Pharmaceutics, Drug Delivery and Pharmaceutical Technology

Survival of the Fittest: Time-To-Event Modeling of Crystallization of Amorphous Poorly Soluble Drugs

Katarzyna Nurzyńska 1,*, Rupert P. Austin 1, Peter M. Fischer 2, Jonathan Booth 3, Frank Gommer 4

1 BAST Inc. Ltd., Holywell Park, Ashby Road, Loughborough, UK LE11 3AQ
2 School of Pharmacy and Centre for Biomolecular Sciences, The University of Nottingham, Nottingham, UK NG7 2RD
3 Pharmaceutical Development, AstraZeneca, Macclesfield, UK SK10 2NA
4 Composites Research Group, Faculty of Engineering, The University of Nottingham, Nottingham, UK NG7 2RD

A R T I C L E I N F O
Article history:
Received 24 October 2015
Revised 6 March 2016
Accepted 11 March 2016

Keywords:
amorphous crystallization stability poorly soluble drug prediction

A B S T R A C T
The objective of this study was to gain a quantitative understanding of the link between physicochemical properties and long-term and time-censored amorphous stability of poorly water-soluble drugs using parametric time-to-event modeling. Previously published data on amorphous stability and physicochemical properties of 25 structurally diverse neutral, poorly soluble compounds were used. To describe the general shape of the survival curve (probability of event at time > t), Constant, Gompertz, and Weibull hazard functions and their linear combinations were tested. For a selected Weibull hazard base model, the effect of each physicochemical covariate was investigated, with combined influence of enthalpy of fusion (H_f) and molecular weight (M_r) showing the highest statistical significance. The covariate model was used to simulate survival curves and calculate the median survival time for different values of H_f and M_r. It was found that a decrease in H_f or an increase in M_r contribute to longer survival times. The derived model equation was validated against external data sets consisting of 11 compounds. It showed better predictive ability than a previously published multiple linear regression model incorporating H_f and M_r. The proposed Weibull covariate model may assist in faster and more cost-effective decision making in the pre-formulation phase of drug development, where compound properties and appropriate drug formulation strategies are investigated.

© 2016 The Authors. Published by Elsevier Inc. on behalf of American Pharmacists Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Small-molecule drug candidates with good pharmacological properties often suffer from low aqueous solubility. For oral drug products, this can lead to insufficient and erratic bioavailability of the active pharmaceutical ingredient (API), and for that reason, lipophilic APIs with limiting aqueous solubility are often formulated in the amorphous state, typically as solid dispersions in polymer matrices. This approach is favorable because the amorphous solid state of a molecule is at a higher energy level compared with its crystalline state, giving rise to higher dissolution rates and solution concentrations of poorly soluble APIs from amorphous versus crystalline formulations. However, on account of the comparatively disordered and mobile nature of amorphous solids, APIs can crystallize from amorphous formulations on storage or on contact with gastrointestinal fluids after administration. Such instability is a significant hurdle in the development of new medicines, and it would be highly desirable to be able to predict the inherent amorphous stability of poorly soluble APIs and the stability of such molecules in amorphous solid dispersions.

One physical stability classification methodology assesses the glass-forming ability of APIs after rapid solvent evaporation from a solution or cooling from a melt, whereas in a different method the phase transition from the amorphous to a crystalline state is observed directly as a function of time. In the former method, the assumption is that some compounds have an inherent ability to form amorphous solids from liquids, whereas others more readily assume a crystalline state on transition from the liquid to the solid state. It has been observed that the crystallization classification of model APIs is similar, independent, however, of methodology. From the limited data published to date, it would appear that the...
crystallization behavior of APIs depends predominantly on the
properties of the API and other formulation components, rather
than the amorphization methodology itself. However, environ-
mental conditions, for example, humidity and temperature, can
also affect amorphous drug stability and can, therefore, lead to
different results reported by different laboratories. Although the
intrinsic factors affecting ease of compound crystallization from
the amorphous state, such as molecular mobility and thermodynamic
properties of the amorphous state, remain poorly understood,
efforts have been underway to correlate observed glass-forming
ability or physical stability of amorphous APIs with physicochem-
ical and other properties of the APIs. Some progress has been made
in the prediction of the physical stability of amorphous APIs.

The framework developed on pure APIs in this work can be used
as a preliminary risk assessment for the development of their solid
dispersion formulations. It is expected that the amorphous stability
of solid dispersions will be improved in comparison with pure
drugs due to the dilution effect and the presence of specific
interactions between a drug and a polymer. Amorphous compo-
unds that are shown to have good amorphous stability should
also be stable in their solid dispersions. Conversely, compounds
that have poor stability may still be formulated as viable solid
dispersions, but the products are likely to have higher risk of
crystallization.

In a previous study, the amorphous stability of 25 diverse
neutrally soluble drug compounds were investigated. Prin-
cipal component analysis and clustering methods were used to
select 25 compounds with diverse physicochemical properties and
chemical structures from the database of 533 marketed poorly
soluble drugs. The selected sample set was shown to be represent-
itive for the calculated and predicted variables as side-by-side
histograms for both distributions showed the same mean location
and variance. Several multiple linear regression (MLR) models
were proposed to predict long-term amorphous drug stability
using only easily accessible physicochemical drug properties as
covariates. Due to practical limitations, continuous crystallization
records during the approximately 6-month period of the experi-
ment were not obtained. Instead, amorphous drug stability was
measured at defined time points, with some compounds remaining
stable at the end of the experiment. Time-to-event (TTE) modeling,
also known as survival analysis, is particularly suited to this
type of data and was applied in the present study to the previously
published data on 25 diverse compounds. Here we present the new
application of TTE modeling to more accurately determine the
influence of physicochemical parameters on the long-term amor-
phous stability of poorly soluble compounds.

A central concept in TTE modeling is the survival function
\(S(t) \), which describes the probability that an event will occur at a
time greater than \(t \). The survival function is related to the hazard
function \(h(t) \), which can be understood as the instantaneous failure rate
(onset of amorphous to crystalline transition in this study) given
that the compound has survived to that point in time. The survival
and hazard functions are related through Equation 1.

\[
S(t) = \exp \left(- \int_{0}^{t} h(t) \, dt \right)
\]

(1)

In parametric TTE modeling, a base model is first derived using
a process in which various hazard functions \(h(t) \) are proposed, and
estimates of the parameters of the hazard functions are deter-
mined using maximum likelihood estimation. This involves inte-
gration of the hazard function from zero to the time of each
crystallization event, giving the contribution of each event to the
total likelihood, where the parameter estimates are derived by
maximizing the sum of all likelihood contributions with respect to
the parameter values. This estimation process is applied to each of
the candidate hazard functions, and the best function is selected
based on model selection criteria and graphical comparison of
observed and predicted data. Once a hazard function has been
selected, a covariate analysis is performed where the physico-
chemical properties of the compounds are allowed to influence
the parameters within the hazard function. Model selection
criteria are then used to select a final covariate model where the
included covariates produce a statistically significant improve-
ment compared with the base model. The model can then be used
to simulate the expected behavior of new compounds with
different values of the included covariates.

Methods

Software

The TTE models were developed using NONMEM software, version 7.3 (Icon Development Solutions, Ellicott City, MD). All
other analyses and visualization of data were implemented using R
software and use of the “survival” library, version 2.38, and the
“deSolve” library, version 1.11.

Database Preparation

Previously published data of physicochemical properties and
amorphous stability of 25 compounds were used to derive a TTE
model. For 17 of the compounds, the precise time of detectable
transition from amorphous to crystalline structure is unknown. It
was only recorded that the transition took place between 2
observation times. Such data are called interval-censored and
were flagged on both sides of the interval within the database
used for modeling (Supplementary Material A). For the remaining
8 compounds, observations were flagged as right-censored becausel
arystallization was not observed during the 168 days of
experiment. This vector of flag values was used as a depend-
ent variable. The elapsed time of the interval and right-censored
observations were included as main independent variable. The
following measured, calculated, and predicted physicochemical
properties of the 25 compounds were also tested during devel-

erssment of the covariate model: enthalpy of fusion (\(Hf \)), glass
transition temperature (\(T_g \)), melting temperature (\(T_m \)), configur-

tional entropy (\(S_c \)), enthalpy (\(H_c \)) and free energy (\(G_c \)), relaxation
time (\(\tau \)), molecular weight (\(M_w \)), hydrogen bond donors and ac-
ceptors, rotatable bonds (\(\text{rotB} \)), number of rings, aromatic rings,
ali
liphatic rings, heavy atom count, ratio of carbon to heteroatoms,
polar surface area, lipophilicity (\(\text{clogP} \)), and water solubility
(\(\log S_w \)) predicted both with Clab and ALOGPS (www.vcclab.
org). These descriptors have been shown in the literature to have
an impact on the glass-forming ability and amorphous sta-

tility, drug bioavailability, and the stability of compounds
formulated as solid dispersions.

Model Building and Selection Criteria

For selection of an appropriate base model, 8 different hazard
functions were evaluated (Table 1). The hazard functions are
defined with parameters \(\lambda \) and \(\beta \) which determine the shape of the
hazard function (Supplementary Material B). Because hazard
functions must always be positive, the lambda parameters (\(\lambda_r \) and \(\lambda_i \)) were constrained to positive values during parameter estimation,
whereas positive or negative estimates of the beta parameters (\(\beta_1 \) and \(\beta_2 \)) were permitted. The parameter values in the TTE models were
estimated using the first-order conditional estimation method,
which uses maximum likelihood estimate to minimize the objective function value (OFV) and, thus, obtain the best model fit to the data.\(^{25}\)

The direction in which the OFV decreases to find the global minimum was determined in an iterative process using the gradient method.\(^{26}\)

To ensure convergence to the global minima, models were run repetitively, each time starting from different initial parameter estimates. The global minimum was considered to be reached when all repetitive runs resulted in the same final parameter estimates and OFVs. Estimates of parameter uncertainty (standard error) were generated using the NONMEM covariance procedure.\(^{16}\)

Models were first required to pass the following acceptance criteria:\(^{27}\):

1. At the last iteration, the values of the gradients have to be between \(10^{-6}\) and 10 to indicate that the OFV successfully converged to its minimum.
2. The covariance step, where uncertainty in parameter estimates is determined, has to complete successfully.
3. The number of significant digits of parameter estimates has to be \(\geq 3\).
4. The correlation between estimated parameters, \(\rho\), has to be \(-0.95 \leq \rho \leq 0.95\). This criterion will reject models that are overparametrized.
5. The ratio of maximum to minimum eigenvalues of the correlation matrix of parameter estimates (condition number) has to be \(\leq 1000\). This criterion will reject models that are overparametrized.
6. The standard error of each parameter estimate is required to be \(<50\%\) of the estimated parameter value. This ensures that the 95\% confidence interval for the parameter estimate excludes zero.

For those models that passed the acceptance criteria, the base model (Table 1) was then selected using Akaic information criterion (AIC). This criterion is used to compare nonnested models, leading to the second model. According to this criterion (Eq. 2), a covariate, \(\text{COV}_{\text{median}}\), in the sample set\(^{28}\) according to Equation 3.

\[
\lambda_{\text{COV}} = \lambda \cdot \exp(\theta \cdot \text{COV}_{\text{median}}) \tag{4}
\]

where \(\theta\) is a new parameter, estimated by the modeling software, which quantitatively describes the influence of the covariate on the hazard function. The functional form of Equation 4 enables the possibility that an increase in the covariate can increase or decrease the magnitude of the hazard function (positive or negative estimate of \(\theta\)) while satisfying the constraint that the hazard function should always be positive. When testing the influence of a covariate on a \(\beta\) parameter, a different functional form of the covariate model was used as defined by Equation 5.

\[
\beta_{\text{COV}} = \beta \cdot (1 + \theta \cdot \text{COV}_{\text{median}}) \tag{5}
\]

This different functional form allows the possibility of changes in the covariate influencing the magnitude and sign of the original \(\beta\) parameter because both positive and negative values of \(\beta_{\text{COV}}\) are permitted (they both lead to a positive hazard function). The forms of Equations 4 and 5 also ensure that if the covariate parameter \(\theta\) is zero, then the hazard function reduces to that of the base model.

The significance of the covariate models was assessed using the likelihood ratio test (LRT).\(^{14}\) The covariate was considered to have a significant effect if the decrease in the OFV of the covariate model from that of the base model was \(>6.63\) (\(p\) value < 0.01). This stringent \(p\) value was used due to the inflated type I error that occurs during multiple testing (testing of many possible covariate relationships). For the final covariate model, the estimates of parameter uncertainty produced by the NONMEM covariance procedure were supplemented by a more thorough bootstrap procedure implemented using PsN software.\(^{29}\) This involved taking the structure of the final covariate model and repeatedly fitting it to 1000 data sets, each produced by sampling with replacement from the original data set of 25 compounds. This provided 1000 estimates of each model parameter. Then 95\% nonparametric confidence intervals were generated from the 2.5 and 97.5 percentiles of the 1000 parameter estimates.

Model Qualification

The final covariate model was qualified using a visual predictive check (VPC), which involves assessment of the concordance between the observed crystallization events and repeated simulations of crystallization events from the selected model.\(^{30,32}\) To generate the VPC, the selected covariate model was used to simulate 1000 sets of event times for the 25 compounds. Then, using the survival library in R, Kaplan–Meier survival curves with 95\% confidence intervals were plotted for the observed events and for the 2.5, 50, and 97.5 percentiles. A good model should show extensive overlap of the confidence intervals derived from the observed and simulated event data with little evidence of bias. The simulated event times were generated through numerical integration (using R library deSolve) of \(h(t)\) to give \(S(t)\). This was followed by repeated sampling of random numbers from a uniform distribution in the interval 0 to 1 (because \(S(t)\) is uniformly distributed on the interval 0 to 1)\(^{24}\), and then finding corresponding times at which the survival function became less than or equal to the sampled random number. Adjustment of the simulated event times according to the scheduled experimental measurement times (1 hour, 3 hours, 1 day, 7 days, 1 month, 2 months, 4 months, and 6 months)\(^{30}\) was necessary to allow correct comparison with the interval-censored nature of the observed data. For example, if a particular simulated event time was 4.63 days, it would be adjusted to 7 days because that is the first point in time where the crystallization event could have been observed according to the experimental schedule.

Table 1

<table>
<thead>
<tr>
<th>Hazard Function</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>(h(t) = \lambda)</td>
</tr>
<tr>
<td>Gompertz</td>
<td>(h(t) = \lambda_1 \cdot \exp(\beta_1 \cdot t))</td>
</tr>
<tr>
<td>Weibull</td>
<td>(h(t) = \lambda_1 \cdot \exp(\beta_1 \cdot \ln(t)))</td>
</tr>
<tr>
<td>Constant + Gompertz</td>
<td>(h(t) = \lambda_2 + \lambda_3 \cdot \exp(\beta_1 \cdot t))</td>
</tr>
<tr>
<td>Constant + Weibull</td>
<td>(h(t) = \lambda_2 + \lambda_3 \cdot \exp(\beta_1 \cdot \ln(t)))</td>
</tr>
<tr>
<td>Gompertz + Weibull</td>
<td>(h(t) = \lambda_2 \cdot \exp(\beta_1 \cdot t) + \lambda_3 \cdot \exp(\beta_2 \cdot t))</td>
</tr>
<tr>
<td>Weibull + Weibull</td>
<td>(h(t) = \lambda_2 \cdot \exp(\beta_1 \cdot t) + \lambda_3 \cdot \exp(\beta_2 \cdot \ln(t)))</td>
</tr>
</tbody>
</table>

\[
AIC = OFV_{\text{model A}} - OFV_{\text{model B}} + 2(n_{\text{model A}} - n_{\text{model B}}) \tag{2}
\]

where \(n\) is the number of model parameters.

The influence of covariates on the parameters of the selected base model was then tested using the forward inclusion method. Covariate effects were assessed one by one followed by evaluation of the combined effect of significant covariates. The effect of each covariate, \(\text{COV}\), was modeled relative to the median value of that covariate, \(\text{COV}_{\text{median}}\), in the sample set\(^{28}\) according to Equation 3.

\[
\text{COV}_m = \text{COV} - \text{COV}_{\text{median}} \tag{3}
\]

Covariate models of 2 different types were tested. When testing the influence of a covariate on a \(\lambda\) parameter, \(\lambda\) as given by the equations in Table 1 was replaced by \(\lambda_{\text{COV}}\) as defined by Equation 4.
Results and Discussion

Selection of the Base Model

The 8 hazard functions tested for selection as base model were Constant, Gompertz, and Weibull functions and their linear combinations (Table 1). Parameter estimates, OFV, and selection criteria status for the 8 candidate base models are given in Table 2. The last 4 models were immediately rejected due to failure of acceptance criteria. Failure was either due to an unacceptably wide standard error in one or more parameter estimates or to unsuccessful completion of the NONMEM covariance procedure that generates the standard errors. The latter occurred due to numerical instability with the Constant + Weibull model where the parameter λ_1 optimized to a vanishingly small value. Figure 1 shows the 4 models that passed the acceptance criteria, where the estimated survival curves derived from the models are shown superimposed on the Kaplan–Meier plot of the observed crystallization events. The Weibull and Constant + Gompertz models clearly match the observed Kaplan–Meier curve better than the Constant and Gompertz models. The 2 former models have OFVs that are lower than the latter 2; therefore, a selection between the Weibull and Constant + Gompertz model was the only decision required.

Selection of the base model from the 2 remaining models was initially performed using a consideration of AIC alone. The Constant + Gompertz model has an OFV that is 2.8 units lower than the Weibull model (Table 2) but has 1 additional parameter (Table 1). This leads to an AIC of −0.8 in favor of the Constant + Gompertz model. It should be noted from Table 2 that the standard errors of all 3 parameter estimates in the Constant + Gompertz model are close to 50% of the parameter estimates, whereas the precision of parameter estimates in the Weibull model is considerably better. During early attempts to build covariate models using the initially selected Constant + Gompertz base model, it was soon found that the additional complexity arising from incorporation of covariate models caused all parameters to have standard errors that were >50% of the associated parameter estimate. Due to its additional complexity, the Constant + Gompertz model appears to be less stable than the Weibull model and is likely to be over-parameterized when covariates are added. Hence, the selection of the most appropriate base model was reassessed, and the Weibull model was chosen on the basis that it has an OFV only 2.8 units higher than the Constant + Gompertz model. It leads to a similar visual concordance with the observed Kaplan–Meier curve (Fig. 1) but with the advantage of one fewer parameter and more precise parameter estimates.

Selection of the Covariate Model

The individual and combined effects of calculated, predicted, and measured compound properties\(^6\) on the parameters λ_1 and β_1 in the Weibull hazard function were investigated. The LRT was used to decide if incorporation of a particular covariate led to a significant improvement in the model, with the requirement of a decrease in the OFV of the covariate model with respect to the base model of >6.63. Based on this criterion, none of the covariates were found to have a significant effect on β_1 and 4 covariates were found to have a significant effect on λ_1 when tested independently: H_f ($\Delta\text{OFV} = -13.46$), M_r ($\Delta\text{OFV} = -10.33$), heavy atom count ($\Delta\text{OFV} = -9.79$), and number of rings ($\Delta\text{OFV} = -7.84$). Furthermore, a model involving the influence of both H_f and M_r on λ_1 gave a further significant decrease in OFV ($\Delta\text{OFV} = -23.91$). Additional inclusion of a multiplicative interaction term between H_f and M_r to the latter model did not further improve this model significantly given the use of an additional estimated parameter ($\Delta\text{OFV} = -26.14$). Attempts to include either heavy atom count or number of rings as an additional covariate in this model did not lead to a further significant reduction in OFV according to the LRT. This is likely due to heavy atom count and number of rings being significantly correlated with M_r; hence, they are unable to contribute significantly to further explanation of variability in the data. The correlation matrix for all variables used in model selection is shown in Supplementary Material C. The final selected covariate

Table 2

Parameter Estimates and OFV From Base Models

<table>
<thead>
<tr>
<th>Hazard Function</th>
<th>OFV</th>
<th>$10^3\lambda_1$ (d$^{-1}$)</th>
<th>$10^3\lambda_2$ (d$^{-1}$)</th>
<th>$10^3\beta_1$ (d$^{-1}$)</th>
<th>$10^3\beta_2$ (d$^{-1}$)</th>
<th>Acceptance Criteria Met</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>410142.8</td>
<td>10.5 (2.55)a</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Gompertz</td>
<td>410107.9</td>
<td>8.9 (2.55)a</td>
<td>72.3 (24.8)a</td>
<td>-57.8 (16.5)a</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Weibull</td>
<td>410096.5</td>
<td>6.3 (2.55)a</td>
<td>78.2 (19.4)a</td>
<td>-692 (68.5)a</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Constant + Gompertz</td>
<td>410093.7</td>
<td>3.91 (1.60)b</td>
<td>475 (227)b</td>
<td>-854 (361)b</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Constant + Weibull</td>
<td>410096.5</td>
<td><5×10^{-6}</td>
<td>78.2</td>
<td>-692</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Gompertz + Gompertz</td>
<td>410089.9</td>
<td>472 (235)b</td>
<td>-926 (415)b</td>
<td>13.2 (8.6)b</td>
<td>-20.7 (12.3)b</td>
<td>No</td>
</tr>
<tr>
<td>Weibull + Gompertz</td>
<td>410096.5</td>
<td>24.5 (320)b</td>
<td>34.5 (320)b</td>
<td>-692 (132)b</td>
<td>43.4 (3200)b</td>
<td>No</td>
</tr>
<tr>
<td>Weibull + Weibull</td>
<td>410091.4</td>
<td>342 (245)b</td>
<td>342 (245)b</td>
<td>-847 (457)b</td>
<td>36.3 (253)b</td>
<td>No</td>
</tr>
</tbody>
</table>

a Standard errors of parameter estimates, derived using NONMEM covariance method.

b Covariance procedure did not complete successfully.
model, therefore, included the influence of H_f and M_e on λ_1. The hazard function for this model is given in Equation 6 (where 72.92 is the median H_f and 406.56 is the median M_e), the parameter estimates are given in Table 3, and the NONMEM control file is shown in Supplementary Material D.

$$h(t) = \lambda_1 \cdot \exp(\hat{\beta}_1 \cdot \ln(t)) \cdot \exp\left(\hat{\theta}_1 \left(H_f - 72.92\right) + \theta_2 (M_e - 406.56)\right)$$ (6)

The estimate of parameter $\hat{\theta}_1$ is positive which indicates that an increase in H_f leads to an increase in $h(t)$ and, hence, a decrease in stability of amorphous compounds. This directional influence is entirely consistent with a larger enthalpy of fusion leading to a greater thermodynamic driving force toward crystallization. Contrarily, θ_2 has a negative estimate such that an increase in M_e leads to an increase in amorphous drug stability. The positive effects of high M_e and low H_f on amorphous stability determined here are consistent with the earlier MLR analysis of the same data set and also with other literature reports. The MLR study found that both M_e and H_f were individually correlated with amorphous stability ($R = 0.59$ and $R = -0.73$, respectively) and the model equation involving both covariates is given by Equation 7.

$$\log(\text{Stability}) = 0.00309M_e - 0.02656H_f + 1.92.$$ (7)

It was previously reported that molecules with high M_e often have a complex structure that impedes orientation in a crystal lattice, which leads to higher stability in a disordered, amorphous state. Molecules with high H_f require more energy to disrupt the crystalline lattice during melting. As melting precedes the formation of the amorphous material, the energy supplied during melting increases the internal energy of the system and, thus, lowers its physical stability.

The 95% confidence intervals around the parameter estimates in Table 3 were derived from a nonparametric bootstrap procedure which involved fitting of the model to 1000 different data sets of 25 compounds, each sampled (with replacement) from the original data set. The distributions of parameter estimates for the 4 model parameters, derived from the bootstrap procedure, are shown in Figure 2, and the 95% confidence intervals in Table 3 were derived from the 2.5 and 97.5 percentiles of each distribution. The 95% confidence intervals around the estimates of λ_1, β_1, and θ_1 all exclude the null value of zero, but the confidence interval around θ_2 does include zero by a small margin. However, the inclusion of θ_2 in the model does satisfy the requirement of the LRT because the OFV reduces by 10.45 on addition of the influence of M_e to a simpler model that only includes the influence of H_f. It is likely that adding more compounds to the sample set for a future analysis would lead to a more precise estimate of θ_2.

It is important to recognize that the generation of events using a TTE model is a stochastic process and repeated simulations of event times from the model will be different and will encompass a range of values. A suitable method for qualification of such a model is the VPC, which involves repeated simulations of the model followed by a visualization (using Kaplan–Meier curves) of the observed events and the range of simulated events. This diagnostic plot helps to ensure that repeated simulations of event times from the model are consistent with the observed event times, without evidence of significant bias. A VPC of the selected Weibull covariate model was generated using 1000 repeated simulations of event times for the set of 25 compounds. The results are shown in Figure 3, which indicates a very good concordance between the Kaplan–Meier curve (and associated 95% confidence interval) of the observed crystallization events and the median of the 1000 Kaplan–Meier curves (and associated 95% confidence interval) derived from simulated data. There is substantial overlap between the 2 sets of confidence intervals, and there is no indication of any significant bias, which could be observed in different relative positions of observed and simulated Kaplan–Meier curves over long periods of time. This confirms that the selected Weibull covariate model gives a good description of the experimental data.

Sensitivity Analysis

A sensitivity analysis was performed to investigate and visualize the effect of the selected covariates on the expected median event time for crystallization. The Weibull covariate model hazard function (Eq. 6) was analytically integrated to generate the associated survival function (Eq. 1). The resulting survival function is given by Equation 8.

$$S(t) = \exp \left(-\frac{K \cdot t^{\hat{\beta}_1 + 1}}{\hat{\theta}_1 + 1} \right)$$ (8)

where K is given by Equation 9.

$$K = \lambda_1 \cdot \exp \left(\hat{\theta}_1 \left(H_f - 72.92\right) + \theta_2 (M_e - 406.56)\right).$$ (9)

The expression for $S(t)$ given by Equation 8 can now be plotted for different values of H_f and M_e to explore the sensitivity of $S(t)$ to ±20% changes in H_f and M_e around values of 100 J/g and 500 g/mol, respectively. Given that the model contains significant uncertainty in the estimates of the 4 parameters in Equation 6, it was decided that parameter uncertainty should be incorporated into the sensitivity analysis. Hence, for each fixed pair of M_e and H_f values, $S(t)$ was calculated 1000 times using the 1000 sets of parameter estimates derived from the bootstrap procedure. At each time point, the median of the 1000 $S(t)$ values was calculated along with 80% confidence intervals leading to the plots shown in Figure 4. These plots indicate that 20% changes in both H_f and M_e lead to highly significant changes in the survival curves for amorphous stability. The sensitivity to changes in H_f is greater than changes in M_e, such that the example ±20% changes in H_f lead to 7.9-fold changes in median crystallization time, whereas ±20% changes in M_e lead to 4.1-fold changes in median crystallization time. Note that Figure 4b contains significantly wider confidence bands than Figure 4a, and this is related to the greater uncertainty in estimation of θ_2 compared with θ_1 (Table 3).

If parameter uncertainty is neglected, the sensitivity analysis can be reduced to a simpler format by taking the expression for $S(t)$ in Equation 8, setting it equal to 0.5, and then solving the equation for t, which is equivalent to finding the median crystallization time rather than the entire survival curve including parameter uncertainty for a particular combination of both H_f and M_e. This leads to Equation 10.

$$t = \exp \left(\frac{1}{\hat{\beta}_1 + 1} \right) \cdot \ln \left(-\frac{(\hat{\beta}_1 + 1) \cdot \ln(0.5)}{K} \right)$$ (10)

The median crystallization time for various combinations of H_f and M_e was calculated using Equation 10 and is shown in Table 4. The explored ranges of H_f and M_e led to a 17,000-fold range in

<table>
<thead>
<tr>
<th>Parameter Estimate</th>
<th>95% Confidence Interval From Bootstrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1 (1/d)</td>
<td>0.0630</td>
</tr>
<tr>
<td>β_1 (1/d)</td>
<td>-0.458</td>
</tr>
<tr>
<td>θ_1 (g/d)</td>
<td>0.0560</td>
</tr>
<tr>
<td>θ_2 (mol/g)</td>
<td>-0.00771</td>
</tr>
</tbody>
</table>
amorphous stability. These results further demonstrate the large influence that H_f and M_r are expected to have on the amorphous stability of compounds with different properties.

It should be remembered that the generation of predictions using a TTE model is a stochastic process (even when parameter estimates are very precise), and once a model has been derived, the process of predicting event times involves the drawing of samples from a probability distribution. Hence, the crystallization times listed in Table 4 represent the median expected crystallization times that might be observed for large populations of compounds representing each of the combinations of H_f and M_r. There will be considerable variation in the predicted crystallization times of particular compounds around each of the median values. This is consistent with reports in the literature that compounds with similar physicochemical properties and chemical structure can demonstrate very different amorphous stability. This is also true for the data set studied here, for example, celecoxib ($H_f = 72.2 \text{ J/g}, M_r = 358.8 \text{ g/mol}$, stable for 6 days) and etoricoxib ($H_f = 84.1 \text{ J/g}, M_r = 381.4 \text{ g/mol}$, stable for 84 days).

Validation on External Data Sets

A test set of 11 compounds, obtained from the literature and from AstraZeneca, was used to validate the derived Weibull covariate model. The observed crystallization times of the 11 test set compounds are given in Table 5. Because only the time of first detection of crystallization was known for these compounds, without knowledge of the time of the previous observation where crystallization was not detected, the crystallization times are less informative than the interval-censored data used for building the model. The Weibull covariate model was used to predict 1000 sets of crystallization times for the 11 compounds, and the observed and simulated events are displayed in Figure 5 using the same display format as that used for the VPC in Figure 3. This shows considerable overlap of the 95% confidence intervals derived from the observed and predicted data and exhibits a very similar shape of the observed and median predicted Kaplan–Meier curves. Therefore, the range of crystallization event times predicted by the Weibull covariate model are consistent with the observed event times, which indicates that the model has the ability to generate useful quantitative predictions.
for compounds outside the original 25 compound training set. Further details of the distributions of predicted crystallization event times are given in Supplementary Material E. We have previously correlated our experimentally observed amorphous stability values with those observed elsewhere using a range of different methodologies. Furthermore, the relative amorphous stability ranges for the compounds in our validation data set (Table 5) are in line with the high (indoprofen, intermediate (droperidol), nifedipine, and clotrimazole) and low (felodipine) crystallization tendencies reported in the literature.

Although the representation of the model’s predictive power given in Figure 5 indicates that the overall predictive performance is about as good as it could be expected, some of the individual predictions in Table 5 have large discrepancies. These discrepancies may be related to differences in preparation methods and storage conditions for the test set compounds compared with the compounds used in model building. For instance, felodipine was a member of the 25 compound training set and classified as an unstable compound (measured crystallization within 5 days of storage) and was also a member of the test set where it had been assessed as a fairly stable compound (crystallization within 84 days).

We should note that each of the 11 test set molecules represents a single sample from a corresponding large population of possible molecules, with each population having the appropriate pair of Hf and Mr values. Each of those populations will exhibit a range of amorphous stability. Furthermore, given the earlier discussion of the stochastic nature of TTE models, we can understand that the predicted crystallization times arise from distributions of values. Median crystallization times longer than 168 days are shaded in green (very stable compounds) and shorter than 1 week are shaded in red (very unstable compounds).

Table 4

<table>
<thead>
<tr>
<th>Mr</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>63.2</td>
<td>128.8</td>
<td>262.3</td>
<td>534.1</td>
<td>1088</td>
<td>2215</td>
</tr>
<tr>
<td>60</td>
<td>22.5</td>
<td>45.8</td>
<td>93.3</td>
<td>190.1</td>
<td>387.1</td>
<td>788.3</td>
</tr>
<tr>
<td>70</td>
<td>8.01</td>
<td>16.31</td>
<td>33.21</td>
<td>67.6</td>
<td>137.7</td>
<td>280.5</td>
</tr>
<tr>
<td>80</td>
<td>2.85</td>
<td>5.80</td>
<td>11.82</td>
<td>24.07</td>
<td>49.02</td>
<td>99.83</td>
</tr>
<tr>
<td>90</td>
<td>1.01</td>
<td>2.07</td>
<td>4.21</td>
<td>8.57</td>
<td>17.4</td>
<td>35.53</td>
</tr>
<tr>
<td>100</td>
<td>0.36</td>
<td>0.74</td>
<td>1.50</td>
<td>3.05</td>
<td>6.21</td>
<td>12.64</td>
</tr>
<tr>
<td>110</td>
<td>0.13</td>
<td>0.26</td>
<td>0.53</td>
<td>1.09</td>
<td>2.21</td>
<td>4.50</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Compound</th>
<th>Stability (d)</th>
<th>Observed</th>
<th>Predicted With MLR</th>
<th>Predicted With TTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoprofen</td>
<td>0.004</td>
<td>1.63</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Droperidol</td>
<td>1</td>
<td>5.13</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Nifedipine</td>
<td>1</td>
<td>3.87</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Clotrimazole</td>
<td>84</td>
<td>6.25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Felodipine</td>
<td>84</td>
<td>12.7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td><1/4</td>
<td>12</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5–14</td>
<td>8.3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><1</td>
<td>1</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>>40</td>
<td>1806.9</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>168</td>
<td>11.2</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><1</td>
<td>123.6</td>
<td>168</td>
<td></td>
</tr>
</tbody>
</table>
Therefore, both, the observed and predicted crystallization times, should be viewed as having significant variability. The presence of some test set compounds with large discrepancy between the 2 times is to be expected. The variability in the predictions is tolerable as the derived model is not intended to replace the need for empirical drug stability studies and it would not be used in isolation to make critical decisions related to product development. The model should be rather viewed as a “risk assessment” tool to rank the relative amorphous stability of compounds, for example, in a discovery or early development setting, where there is a requirement from a biopharmaceutical or solid-state consideration for an amorphous drug formulation.

To compare the predictive abilities of the TTE model (Eq. 6) and the published MLR model (Eq. 7), the values of geometric mean-fold error (GMFE) and bias were calculated for both models. These model predictivity metrics are listed in Table 6. The GMFE of the MLR model was 33% higher than the GMFE of the Weibull covariate model, and the bias was lower for the TTE model. This indicates that the predictive performance of the TTE model is better than the MLR model. This is consistent with the fact that a TTE analysis is, for several theoretical reasons, better suited to analysis of event versus time data (particularly given the interval-censored and right-censored nature of the data) than MLR.

Concluding Remarks

In this work, we discussed a novel application of TTE modeling to better understand the influence of physicochemical parameters on measured long-term amorphous stability with censored observations. This study used a previously published set of 25 representative poorly soluble compounds. The best description of the shape of the survival curve for the measured data was obtained with a Weibull hazard model consisting of 2 structural parameters, λ_1 and β_1. After investigating the effect of different physicochemical properties on λ_1 and β_1, the enthalpy of fusion (H_f) and molecular weight (M_w) significantly improved the model statistics. Using sensitivity analysis, it was shown that a decrease in H_f and an increase in M_w contribute to longer survival times of amorphous compounds and that amorphous stability depends more strongly on H_f than on M_w. The Weibull covariate model was used to calculate the median survival times for different values of H_f and M_w. The resulting survival times can serve as a useful indication of how amorphous drug stability typically responds to changes in H_f and M_w but with the realization that significant discrepancies are to be expected. Finally, the Weibull covariate model was tested on an external data set of 11 compounds and showed superior predictive power compared with a previously published MLR model, which also has a dependence on H_f and M_w. Because the 2 used covariates are readily accessible, through calculation and by means of differential scanning calorimetry, they may be of interest to the pharmaceutical industry in time- and cost-effective assessment of compound stability on storage and development of amorphous products. However, it will be beneficial to study additional compounds in the future to increase the data set and consequently reduce the uncertainty in the model parameter estimates.

References

5. Graeser KA, Patterson JE, Zeitler JA, Gordon KC, Rades T. Correlating thermo-

amorphous drug stability predictions using easily calculated, predicted and

7. Karmwara P, Graeser K, Gordon KC, Strachan CJ. Investigation of
properties and recrystallisation behaviour of amorphous indomethacin

9. Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in

10. Mahlin D, Bergström CA. Early drug development predictions of glass-

11. Mahlin D, Ponnambalam S, Hockerfelt MH, Bergström CA. Toward in silico
prediction of glass-forming ability from molecular structure alone: a screening

12. Habgood M, Lancaster RW, Gateshi M, Kenwright AM. The amorphous form of
salicylsalicylic acid: experimental characterization and computational pre-

13. Ito A, Watanabe T, Yada S, et al. Prediction of recrystallization behavior of
troglitazone/polyvinylpyrrolidone solid dispersion by solid-state NMR.

16. Owen JS, Fiedler-Kelly J. *Introduction to Population Pharmacokinetic/Pharmaco-

18. Therneau T. *A Package for Survival Analysis in S.* Version 2.38. Available at:

21. Taylor LS, Zografi G. Spectroscopic characterization of interactions between

22. Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox

23. Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)—a Perl module

population modeling: an experience with an internal population pharma-

thermodynamic and model-based drug development—Part 2: introduction to pharmaco-