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In this note a sufficient condition for the existence of flat covers of modules is
Žgiven. In a special case when flat modules have ‘‘enough’’ flat submodules espe-

.cially if the class of flat modules is hereditary , the necessity of the condition is also
proved. All results are proved in a more general setting. � 2001 Academic Press

In what follows R stands for an associative ring with identity and by the
word ‘‘module’’ we shall always mean a unital left R-module. Dualizing the

� � � �notion of the injective envelope of a module ES , H. Bass B investigated
the projective cover of a module and he characterized the class of rings R
over which every module has a projective cover. By a projective cover of a
module M we mean an epimorphism � : F � M with F projective and
such that the kernel K of � is superfluous in F in the sense that
K � L � F implies L � F whenever L is a submodule of F. Recently, the
general theory of covers has been studied intensively. If GG is an abstract

Ž .class of modules i.e., GG is closed under isomorphic copies then a
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homomorphism � : G � M with G � GG is called a GG-preco�er of the
module M if for each homomorphism f : F � M with F � GG there is
g : F � G such that � g � f. A GG-precover of M is said to be a GG-co�er if
every endomorphism f of G with � f � � is the automorphism of G. It is

Ž � �.well known see, e.g., Xu that an epimorphism � : F � M, F projective,
is a projective cover of the module M if and only if it is a PP-cover of M,
where PP denotes the class of all projective modules. Denoting by FF the

� �class of all flat modules, Enoch’s conjecture E , whether every module
over any associative ring has an FF-cover, remains still open.

Ž .In this note we shall show that the condition P below ensuring the
existence of ‘‘enough’’ pure submodules in a flat module is sufficient for
the existence of flat covers. As for the converse we shall prove only a
partial result assuming the ‘‘ubiquity’’ of flat submodules of flat modules
Žthe condition is satisfied especially if the class of flat modules is heredi-

.tary . All the results will be reformulated in the general setting working
with the abstract class of modules GG.

� � �As usual, � denotes the successor of the cardinal � and M denotes
Ž � � .the cardinality of the set M. Setting � � max R , � , we take any0 0

� � �complete co-abstract set KK of modules M with M � � and we define0
� Ž . �the cardinal � as the first one such that � � E M for each M � KK

Ž Ž . .E M is the injective envelope of M . Recall that the co-abstractness of
KK means that the members of KK are pairwise non-isomorphic, while the

� � �completeness means that every module M with M � � is isomorphic to0
Ž .a unique member of the set KK. By an abstract class GG of modules we

mean any class of modules closed under isomorphic images. A submodule
N of the module M is called GG-pure in M, if the factor-module M�N
belongs to GG. Further, the class GG is called inducti�e if it is closed under
unions of chains.

We start with the formulation of the purity condition and then we
proceed to the sufficiency of this condition for the existence of some
precovers.

DEFINITION 1. Let GG be an abstract class of modules. We say that GG

Ž .satisfies the condition P if to each infinite cardinal � there exists a
� �cardinal � � � such that for every F � GG with F 	 � and every K � F

� �with F�K � �, the submodule K contains a non-zero GG-pure submodule
of F.

THEOREM 2. Let GG be an abstract class of modules closed under arbitrary
Ž .direct sums. If GG satisfies the condition P and for each F � GG the set of all

GG-pure submodules of F is inducti�e, then e�ery module has a GG-preco�er.

Ž � � .Proof. Let M be an arbitrary module, � � max M , � and let GG be0 M
any complete co-abstract subset of GG consisting of modules of cardinalities
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� 4less than � . If G � � � A is any list of all the members of GG , then for� M
Ž .each homomorphism g � Hom G , M we take an isomorphic copy G� � g

of G together with the isomorphism � : G � G . We are going to� � g � � g
show that the module

G � G � G
 
M � gž /
��A Ž .g�Hom G , M�

together with the natural evaluation map � � � : G � M induced by theM
homomorphisms g��1 : G � M is a GG-precover of the module M.� g � g

So, let F � GG and f : F � M be arbitrary. By hypothesis, there is a
maximal GG-pure submodule K of F contained in Ker f. We denote
F � F�K , � : F � F�K the canonical projection, and f : F � M the
unique homomorphism such that f� � f. Now if H � H�K � Ker f is
GG-pure in F, then H � Ker f and H is GG-pure in F since the factor-mod-
ule F�H 
 F�K�H�K belongs to the class GG. So, the maximality of K
yields that F has no non-zero GG-pure submodule contained in Ker f.

� � � � � � Ž .Moreover, F�Ker f � F�Ker f � Im f � � and so the condition P
� �yields that F � � . Hence there is an index � � A and an isomorphism

� : F � G and if we denote 	 : G � G the canonical embedding of� � � g � g
�1 �1G , g : G � M, into G, then for h � 	 � � � : F � G we have� g � � , f� � , f� �� ��1 �1

�1 �1 �1 �1�h � �	 � � � � f� � � � � � f� � f and we are� , f� � , f� � � � , f� � , f� �� � � �

through.

COROLLARY 3. If , in addition, the class GG in Theorem 2 is closed under
direct limits, then e�ery module has a GG-co�er.

�Proof. Every module has a GG-precover by Theorem 2 and Xu, Theo-
�rem 2.2.8 applies.

Ž .THEOREM 4. If the class FF of all flat modules satisfies the condition P ,
then e�ery module has a flat co�er.

Ž � �.Proof. It is well known see, e.g., Xu that all the hypotheses of the
preceding corollary are satisfied.

To show that the cardinality condition of Theorem 1 is meaningful we
are going to prove a partial converse of Theorem 1 and to point out
several situations in which this condition is satisfied. One of the natural
requirements is that the class GG is hereditary. However, the following
weak version is also good enough.

DEFINITION 5. Let GG be an abstract class of modules. We say that a
� �module F is GG-prehereditary if for every submodule K � F with K � �0

� � � �and every submodule L of K with L � K there is a submodule H of F
� � � �such that L � H � K , H � GG, and H � K . The class GG itself is said to

be GG-prehereditary if every module F � GG is GG-prehereditary.
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� �LEMMA 6. Let K be a submodule of a module F such that F 	 � and
� � � �F�K � � . Then K contains a submodule L such that � � F�L � � and0 0

� � � � � �consequently L � K � F .

Proof. Let N be any submodule of K of the cardinality �� and let L0
Žbe any submodule of K maximal with respect to L � N � 0 N-high

L 
 N.submodule of K . It is well known that the submodule is essential inL
L 
 N � �� � � � � �K�L. Hence � N � � yields � � K�L � �. Looking at the0 0L

� �short exact sequence 0 � K�L � F�L � F�K � 0 we see that K�L �
� �F�L and the rest is obvious.

THEOREM 7. Let GG be a GG-prehereditary class of modules closed under
extensions. Assume further that the class GG is inducti�e and that for each
F � GG the set of all GG-pure submodules of F is also inducti�e. If for each

� �F � GG e�ery submodule K of F with K 	 � is contained in a GG-pure0
submodule of F of the same size and e�ery module has a GG-preco�er, then GG

Ž .satisfies the condition P .

Proof. Let � be an arbitrary infinite cardinal. Obviously, we may
assume that � 	 � and we can take any complete co-abstract set KK of
modules of cardinalities at most �; to each member of this set we fix a
GG-precover and we take � to be the first cardinal greater than � and all
the cardinalities of all GG-precovers just mentioned.

� � � �Now let F � GG and K � F be such that F 	 � and F�K � �. If
� �F�K � � then Lemma 6 yields the existence of a submodule L of K0

� �such that � � F�L � � � � and consequently we may without loss of0
� �generality assume that � � F�K � �. There is an M � KK, an isomor-0

phism � : M � F�K , and a GG-precover � : G � M fixed above. Then0
� �G � � , � : G � F�K with � � �� , is obviously a GG-precover of F�K0
and we can consider the following commutative diagram

F F

�g ��� �

G F�K

where � is the natural projection and g a homomorphism making the
diagram commutative, the existence of which follows from the definition of

� �a GG-precover. Obviously, Ker g � K and the inequalities F 	 � and
� � � � � � � �F�Ker g � Im g � G � � yield that Ker g � 0. Thus � � F�K �0
� � � �Im g and since for an arbitrary element 0 � u � Im g we have Ru � � ,0
there is a submodule B of Im g such that Ru � B , B � GG, and0 0 0
� � � �B � Im g , the class GG being GG-prehereditary by the hypothesis.0

Ž .For each u � Im g we select an element x � F with g x � u; weu u
� � 4denote by D � x � u � Im g and by D the submodule of F generatedu

� � � � � � � � � �1Ž .by D . Obviously, D � Im g � G � � . Denoting C � D � g B0 0
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and taking 0 � � � Ker g arbitrarily, the hypothesis yields the existence of
� � 4a GG-pure submodule C of F containing C � � and of the same size as0 0

B . Since the class GG is GG-prehereditary, there is a submodule A of F0 0
� � � � � �such that C � A � D � C , A � GG, and A � D � C � Im g .0 0 0 0 0 0

Continuing by induction, let us suppose that for some k 	 0 the submod-
ules C � A � 


 � C � A of F and the submodules B � B � 


0 0 k k 0 1

Ž .� B of Im g have been already constructed in such a way that B � g Ck i i
� � � � � � � � � � Ž .and B � C � Im g , A � Im g for every i � 0, 1, . . . , k, and g Ai i i i

� B for every i � 0, 1, . . . , k � 1. Moreover, the modules B , B , . . . , Bi�1 0 1 k
and A , A , . . . , A belong to the class GG and the modules C , C , . . . , C0 1 k 0 1 k

� Ž . � � �are GG-pure in F. Since GG is GG-prehereditary and g A � Im g , therek
Ž .exists a submodule B of Im g belonging to GG, containing g A andk�1 k

� � � � � � � � �1Ž .such that A � B � Im g . Setting C � D � g B , the hy-k k�1 k�1 k�1
pothesis yields the existence of a GG-pure submodule C of F containingk�1
C� � A and of the same size as B . Since GG is GG-prehereditary,k�1 k k�1
there is a submodule A of F belonging to GG and such that C �k�1 k�1

� � � � � �A � D � C , A � GG, A � D � C � Im g . By hypothe-k�1 k�1 k�1 k�1 k�1
ses, A � �� A � �� C lies in GG, it is GG-pure in F, and B �k�0 k k�0 k

A� Ž .� B � Im g lies in the class GG. Now 
 g A � B � GG, hencek�0 k A � Ker g

A � Ker g is GG-pure in A and consequently in F, the class GG being closed
under extensions. Finally, A � Ker g � Ker g � K , 0 � � � A � Ker g,
and the proof is complete.

Ž .Recall that a hereditary torsion theory � � TT, FF for the category
R-mod consists of two abstract classes TT and FF, the �-torsion class and the

Ž .�-torsion-free class, respectively, such that Hom T , F � 0 whenever T � TT

and F � FF, the class TT is closed under submodules, factor modules,
extensions, and direct sums, the class FF is closed under submodules,
extensions, and direct products, and for each module M there exists an
exact sequence 0 � T � M � F � 0 such that T � TT and F � FF. To
each hereditary torsion theory it is associated a radical filter of left ideals

� 4 Ž .LL � I � R � R�I � TT and the torsion part � M � T of the module M
Ž .consists of all elements a � M with 0 : a � LL . The torsion theory � is

said to be of finite type if the filter LL contains a cofinal subset of finitely
generated left ideals.

Ž .COROLLARY 8. If � � TT, FF is a hereditary torsion theory of finite type
Ž .for the category R-mod, then the class FF satisfies the condition P .

Proof. The class FF is hereditary, inductive, and closed under exten-
sions. Since � is of finite type, the FF-pure submodules of members of FF

are inductive and every module has an FF-precover by the theorem of Teply
� �T . To finish the proof it remains to show that every submodule K of a

� ��-torsion-free module F with K 	 � is contained in an FF-pure submod-0
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Ž .ule L of F of the same size as K. Denoting � F�K � L�K , the
submodule L is obviously FF-pure in F and it remains to show that
� � � �L � K . However, for each x � L� K there exists a finitely generated
left ideal I � Ra � Ra � 


 �Ra � LL with Ix � K. If we associate to1 2 n

� 4the element x the finite subset a x, . . . , a x � K , then whenever a x �1 n 1
Ž .a y, . . . , a x � a y for some x, y � L� K we have I x � y � 0 and con-1 n n

Ž .sequently x � y � � F � 0 yields x � y. From this we immediately see
� � � �that L � K and, as remarked above, an application of Theorem 7

finishes the proof.

COROLLARY 9. The class FF of all torsion-free abelian groups satisfies the
Ž .condition P .

Proof. This is by Corollary 8.

Remark 10. The preceding corollary says that if � is a given infinite
cardinal, then there is a cardinal � � � such that for any torsion-free

� � � �abelian group F with F 	 � and any of its subgroup K with F�K � �
the subgroup K contains a non-zero subgroup pure in F. This fact follows
from the above theory of precovers and as far as we know, the first direct

� �proof has been done by the first author in Bi1 in the case when F�K is a
� �p-group and in Bi2 in the general case.

Note added in proof. The Flat Cover Conjecture has been solved independently by E.
Enochs, R. El Bashir, and L. Bican; cf. ‘‘All modules have flat covers,’’ preprint.
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