Corollary 1,

$$
\chi(G)\leqslant \chi(G,H)+\chi(H)\leqslant 3+1=4.
$$

Conversely, suppose that G is any planar graph and that H is a connected full subgraph. Let c be an r-coloring of H with colors c_1 ,..., c_r . We must extend c to a coloring d of G using at most 3 new colors.

Since H is connected, we may find a spanning tree T in H, i.e., $T \subseteq H$, T is a tree, and $V(T) = V(H)$. Now shrink T to a single point x and let \overline{G} be the corresponding graph. Specifically, $V(\bar{G}) = V(G) - V(H) \cup \{x\}$. Two vertices other than x are adjacent in \overline{G} if and only if they were adjacent in G. A vertex v is adjacent to x if and only if v was adjacent in G to some vertex w in $V(H)$. Finally, we delete all loops and parallel edges so that \overline{G} is a graph. Note that \overline{G} is still planar since we have collapsed a contractible subgraph.

By the 4CC, $\chi(\bar{G}) \leq 4$ so we can 4-color \bar{G} by a coloring e, Moreover, we can assume that the color $e(x)$ which e assigns to x is one of the original r colors c_1 ,..., c_r , say c_1 , while the other three colors are all new.

We now define d as follows:

$$
d(v) = \begin{cases} c(v) & \text{if } v \in V(H); \\ e(v) & \text{if } v \in V(G) - V(H). \end{cases}
$$

Obviously, the only thing which needs checking is that if $v \in V(G) - V(H)$. $w \in V(H)$, and $[v, w] \in E(G)$, then $d(v) \neq d(w)$. Suppose $d(v) = d(w)$. Then since $d(v) = e(v)$, we must have $d(v) = e(v) = c_1$. But $[v, w] \in E(G)$ means v is adjacent to x in \overline{G} and hence $e(v) \neq e(x) = c_1$.

3. RELATIVE COLORING THEOREMS

Since any graph G in the torus can be 7-colored, the same argument as in the proof of Theorem 2 shows that $\chi(G, H) \leq 6$ when H is connected. More generally, we have the following result,

262 KAINE

THEOREM 3. Let S be any surface and suppose that for all G embeddable in S, $\chi(G) \leq k$. Then $\chi(G, H) \leq k - 1$ for G embeddable in S and H connected.

The only detail of proof which may need some elucidation is that it still is valid to shrink T to a point. One proceeds as follows. First note that if G is embeddable in S , then G is in fact piecewise linearly embeddable in S with respect to some triangulation J of S . Subdividing appropriately, some subdivision G' of G is embedded as a subcomplex of a subdivision J' of J .

Let J'' denote the second barycentric subdivision of J' and let N be the regular neighborhood of T in J''; that is, $N = \bigcup \{ \sigma \mid \sigma \text{ is a (closed)}\}$ 2-simplex in J'' and $\sigma \cap T \neq \emptyset$. Then N is a ball, so pinching N to a point does not change the homeomorphism type of S. Moreover, $\bar{G} = G/T$ is embedded in $S/N \simeq S$. For all the details and justifications in the above argument, see Hudson [2].

REFERENCES

- 1. F. BERNHART, private communication.
- 2. J. HUDSON, Piecewise Linear Topology, Benjamin, New York, 1970.
- 3. R. LEVOW, A note on the four-color conjecture, Amer. Math. Monthly, to appear.
- 4. T. L. SAATY, Thirteen colorful variations on Guthrie's four-color conjecture, Amer. Math. Monthly 79 (1972), 2-43.