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This paper describes the development and application of an efficient hybrid continuum-
molecular approach for simulating non-isothermal, low-speed, internal rarefied gas flows,
and its application to flows in Knudsen compressors. The method is an extension of the
hybrid continuum-molecular approach presented by Patronis et al. (2013) [4], which is
based on the framework originally proposed by Borg et al. (2013) [3] for the simulation
of micro/nano flows of high aspect ratio. The extensions are: 1) the ability to simulate
non-isothermal flows; 2) the ability to simulate low-speed flows by implementing a
molecular description of the gas provided by the low-variance deviational simulation
Monte Carlo (LVDSMC) method; and 3) the application to three-dimensional geometries.
For the purposes of validation, the multiscale method is applied to rarefied gas flow
through a periodic converging-diverging channel (driven by an external acceleration).
For this flow problem it is computationally feasible to obtain a solution by the direct
simulation Monte Carlo (DSMC) method for comparison: very close agreement is observed.
The efficiency of the multiscale method, allows the investigation of alternative Knudsen-
compressor channel configurations to be undertaken. We characterise the effectiveness
of the single-stage Knudsen-compressor channel by the pressure drop that can be
achieved between two connected reservoirs, for a given temperature difference. Our
multiscale simulations indicate that the efficiency is surprisingly robust to modifications
in streamwise variations of both temperature and cross-sectional geometry.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Designers of microfluidic devices are in need of computational tools that can be used to analyse problems that involve
rarefied gas flows in complex micro geometries. Numerical simulation of the gas flow through such geometries is, however,
extremely challenging. Conventional continuum fluid dynamics (CFD) becomes invalid or inaccurate as the characteristic
scale of the geometry (e.g. the channel height, h) approaches the molecular mean free path, λ [1,2]. When λ/h � 0.1,
the error in solutions obtained from CFD may be significant, and we must consider the fluid for what it is: a collection
of interacting particles. However, the computational expense of simulating the flow of a rarefied gas in high-aspect-ratio
micro geometries (i.e. ones that are long, relative to their cross section) using a particle method, such as the direct simu-
lation Monte Carlo (DSMC) method [2], can be prohibitively high [3,4]. The computational intensity of the particle method
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Fig. 1. Thermal transpiration and opposing pressure-driven flow.

is greater still when simulating low-speed microfluidic devices where there are only small deviations from equilibrium,
characterised by extremely low Mach numbers and weak temperature gradients.

To simulate the flow of a rarefied gas in micro geometries of high aspect ratio, processes need to be resolved simultane-
ously over both the smallest and largest characteristic length scales of the geometry: the problem is multiscale in nature. To
tackle this, the internal-flow multiscale method (IMM) [3] has been developed. The IMM facilitates the coupling of conven-
tional continuum theory and a suitable particle method, via mass and momentum flux conservation. This coupling allows us
to take advantage of the simplicity and efficiency of continuum theory, and the accuracy of the particle method. The IMM
is iterative, involving a bidirectional and indirect exchange of information between the continuum domain and a number of
spatially-distributed particle subdomains, until convergence is obtained.

Recently, the IMM has been extended to treat compressible internal rarefied gas flows [4], but limited to isothermal
problems and relatively high-speed flows. The DSMC method was used to provide the molecular description of the gas
transport, and thus low-speed near-equilibrium flows could not be simulated efficiently. This is because, at low speeds, the
number of samples required to obtain an acceptable signal-to-noise ratio is intractable.

In this paper, we present two extensions to the IMM that enable: a) non-isothermal and b) near-equilibrium flows to be
modelled. We apply this extended IMM to study the phenomenon of thermal transpiration, and its application to Knudsen
compressors (also known as Knudsen pumps) [5]: solid-state thermal molecular pumps which operate by exploiting thermal
transpiration.

Thermal transpiration (thermal creep) is a rarefied gas effect, whereby a slip flow is generated at a surface in response to
a streamwise variation in temperature. Importantly, and counter-intuitively, flow is driven from lower temperature to higher
temperature regions. Fig. 1 illustrates the steady-state flow field in a channel with height comparable to the molecular mean
free path, which connects two reservoirs; one with temperature T1 and pressure p1, and the other with temperature T2
and pressure p2. In this steady state, the net mass flow rate through the channel is zero. The transient processes that result
in this steady-state condition are not captured by the IMM, but are briefly described here for clarity. Initially, with zero
tangential wall-temperature gradient, p1 = p2. As a tangential wall-temperature gradient is applied, fluid is transported by
thermal transpiration into the reservoir with high temperature. This raises the pressure in the high-temperature reservoir,
creating a pressure gradient opposing the thermal transpiration. This pressure gradient continues to develop until it is
sufficient to fully balance the flow due to thermal transpiration, resulting in zero mass flow rate (see Fig. 1). To achieve a
large pressure drop (p2 − p1), the flow resistance must be high, and so typically the aspect ratio of the channel must be
high.

2. Multiscale and numerical methodology

The internal-flow multiscale method (IMM), which was developed for high-aspect-ratio geometries, uses particle-based
‘micro subdomains’, covering the full cross section of the channel or tube. These subdomains are distributed in the stream-
wise direction with a spacing sufficient to resolve any streamwise variation in the simulation geometry and flow variables
within it. This subdomain placement is illustrated in Fig. 2(b), for a generic internal-flow geometry, Fig. 2(a). The geometry
of each subdomain represents the cross-sectional geometry of the macro domain at that point locally.

Application of the IMM requires that a degree of length-scale separation exists between hydrodynamic variation along
streamlines (i.e. in the s-direction, see Fig. 2(a)) and microscopic processes transverse to the flow direction (in x- and
y-directions). For this scale separation to exist, the section geometry (and the wall boundary conditions) must vary slowly
in the streamwise direction. A dimensionless number indicating the degree of such scale separation can be expressed:
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where L y and Lz are length scales in the transverse directions that characterise the cross-section geometry, φ is a flow
variable (e.g., density, temperature or pressure), and R y and Rz are the radii of curvature of the centre streamline. Provided
S � 1, it can safely be assumed that, in small streamwise sections of the tube/channel, streamwise flow variations are
effectively negligible and the walls are approximately parallel to the centre streamline (and consequently all other local
streamlines). This is referred to by Borg et al. [3] as a local parallel-flow assumption, and it allows for the simulation domain
to be represented by streamwise-periodic subdomains with exactly parallel walls, as depicted in Fig. 2(b). Depending on
the type of molecular solver utilised, these subdomains can be three-dimensional (with a small but finite dimension in
the s-direction) as illustrated in Fig. 2(b), or two-dimensional, as is the case in this paper, where the subdomains are
cross-sectional slices with no dimension in the s-direction.



534 A. Patronis, D.A. Lockerby / Journal of Computational Physics 270 (2014) 532–543
Fig. 2. Schematics of (a) a generic internal-flow geometry and (b) the internal-flow multiscale method (IMM) [3,4]. A molecular description of the fluid
(DSMC, LVDSMC, MD, etc.) is used for the highlighted regions, as illustrated for the ith micro subdomain.

Given low Reynolds number, isothermal, and locally-parallel flow, the flow conditions at any streamwise position in the
channel can be fully defined by: the gas density, the tangential wall velocities, and the streamwise pressure gradient (which
is generated in streamwise-periodic subdomains by an effective body force). In this paper, we extend the IMM to include
the non-isothermal properties of temperature and streamwise temperature gradient. This development provides a means to
study the phenomenon of thermal transpiration and its application to Knudsen compressors.

In these problems, the gas temperature and streamwise temperature gradient at any point are fixed by the boundary
conditions at the wall; for low Mach number flows in high-aspect-ratio channels there will be a negligible variation in
temperature through the channel cross section. Thus, the role of the IMM in the context of thermal transpiration flows is
to determine the impact of an applied streamwise temperature variation on mass flow rate and pressure/density variation
though the simulation domain.

2.1. Macro–micro coupling

For the thermal transpiration flows considered here, all that is needed to define the flow state in a particular subdomain
is the wall temperature and streamwise temperature gradient (both known from boundary conditions), and the density (ρ)
and streamwise pressure gradient (Φ) at that position in the full domain. The latter two variables are calculated by coupling
the subdomain micro models and a macroscopic description of the flow field; the macro model is simply mass conservation
through the full domain. The macro–micro coupling is simply stated as:

〈ṁi〉 = Ṁ for i = 1,2, ...,Π, (2)

where 〈ṁi〉 is the mass flow rate measured from the ith of Π subdomains, and Ṁ is the macroscopic mass flow rate
through the entire geometry.

The IMM follows an iterative procedure, predicting values of Φ and ρ in each subdomain which generate micro mass-
flow responses that will ultimately satisfy Eq. (2) once convergence is reached. On convergence, the macro mass flow rate
and the streamwise distribution of density and pressure gradient constitute the output of the method.

The iterative solution of Eq. (2) requires some prediction of the general response of the mass flow rate in each subdomain
to changes in Φ and ρ . To this end, it is assumed that the mass flow rate is separately proportional to the net momentum
flux and the streamwise temperature gradient:

ṁi = ki(ρiaext − Φi) + ji
dT

ds

∣∣∣∣
i
, (3)

where i denotes a value at the ith subdomain, T is the gas temperature and aext is any externally-applied acceleration. The
constant of proportionality ki is estimated prior to the first iteration; as will be seen, the constant ji determining the mass
flow rate due to thermal transpiration does not require estimation. Note, the prediction in Eq. (3) is approximate at the
micro scale for rarefied gas flows. However, the accuracy of the prediction only determines convergence characteristics of
the method and does not affect the final solution (provided one can be found).

Eq. (3) is used to estimate the change in mass flow rate between successive iterations:

ṁl+1
i − 〈

ṁl
i

〉 = ki
(
ρl+1

i aext − ρl
iaext − Φl+1

i + Φl
i

)
, (4)

where l is the iteration index and angular brackets denote a value measured from the subdomains. Note, the thermal
transpiration term has been eliminated by assuming it is unaffected by changes in density and pressure gradient. The
simulations of [6] demonstrate that this assumption is questionable under certain conditions. However, as noted above, the
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inaccuracy in this assumption only affects the rate of convergence of the iterative scheme, and not the final solution of
the IMM.

To make the mass flow rates in each subdomain tend to a single macroscopic value we substitute ṁl+1
i for Ṁ:

Ṁ + ki
(
Φl+1

i − ρl+1
i aext

) = 〈
ṁl

i

〉 + ki
(
Φl

i − ρl
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)
. (5)

As Φ and ρ converge (ρl+1 → ρl and Φl+1 → Φl), Eq. (5) ensures macro mass conservation is satisfied, i.e., 〈ṁl
i〉 → Ṁ . We

focus on ideal gases, allowing the expression of the pressure gradient in terms of density and temperature:
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ds
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where R is the specific gas constant.
At each iteration, Eqs. (5) and (6) are solved simultaneously, producing sequentially improving predictions for Ṁ , Φi ,

and ρi ; the latter two variables are then re-applied to the micro subdomain solvers. As is clear from Eq. (6), a discrete
representation of the derivative of density is required (the derivative of temperature is defined directly by the wall boundary
conditions, as discussed previously). As in [4], we adopt a spectral collocation method for high accuracy; an example of this
numerical scheme for non-periodic problems is presented in Appendix A.

2.2. Boundary conditions

The solution of Eqs. (5) and (6) requires two boundary conditions, in addition to those of temperature and tangential
velocity at the walls of the full domain. The obvious choice, and those adopted in Borg et al. [3] and Patronis et al. [4],
are boundary conditions on inlet pressure and outlet pressure (p1 = p A , pΠ = pB ; see Fig. 2(a)). However, for the Knudsen
compressor problem, see Fig. 1, the equilibrium pressure drop (the steady-state condition when the pressure-driven flow
balances the thermal transpiration flow) is not known a priori. In this instance we set a condition on mass flow rate (Ṁ = 0)
and upstream pressure (p1 = p A ), while the pressure downstream becomes an output of the simulation. This ability to
invert the problem demonstrates a new advantage of the IMM over a full-domain molecular simulation.

2.3. Micro model: low-variance deviational particle Monte Carlo (LVDSMC)

The direct simulation Monte Carlo method suffers from overwhelming statistical scatter in hydrodynamic variables when
simulating near-equilibrium, rarefied gas flows, such as those encountered in individual Knudsen compressors. Therefore,
unlike in Patronis et al. [4] a variance reduced deviational particle method for simulating the Boltzmann transport equation
for the variable hard sphere (VHS) collision operator has been adopted (source code freely available at [7]). This method has
been successfully applied to a range of applications, see Refs. [8,9] for full details. Referred to as low-variance deviational
simulation Monte Carlo (LVDSMC), this technique overcomes the limitations of the DSMC method when used to simulate
small deviations from equilibrium. The key to achieving variance reduction by LVDSMC (and deviational particle methods in
general), is the decomposition of the velocity distribution into an equilibrium state, which can be represented analytically,
and a deviational distribution, which is represented in terms of simulated particles. For the same number of particles
(simulators), that would otherwise have been used to simulate the entire velocity distribution, the deviational distribution
can be simulated with dramatically lower variance.

An additional attractive feature of the LVDSMC method is that it enables the simulation of small streamwise gradients
in pressure and temperature without the added expense and complexity of simulating a non-periodic streamwise-extending
domain [10]. The equivalent effects of these streamwise gradients are introduced conveniently by an effective body force
[10]; a technique first proposed by Cercignani [11]. Importantly, this allows the application of streamwise gradients in
pressure (Φi ) and temperature ( dT

ds |i) independently of each other, in each subdomain.
It is important to note that other micro models could be employed that would be equally accurate for the purposes

of the IMM, while being computationally cheaper than LVDSMC. For example, numerical solutions to linearised kinetic
equations can be performed extremely efficiently (see, e.g. [12]). However, here we have chosen the LVDSMC method for
the convenience that a particle method affords, and to allow easy extension to arbitrary cross-sectional geometries at a later
date.

2.4. Coupling algorithm

Each iteration of the IMM generates a sequence of improving approximate values at collocation points (at each micro
subdomain) for mass density and pressure gradient. Once converged, the mass flow rates in each subdomain are equal and
macroscopic mass is conserved. The iterative method ceases to execute once a convergence criterion (e.g. on standard devi-
ation of the mass flow rates measured from the micro subdomains) is satisfied. The iterative method follows the procedure
outlined below:
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Fig. 3. A streamwise periodic converging-diverging channel.

1. Initialise all micro LVDSMC (subdomain) simulations with the density and pressure gradient values for the current
iteration: ρl

i , Φl
i , and the temperature Ti and temperature gradient dT

ds |i dictated by the wall boundary conditions for
that subdomain location.

2. Simulate all Π micro LVDSMC subdomains in two stages: a transient period and an averaging period. The transient
period allows for the flow simulated in each subdomain to reach steady state. A satisfactory signal-to-noise ratio for the
mass flow rate measurement, 〈ṁl

i〉, is then obtained during the averaging period.
3. Solve the set of linear Eqs. (5) and (6) (in discretised form: (A.6), (A.7) and (A.8)) satisfying the boundary conditions to

obtain density and pressure gradient values for the next iteration: ρl+1
i , Φl+1

i .
4. Repeat from (1) until Eq. (2) is satisfied (i.e. macroscopic mass conservation is attained).

Prior to initiation of the iterative algorithm, a set of Π simulations (one for each subdomain) must be performed in order
to generate values of ki . This is achieved by applying a zero temperature gradient and an arbitrary pressure gradient Φi
in each subdomain. The mass flow rate measured from each subdomain is then used to obtain values of ki directly from
Eq. (3).

3. LVDSMC-IMM validation

In this section we test the integrity of the newly-proposed IMM of this paper (i.e. the IMM with the LVDSMC method
providing micro resolution) by comparing with full-domain simulation results obtained from the far-more computationally
intensive DSMC method. Although the DSMC method is a numerical method, it is appropriate as a reference for validation
because: a) the DSMC method has been thoroughly validated against experimental data and theoretical results, as has the
particular solver used (dsmcFoam, [13–15]); and b) we are primarily concerned with the ability of the IMM to reproduce
the same result but at a fraction of the computational cost. The dsmcFoam solver is available as part of the open source
CFD software package, OpenFOAM, which is freely available at [16].

The validation case consists of a three-dimensional converging-diverging channel, with periodicity in the streamwise
direction; the configuration is shown in Fig. 3. The flow is driven by a uniform and constant acceleration aext. The length of
the channel is Ls = 24 μm, the height at the throat is min(h) = 0.3 μm and the height at the inlet/outlet is max(h) = 0.5 μm,
the width of the cross section (in the x-direction) is a constant w = 0.5 μm. The aspect ratio of the channel is: Ls/w = 48.
For this isothermal test case, the temperature of all surfaces representing walls is kept constant at T wall = 273 K, and
the average density in the domain is initialised at ρ = 0.573 kg m−3. For both the full-domain simulation computed by
the DSMC method and all micro LVDSMC (subdomain) simulations, a VHS model of argon is used, and the size of all
computational cells is chosen to be considerably smaller than the local mean free path.

The full-domain dsmcFoam simulation is performed using a time-step that is a small fraction of the mean free time
(the mean time between collisions): �t = 2 × 10−11 s. Each cell contains an initial 50 representative particles to produce a
total number of 6.8 × 106 simulators. These simulators represent ∼3.81 × 107 real particles in the system. Time averaging
was activated at t = 1 × 10−6 s and continued until t = 3 × 10−5 s, producing 1.45 million samples. The applied external
acceleration is aext = 1010 m s−2; a value chosen to produce a manageable signal-to-noise ratio. Despite this strong accel-
eration, the maximum Reynolds number Re = 0.22 (based on local centreline velocity and local channel height, h), and the
maximum Mach number Ma = 0.045. The Knudsen number (at the centreline) ranges from Kn = 0.32–0.63 (Kn = λ/h), as
shown in Fig. 4. An IMM simulation of the geometry is performed with Π = 9 equally-spaced subdomains: the positions
of the subdomains are shown in Fig. 3(b). Note, each subdomain is in fact a transverse plane, having no dimension in the
s-direction.
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Fig. 4. Variation of the Knudsen number (based on y-dimension) in the streamwise direction, s.

Fig. 5. Comparison of streamwise variation of mass density computed by the dsmcFoam solver ( ) applied to the full domain, and the (LVDSMC-)IMM
( ). The collocation points, , are also shown.

Fig. 6. Profiles of fluid velocity at various streamwise locations (a)–(d) and at three transverse slices located at, x = x1, x2, x3. Circular data markers represent
velocity profiles computed by the dsmcFoam solver. Solid lines represent velocity profiles obtained by the compressible (LVDSMC-)IMM method. x1 =
−0.204 μm; x2 = −0.153 μm; x3 = 0 μm; (a) i = 1 (s/Ls = 0); (b) i = 2 (s/Ls = 0.111); (c) i = 3 (s/Ls = 0.222); (d) i = 4 (s/Ls = 0.333). Wall locations are:
(a) x = ±0.25 μm, y = ±0.25 μm; (b) x = ±0.25 μm, y = ±0.216 μm; (c) x = ±0.25 μm, y = ±0.177 μm; (d) x = ±0.25 μm, y = ±0.158 μm.

A comparison of the results obtained from the LVDSMC-IMM and the full-domain dsmcFoam simulation is presented
in Figs. 5 and 6. Fig. 5 shows the streamwise variation of mass density (at the centreline) through the domain, and Fig. 6
compares velocity profiles at four different streamwise locations, each at three different transverse slices (x locations).
Agreement is excellent between the results of the IMM and those of the full-domain dsmcFoam simulation. What is perhaps
counter-intuitive from the results presented in Fig. 5 is that the density is not constant despite the low Mach number
(this fluid-compressibility effect was seen in Patronis et al. [4], and its occurrence in micro flows is discussed in [17]).
Furthermore, the position of maximum density does not occur at the throat of the channel, but instead slightly upstream.
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Fig. 7. Variation of the Knudsen number (based on y-dimension) in the streamwise direction, s.

Both the full-domain dsmcFoam simulation and the IMM predict this. Note, the difference in the velocity-profile resolution
seen in Fig. 6 exists because a larger cell size is used to simulate the full domain using dsmcFoam; i.e. resolution was
sacrificed for the purposes of averaging. The mass flow rate measured by dsmcFoam is ṁ = 1.01 ± 0.11 × 10−12 kg s−1; the
mass flow rate calculated from the converged (LVDSMC-)IMM is ṁ = 1.0085 ± 0.0015 × 10−12 kg s−1.

The LVDSMC-IMM boasts a considerable reduction in computational intensity relative to the full-domain dsmcFoam
simulation. To assess the computational performance of the LVDSMC-IMM and full-domain dsmcFoam, we compare the
wall-clock time required by the LVDSMC-IMM to iterate until the convergence criterion is satisfied, and the wall-clock time
required for dsmcFoam to compute a steady and low-noise pressure and velocity field. We take the convergence criterion of
the IMM to be:

∣∣stdev{ṁi}/ṁ1
i

∣∣ < ζtol, (7)

where ṁ1
i is the mean of the mass flow rates measured during the first iteration, and ζtol is a predetermined tolerance. For

the simulations in this paper we choose: ζtol = 0.002.
For consistency in comparison, all simulations for both methods are performed using Intel Xeon X5650 2.66 GHz cores.

The LVDSMC-IMM utilises a single Intel Xeon X5650 2.66 GHz core per subdomain, and therefore requires 9 cores per
iteration for the current case. Since an iteration cannot be completed until all subdomain simulations of that iteration
have ended, the subdomain simulations of any iteration are executed in parallel to maximise efficiency. The wall-clock
time required by the LVDSMC-IMM to iterate until the convergence criterion is satisfied is ∼4.90h. To obtain a satisfactory
solution using the dsmcFoam solver, 64 cores are required for ∼49.8h. Based on wall-clock time, the full-domain dsmcFoam
simulation is approximately 10 times more expensive than the LVDSMC-IMM. In terms of ‘core-hours’, the LVDSMC-IMM is
over 70 times cheaper than the full-domain simulation: a major reduction of computational intensity. This saving is due to:
a) the IMM allows the full three-dimensional domain to be represented as a small number of planar surfaces; and b) the
LVDSMC method is more efficient than the DSMC method, even at moderate flow speeds (∼10 m s−1).

4. Application to Knudsen-compressor channels

In this section we apply the LVDSMC-IMM to the channel flow depicted in Fig. 1, where thermal-transpiration flow
is balanced by an opposing pressure-gradient driven flow. This equilibrated steady-state response is representative of that
encountered in Knudsen-compressor channels, and is therefore of technological interest. The IMM promises to make the
simulation of more general geometries and temperature variations accessible to design exploration. For all cases in this
section, the gas considered is VHS argon.

4.1. Straight channel with linear temperature profile

In the first case, we consider a thermal transpiration flow driven by a linear streamwise wall-temperature gradient. The
length of the straight channel is Ls = 24 μm, with a square cross section of height h = 0.5 μm. The streamwise temperature
distribution is given by T (s) = −3.75 × 107(s) + 1000 K.1 The Knudsen number of the flow (at the centreline) ranges from
Kn = 2.05–5.79, as shown in Fig. 7; the pressure at the inlet, p A , is ∼8.07 × 103 Pa.

1 The temperature change over the length of the 24 μm channel is of the order of 900 K. Such a high gradient of temperature may be technologically
impractical, and has been chosen here primarily for the purpose of creating a computationally challenging example.
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Fig. 8. Comparison of streamwise variation of pressure computed by the dsmcFoam solver ( ) applied to the full domain, the (LVDSMC-)IMM ( ),
and the method outlined by Sharipov [18] ( ). The collocation points, , are also shown.

The IMM simulation of the channel is performed with Π = 9 evenly-distributed subdomains. For comparison, a full-
domain simulation using the DSMC method is performed (�t = 1 × 10−11 s). Each cell contains an initial 80 representative
particles to produce a total number of 2 × 105 simulators. Due to the prohibitive computational expense, we do not at-
tempt to resolve the velocity profiles using the DSMC method. Similarly, we do not use the DSMC method to calculate the
downstream pressure producing zero net flow rate, as this would need to be found by trial-and-error.2 Instead, the pressure
boundary conditions of the full-domain dsmcFoam simulation are set based on the solution from the IMM, and only the
predictions of streamwise variation in pressure are compared.

We also present the streamwise variation of pressure as calculated by the model proposed by Sharipov [18]:

dp

ds
= Q T (δ)

Q p(δ)

p(s)

T (s)

dT

ds
(8)

where δ is the rarefaction parameter (inverse of the Knudsen number), and values for the coefficients Q p and Q T are
obtained from the S-model kinetic equation [19]. Here, Eq. (8) is solved using a Runge–Kutta method, with values of Q p

and Q T at any given δ found by cubic interpolation between values published in Sharipov [18].
Fig. 8 shows the streamwise variation of pressure (at the centreline) through the domain, as computed by the IMM, the

dsmcFoam solver, and the approximate solution of Sharipov [18]. These methods indicate a non-linear pressure variation
being generated by the application of the linear temperature gradient. This reflects the effect of the varying Knudsen num-
ber on the thermal transpiration flow. As expected, the streamwise variation of pressure computed by applying the method
of Sharipov [18] deviates slightly from that obtained by applying the other methods, due to the approximation inherent
in the S-model kinetic equation. Fig. 9 shows the velocity profiles obtained from the IMM at three different streamwise
locations. The inverted flow profile, resulting from the opposing effects of the pressure gradient and the thermal transpira-
tion, is clearly observed. These results provide confidence that the LVDSMC-IMM can be applied to investigate more general
non-isothermal Knudsen compressor flows.

4.2. Straight channel with non-linear temperature profile

In this section, we apply the IMM to determine whether a greater pressure drop can be achieved by altering the
temperature distribution, whilst maintaining the same total temperature drop. For the purposes of this investigation,
this is our gauge of efficiency. All simulation conditions applied here are identical to those used to simulate the pre-
vious case, except that a non-linear temperature profile is prescribed. The temperature distribution is given by T (s) =
1.20 × 1012(s)2 − 66.3 × 106(s) + 1000 K for case 1, and T (s) = −1.20 × 1012(s)2 − 8.70 × 106(s) + 1000 K for case 2; see
Fig. 10. Note, the total temperature drop is the same in both cases. The IMM is applied to calculate the pressure distribution
that satisfies Ṁ = 0, i.e. a zero net mass flow rate in the domain. Fig. 11 shows the pressure distributions for case 1 and
case 2 computed by the IMM (—) and the model outlined by Sharipov ( ). It is clear, and perhaps unexpected, that the
total pressure drop is relatively unaffected by the temperature distribution. In case 1, a 62% change in pressure is observed;
in case 2 this is 61.6% change in pressure. In some sense this result demonstrates the robustness of the Knudsen compres-
sor: it is not necessary to precisely apply a surface temperature gradient to achieve a desired pressure drop. The model of
Sharipov also captures this.

2 As discussed in Section 2.2, the IMM has the advantage of allowing zero mass flow rate in the domain to be set in place of a boundary condition on
pressure.
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Fig. 9. Profiles of fluid velocity (in the direction of thermal transpiration) in the transverse plane. (a) i = 1 (s/Ls = 0); (b) i = 5 (s/Ls = 0.5); (c) i = 9
(s/Ls = 1). Wall location: x = 0,0.5 μm, y = 0,0.5 μm. Due to symmetries in the x- and y-directions, only a quarter of the subdomain is simulated.

Fig. 10. Linear temperature profiles applied in Section 4.1 and non-linear temperature profiles applied in Section 4.2.

Fig. 11. Comparison of streamwise variation of pressure for cases 1 and 2, computed by the (LVDSMC-)IMM (—), and the method outlined by Sharipov [18]
( ).
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Fig. 12. Variation of the Knudsen number (based on y-dimension) in the streamwise direction, s, for: converging-diverging channel (—), and diverging-
converging channel ( ).

Fig. 13. Streamwise variation of pressure for: straight channel ( ), converging-diverging channel (—), and diverging-converging channel ( ).

4.3. Non-uniform channel geometry with linear temperature gradient

We now use the IMM to investigate whether modifications to the cross-sectional geometry (in the streamwise direction)
can influence the total pressure drop attainable. This exploration cannot be performed easily using the Sharipov model
of Eq. (8). Here we apply the linear temperature profile defined in Section 4.1. All simulation conditions applied here are
identical to those used to simulate the previous case described in Section 4.1. Note, the total temperature drop is the same
in both cases.

We consider two non-uniform channels: case 1) a three-dimensional converging-diverging channel (see Fig. 3(a)) and
case 2) a three-dimensional diverging-converging channel (see Fig. 12), both with non-periodic boundary conditions. The
IMM is applied to calculate the pressure distribution that satisfies Ṁ = 0, i.e. a zero net mass flow rate in the domain.
Fig. 13 shows the pressure distributions for these cases. As in the cases of the previous section, the total pressure drop
appears to be relatively unaffected by the very significant modification to the cross-sectional geometry. In case 1, a 61.9%
change in pressure is observed; in case 2 this is 60.7% change in pressure. This result further points to a rather surprising
robustness of the Knudsen-compressor channel design to the pressure drop achieved.

5. Conclusions

This paper describes the development of a number of major extensions to the compressible internal-flow multiscale
method (IMM) [4]. These extensions have been made, in part, to allow the study of Knudsen-compressor channel flows.
The extensions are: 1) ability to simulate non-isothermal internal rarefied gas flows; 2) ability to simulate low-speed flows
by adopting a molecular description of the gas provided by the low-variance deviational simulation Monte Carlo (LVDSMC)
method; and 3) application to three-dimensional simulation domains. We have applied the method to dilute gas flows (using
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the VHS-LVDSMC method to provide micro resolution) for periodic and non-periodic internal-flow configurations, and to the
study of thermal transpiration. For validation purposes, the solution from the IMM has been compared to that obtained from
a full-domain simulation using the dsmcFoam solver. The IMM provides flow predictions that are in excellent agreement
with those from the full-domain simulations. More importantly, the IMM is significantly more efficient, resulting in major
computational savings in all cases. The IMM has been used to investigate how streamwise variations in temperature and
cross-sectional geometry can affect Knudsen-compressor performance. It was found that the overall pressure difference that
is obtained is fairly insensitive to such modifications. This potentially demonstrates a robustness of the Knudsen-compressor
performance to some aspects of channel design.

Future work in extending the applicability of the LVDSMC-IMM will be to accommodate flow regions of low aspect ra-
tio, i.e. where scale separation doesn’t exist. In such regions a full micro solution of the low-aspect-ratio region needs to
be coupled to the scale-separated treatment of the high-aspect-ratio flow. Details of how this can be done for nanoflu-
idic networks comprising both high-aspect-ratio and low-aspect-ratio internal flow components are given in [20], where a
Molecular Dynamics micro model has been used.
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Appendix A. Spectral collocation scheme

To investigate the thermal transpiration phenomenon, a non-periodic configuration with pressure boundary conditions
must be used. However, as will be explained, it is not necessary to prescribe boundary values of pressure at both inlet and
outlet. Readers are referred to [4] for a full description of the collocation scheme that is applied to solve periodic problems.

The density variation in a non-periodic domain is represented by the following polynomial:

ρ(s) =
Π∑

j=0

ρ̂ j s
j, (A.1)

where ρ̂0,...,Π are the coefficients of the polynomial. From Eq. (6), a polynomial description of Φ is:

Φ(s) = RT (s)
Π∑

j=1

jρ̂ j s
j−1 + R

dT (s)

ds

Π∑
j=0

ρ̂ j s
j . (A.2)

Eq. (A.2) includes the contribution of the temperature gradient to the streamwise pressure-gradient. Eqs. (A.1) and (A.2) are
evaluated at the subdomain locations (collocation points):

si = Ls(i − 1)/(Π − 1) for i = 1,2, ...,Π (A.3)

which encompass the full length of the geometry, to give variables in physical space at the new iteration:

ρl+1
i =

Π∑
j=0

ρ̂ j s
j
i , (A.4)

Φl+1
i = RTi

Π∑
j=1

jρ̂ j s
j−1
i + R

dT

ds

∣∣∣∣
i

Π∑
j=0

ρ̂ j s
j
i , (A.5)

where Eq. (A.4) requires Π + 1 coefficients for the degree Π polynomial. Eqs. (A.4) and (A.5) are substituted into Eq. (5) to
obtain:

Ṁ + ki

[(
RTi

Π∑
j=1

jρ̂ j s
j−1
i + R

dT

ds

∣∣∣∣
i

Π∑
j=0

ρ̂ j s
j
i

)
−

(
Π∑

j=0

ρ̂ j s
j
i

)
aext

]
= 〈

ṁl
i

〉 + ki
(
Φl

i − ρl
iaext

)
, (A.6)

where the iteration indices of the coefficients are omitted for clarity. Eq. (A.6) represents Π equations containing Π + 2
unknowns. The two remaining equations required for its solution are obtained from the boundary conditions on pressure at
the inlet and outlet:

p1 = RT1ρ̂0, (A.7)

and
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pΠ = RTΠ

Π∑
j=0

ρ̂ j L
j
s , (A.8)

where Ls is the total streamwise length of the geometry. The set of linear equations (A.6), (A.7) and (A.8) can be solved at
each iteration using LU decomposition, or similar. After each iteration, the variables at collocation points (in physical space)
can be obtained from Eqs. (A.4) and (A.5).

An alternative method of solution is to introduce a mass flow rate condition in place of one of the pressure boundary
conditions (A.7) or (A.8). For example:

Ṁ = 0. (A.9)
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