The Conjugate Classes of Chevalley Groups of Type $(G_2)^*$

Bomshik Chang

The University of British Columbia, Vancouver, Canada

Communicated by Nathan Jacobson

Received July 25, 1967; revised August 30, 1967

1. Preliminary

In this paper we determine the conjugate classes of Chevalley groups of type (G_2) over finite fields of characteristic $\neq 2, 3$. The definition and properties of such groups are given in Chevalley [1] and Ree [5]. A matrix representation of these groups can be found in [4]. The main tools of our investigation are the properties of Chevalley groups in general ([1] III), those of groups of type (G_2) ([5] Sections 2 and 3), a theorem of Lang [3], and Sylow's theorem.

Let G be a Chevalley group over a finite field K. Denote by K^* the multiplicative group of K. We shall use the notation $x_r(t)$, φ_r, x_r, U, S W, U_w^r as defined in [1]. In determining the conjugate classes of G, one has to solve various equations of type $g^{-1}xg = y$ in G. The main tools for solving such equations are the fundamental properties (1.1) and (1.2) of G, according to which elements of G are written and compared, and the conjugation rules (1.3)–(1.6), (1.7)–(1.9) are also useful. These are consequences of Theorem 2 and related lemmas in [1].

(1.1) Every element x of G is written uniquely in the form $x = uh\omega(w)v$, where $u \in U$, $h \in S$, and $v \in U_w^r$. (We shall call $uh\omega(w)v$ the Bruhat factorization of x.)

(1.2) Every element u of U can be written uniquely in the form $u = \prod x_r(t)$, where the product is taken over the positive roots in increasing (or in any fixed) order.

(1.3) $x_r(t)x_s(u)x_r(t)^{-1} = x_r(u) \prod_{i,j} x_{ir+js}(C_{i,j}; r, s t u^{i}),$

$(i, j > 0, r, s > 0).$

* A part of this work was done while the author was a fellow of the Summer Research Institute of the Canadian Mathematical Congress in 1966.
(1.4) \[h(\chi)x_r(t)h(\chi)^{-1} = x_r(\chi(t)). \]

(1.5) \[\omega_r x_r(t) \omega_r^{-1} = x_{w_r(s)}(\eta_{r,s,t}). \]

(1.6) \[\omega(w)h(\chi)\omega(w)^{-1} = h(\chi'), \quad (\chi'(s) = \chi(w^{-1}(s))). \]

(1.7) Let \(u = \prod x_r(t_r) \) be an element of \(\Pi \), where the product is taken in a fixed order of the positive roots \(r \). If \(\omega(w)^{-1}u\omega(w) \in \Pi \), then \(t_r = 0 \) for all \(r \) such that \(w(r) < 0 \).

(1.8) Let

\[x = x_r(t_r) \prod_{s > r} x_s(t_s) \in \Pi, \quad t_r \neq 0, \]

and

\[x' = x_r(u_r') \prod_{s' > r'} x_s(u_s') \in \Pi, \quad u_r' \neq 0. \]

If \(\omega(w)^{-1}x\omega(w) = x' \), then \(w(r) \geq r' \) and \(w^{-1}(r') \geq r \).

(1.9) If \(g^{-1}h_1g = h_2 \) holds for \(h_1, h_2 \in \mathfrak{H} \) and for some \(g \in G \), then there exists \(w \in W \) such that \(\omega(w)^{-1}h_1\omega(w) = h_2 \).

Let \(G_i \) be the Chevalley group obtained from \(G \) by extending the ground field \(K \) to its extension field \(K_i \) of degree \(i \) in which \(G \) is imbedded in natural way ([1], pp. 45, 46). Denote the Cartan subgroup of \(G_i \) by \(\mathfrak{H}_i \). (Notations that are independent of the ground field, such as \(x_r(\) \), \(h(\) \), \(\varphi_r \), will be used without modification when \(K \) is extended to \(K_i \).) For each \(x \in G_i \) denote by \(x^{(q)} \) the image of \(x \) under the field automorphism of \(G_i \) induced by the automorphism: \(t \to t^q \) of \(K_i \). As a consequence of a theorem of Lang (Corollary of Theorem 1 in [2]), we have the following theorem due to Ree:

Theorem (1.10). Let \(\Gamma(\omega) = \{ x \in G_i \mid x = \omega^{-1}x^{(q)}(\omega) \} \), where \(\omega = \omega(w) \) for some \(w \in W \) and \(i \) is the order of \(\omega \). Then \(\Gamma(\omega) \cong G \).

Indeed, the theorem of Lang implies that \(\omega^{-1} = \zeta^{-1} x^{(q)}(\omega) \) for some \(\zeta \in G_i \). Then the inner automorphism \(y \to \zeta^{-1} y \zeta \) of \(G_i \) gives an isomorphism of \(G \) onto \(\Gamma(\omega) \).

Now, let \(G \) be the group of type \((G_2) \) over \(K \), and assume that \(p \neq 2, 3 \). Then

\[| G | = q^8(q^2 - 1)(q^6 - 1) = q^6(q^2 - 1)^2(q^2 + q + 1)(q^2 - q + 1), \]

\[| \Pi | = q^6, \quad | \mathfrak{H} | = (q - 1)^6. \]
(We use the symbol $|X|$ to denote the order of a group or a group element X).

If p_0 is a prime divisor of G and $p_0 \neq p$, 2, 3, then $p_0 \mid |S_6|$ but $p_0 \not\mid |G_6/||S_6|$, and hence S_6 contains a Sylow p_0-group of G_6. Therefore a p_0-element x of G is conjugate, in G_6, to an element $h \in S_6$. If $x = g^{-1}h_g, g \in S_6$, then $x = x^{(a)} = g^{-1}h_ag^{(a)}$, and h is conjugate to h^a in G_6. Then, from (1.9), $h = \omega^{-1}h^a\omega$ for some $\omega \in \langle \omega(w) \rangle$ and $h \in \Gamma(\omega)$. Let $S_6(\omega) = \langle h \in S_6 \mid h = \omega^{-1}h^a\omega \rangle$, then $S_6(\omega) \subseteq \Gamma(\omega)$ and (1.10) show that G contains a subgroup isomorphic to $S_6(\omega)$. We shall see in Section 2 the existence of $\omega_i \in \langle \omega(w) \rangle$, $i = 2$, 3, 6, such that $|S_6(\omega_i)| = (q + 1)^2$, $|S_6(\omega_3)| = q^2 + q + 1$, and $|S_6(\omega_6)| = q^2 - q + 1$. Let $S_6(\omega_i), i = 2$, 3, 6, be fixed subgroups of G isomorphic to $S_6(\omega_i)$. If $p_0 \mid |G|, p_0 \neq p, 2, 3$, then p_0 divides one and only one of $|S_6|$, $|S(\omega_2)|$, $|S(\omega_3)|$, or $|S(\omega_6)|$. Hence S_6 or one of $S(\omega_i)$, contains a Sylow p_0-group. Therefore every p_0-element of G is conjugate to an element $x \in S_6$ or $S(\omega_i)$, and every p_0-singular element (i.e., an element whose order is divisible by p_0) is conjugate to an element in the centralizer $C(x)$ of $x \in S_6$ or $S(\omega_i)$.

Thus our problem breaks down naturally into two parts: (i) to determine the conjugate classes of p-elements by investigating U; (ii) to determine the conjugate classes of p_0-singular elements ($p_0 \neq p$) by investigating the centralizers of elements of S_6.

The following notation will be used throughout. $[x, y] = x^{-1}y^{-1}xy, x \sim y$: x is conjugate to y, $C(x)$ — the centralizer of x in G, $C_X(x)$ is the centralizer of x in $X, \{x \mid \cdots\}$ is the set of x, ..., $\langle \cdots \rangle$ is the group generated by ..., and $K(x)$ is the conjugate class of G containing x.

2. PROPERTIES OF GROUPS OF TYPE (G_2)

As in [5], let $\Sigma = \{\pm \xi_i, \xi_i - \xi_j \mid 1 \leq i, j \leq 3, i \neq j\}$ (where $\xi_1 + \xi_2 + \xi_3 = 0$) be the root system of type (G_2), and choose $a = \xi_2$, $b = \xi_1 - \xi_2$ for a fundamental system of roots. Thus the set Σ^+ of positive roots arranged in increasing order are: $a = \xi_2, b = \xi_1 - \xi_2, a + b = \xi_1, 2a + b = -\xi_3, 3a + b = \xi_2 - \xi_3, \text{ and } 3a + 2b = \xi_1 - \xi_3$. We shall use both notations for roots. From [5] we quote the following commutator relations:

$$
[x_t(a), x_u(b)] = x_{a+b}(-t^2u) x_{3a+2b}(3tu^2),
[x_t(a), x_{a+b}(u)] = x_{2a+b}(3tu),
[x_t(a), x_{3a+b}(u)] = x_{3a+2b}(2tu),
[x_t(a+b), x_{a+b}(u)] = x_{3a+b}(3tu),
[x_{a+b}(t), x_{a+b}(u)] = 1,
\text{for all other pairs of } r, s \in \Sigma^+.
$$

(2.1)
Let χ be the homomorphism of the additive group generated by the roots into the multiplicative group K^* such that $\chi(\xi_i) = x_i$, $i = 1, 2, 3$. The element $h(\chi)$ of the Cartan subgroup H corresponding to χ will be denoted by $h(x_1, x_2, x_3)$. Then $x_1x_2x_3 = 1$, and

$$h(x_1, x_2, x_3)^{-1}x_{\xi_i-\xi_i}(t)h(x_1, x_2, x_3) = x_{\xi_i-\xi_i}(x_i^{-1}x_it),$$

(2.2)

$$h(x_1, x_2, x_3)^{-1}x_{\xi_3}(t)h(x_1, x_2, x_3) = x_{\xi_3}(x_3^{-1}t).$$

We have

$$\varphi_{\xi_1-\xi_2} \begin{pmatrix} 0 & 0 \\ z & z^{-1} \end{pmatrix} = h(z, z^{-1}, 1), \quad \varphi_{\xi_2} \begin{pmatrix} 0 & 0 \\ z & z^{-1} \end{pmatrix} = h(z^{-1}, z^{-1}, z^0),$$

etc.

The Weyl group W of Σ consists of 6 reflections $w_r : r \rightarrow -r$, $s \rightarrow s$, where s is a root perpendicular to r, and 6 rotations generated by $w_6 : \xi_1 \rightarrow -\xi_2 \rightarrow -\xi_3 \rightarrow \cdots$. The rotations w_6^2 and w_6^4 will be denoted by w_2 and w_8 respectively. Thus $w_2 : r \rightarrow -r$ for all $r \in \Sigma$, and $w_3 : \xi_1 \rightarrow \xi_2 \rightarrow \xi_3$. Let $w_r = \varphi_{\xi_i}(-1, 0), \; r \in \Sigma$, $w_2 = w_{\xi_1-\xi_2}w_{\xi_2}, \; w_3 = w_{\xi_3}w_{\xi_1}w_{\xi_1}^{-1}$ and $w_6 = w_{66}w_{33}$. Then there exists a homomorphism of $\langle w_r \mid r \in \Sigma \rangle$ onto W that sends w_r into w_r, $r \in \Sigma$, and w_i into w_i, $i = 2, 3, 6$, with the kernel $\langle \varphi_{\xi_1}(-1, 0) \mid r \in \Sigma \rangle$.

We shall fix a preimage $\omega(w) \in \langle \omega_r \rangle$ of each $w \in W$ as follows: For the reflections $\omega(w_r) = \omega_r$, where $r = \xi_1, -\xi_2, -\xi_3, -\xi_1, -\xi_2, -\xi_3$, and for the rotations $\omega(w_6^i) = w_6^i$. The action of $\omega(w)$ on $x_r(t)$ and on H are as follows:

$$\omega(w_r)x_r(t)\omega(w_r)^{-1} = x_{\omega_r}(\eta_{r,s}t), \quad (\eta_{r,s} = \pm 1)$$

$$\omega_2^{-1}x_2(t)\omega_2 = x_{-s}(t),$$

$$\omega_3^{-1}x_3(t)\omega_3 = x_{w_3}(t).$$

(The above constants $\eta_{r,s}$ coincide with those given in [5], p. 442.)

$$\omega_{\xi_1-\xi_2}h(x_1, x_2, x_3)\omega_{\xi_1-\xi_1} = h(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}).$$

$$\omega_{\xi_3}^{-1}h(x_1, x_2, x_3)\omega_{\xi_3} = h(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}).$$

$$[[ijk]] = (123), \pi = (ij)],$$

$$\omega_2^{-1}h(x_1, x_2, x_3)\omega_2 = h(x_1^{-1}, x_3^{-1}, x_2^{-1}),$$

$$\omega_3^{-1}h(x_1, x_2, x_3)\omega_3 = h(x_3, x_1, x_2).$$

For each $r \in \Sigma$, denote by Φ_r (or $\Phi_{r,s}$) the image of the group $SL(2, K)$.
[or \(SL(2, K_2)\)] under \(\varphi_r\), and by \(\Phi_s\) the intersection of \(\tilde{\Phi}\) and \(\Phi_r\). The following relations will be used repeatedly:

\[
[\Phi_{\xi_1 - \xi_2}, \Phi_{\xi_3}] = 1,
\]

\[
\Phi_{\xi_1 - \xi_2} \cap \Phi_{\xi_3} = \langle h(-1, -1, 1) \rangle.
\]

(2.5)

The subset \(\{\xi_i - \xi_j \mid 1 \leq i, j \leq 3\}\) of \(\Sigma\) forms a root system of type \((A_3)\) and there exists an isomorphism \(\psi\) of \(SL(3, K)\) into \(G\) such that

\[
\psi \begin{pmatrix} t_1 & t_2 & 0 \\ t_3 & t_4 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \varphi_{\xi_1 - \xi_2} \begin{pmatrix} t_1 & t_2 \\ t_3 & t_4 \end{pmatrix},
\]

\[
\psi \begin{pmatrix} 1 & 0 & 0 \\ 0 & t_1 & t_2 \\ 0 & t_3 & t_4 \end{pmatrix} = \varphi_{\xi_2 - \xi_3} \begin{pmatrix} t_1 & t_2 \\ t_3 & t_4 \end{pmatrix}.
\]

(2.6)

The image under \(\psi\) of \(SL(3, K)\) [or \(SL(3, K_2)\)] in \(G\) (or \(G_2\)) will be denoted by \(\Psi\) (or \(\Psi_2\)). We note that \(\Psi\) is normalized by \(\omega_6\), and that

\[
\omega_2^{-1} \psi(T) \omega_2 = \psi((T^t)^{-1}),
\]

(2.7)

where \(T^t\) is the transpose of \(T\).

Let \(I(\omega) (\omega \in \{\omega(\omega)\}, \mid \omega \mid = i)\) be the subgroup of \(G_i\) as defined in (1.10) and \(\tilde{\Phi}(\omega) = I(\omega) \cap \tilde{\Phi}_i\). Then (2.4)-(2.6) yield the following:

\[
\tilde{\Phi}(\omega_2) = \{h(x_1, x_2, x_3) \mid x_1^{1+q} = 1\},
\]

\[
\tilde{\Phi}(\omega_3) = \{h(x, x^q, x^{2^q}) \mid x^{1+q+q^2} = 1\},
\]

\[
\tilde{\Phi}(\omega_6) = \{h(x, x^{-q}, x^{2^q}) \mid x^{1-q+q^2} = 1\},
\]

\[
\tilde{\Phi}(\omega_{\xi_1 - \xi_2}) = \{h(x, x^q, x^{-q-1}) \mid x^{2^{q-1}} = 1\},
\]

\[
\tilde{\Phi}(\omega_{\xi_2 - \xi_3}) = \{h(x, x^{-q}, x^{2^{q-1}}) \mid x^{2^{2q-1}} = 1\},
\]

(2.7)

\[
\Phi_{r,2} \cap I(\omega_2) = \left\{ \varphi_r \begin{pmatrix} t_1 & t_2 \\ -t_2 & t_1 \end{pmatrix} \right\} \left| t_1^{1+q} + t_2^{1+q} = 1 \right\} \simeq U(2, K_2),
\]

\[
\Psi_2 \cap I(\omega_2) \simeq U(3, K_2).
\]

Here \(U(i, K_2)\) denote the unitary group of degree \(i\) over \(K_2\).
THEOREM (2.8). The group G contains a subgroup of order $(q + 1)^2$ isomorphic to the direct product of two cyclic groups of order $q + 1$, and cyclic subgroups of orders $q^2 - 1$, $q^2 + q + 1$, and $q^2 - q + 1$.

3. CONJUGATE CLASSES OF p-ELEMENTS

We divide the set of elements of U into the following three subsets:

$$S_1 = \{x_a(x_1) x_b(x_2) u_2 \mid x_1, x_2 \in K^*, u_2 \in [U, U]\}$$
$$S_2 = \{x_a(z) u_2 \mid z \in K^*, u_2 \in [U, U]\},$$
$$S_3 = \{x_b(t) u_2 \mid t \in K, u_2 \in [U, U]\}.$$

THEOREM (3.1). (i) Every element of S_1 is conjugate to $x_a(1) x_b(1)$.

(ii) $g^{-1} x g = y, x \in S_1, y \in U, g \in G$, implies that $g \in U\delta$ and $y \in S_1$.

(iii) $|C(x_a(1) x_b(1))| = q^2$.

Proof. (i) We show that every element $x = x_a(x_1) x_b(x_2) u_2$ of S_1 can be transformed into $x_a(1) x_b(1) u'$ by an element of $U\delta$. First, by using (2.2), x can be transformed into $x' = x_a(1) x_b(1) u', u' \in [U, U]$. Let

$$x_1 = x_a(1) x_b(1) x_r(t_r) \prod_{s > r} x_s(t_s),$$

where $r \geq a + b, t_r \neq 0$. Then (2.1) shows that there exists an element x_0 in X_{r-a} (if $r \neq 3a + 2b$) or in X_{r-b} (if $r = 3a + 2b$), such that

$$x_0^{-1} x_1 x_0 = x_a(1) x_b(1) \prod_{s > r} x_s(t'_s).$$

Then by successive applications of this reduction, we can obtain $x' \sim x_a(1) x_b(1)$.

(ii) Let $g = uh\omega(w)v$ be the Bruhat factorization of g, then we have

$$\omega(w)^{-1}(uh)^{-1}xuh\omega(w) = v^{-1}yv.$$

From (2.1) and (2.2), we have $(uh)^{-1}xuh \in S_1$; then (1.7) implies that $\omega(a) > 0$ and $\omega(b) > 0$, and hence $\omega = 1$ and $g \in U\delta$. Consequently, $y \in S_1$.

(iii) Put $x = y = x_a(1) x_b(1)$ in (ii), then we have

$$C(x_a(1) x_b(1)) = C_{U\delta}(x_a(1) x_b(1)).$$
On the other hand, (i) shows that \(U \mathcal{H} \) is acting, by conjugation, transitively on \(S_1 \). Thus

\[
| C_{U \mathcal{H}}(x_a(1) x_b(1)) | = | U \mathcal{H} || S_1 | = q^2.
\]

Theorem (3.2). Every element of \(S_2 \) is conjugate to an element in \(S_3 \).

Proof. A reduction similar to the one used in the proof of (3.1) (i) yields that \(x_a(z) u_2 \sim x_a(1) x_{3a+2b}(t) \) for any \(z \in K^* \), \(u_2 \in [U, U] \), and for some \(t \in K \). Then

\[
\omega_0^{-1} x_a(1) x_{3a+2b}(t) \omega_0 = x_{2u+b}(-1)x_0(-t) \in S_3.
\]

We use the following properties of \(S_3 \) to classify the elements of \(S_3 \) into conjugate classes:

(a) The quotient group \(S = S_3 / \mathfrak{X}_{3a+2b} \) is Abelian and all the elements in a coset \(y x_{3a+2b} \) are conjugate, if \(y \notin \mathfrak{X}_{3a+2b} \).

(b) Both \(\mathfrak{X}_a \) and \(\mathfrak{X}_{-a} \) (hence \(\Phi_a \)) normalize \(S_3 \) and centralize \(\mathfrak{X}_{3a+2b} \).

Property (a), together with the relation \(\omega_0^{-1} \mathfrak{X}_{3a+2b} \omega_0 = \mathfrak{X}_b \), implies that every element of \(S_3 \) is conjugate to an element of the form \(II_i x_{ia+b}(t_i) \). We shall regard \(S \) as a vector space over \(K \), and

\[
x_0(t_0) x_{a+b}(t_1) x_{2a+b}(t_2) x_{3a+2b}(t_3) \mathfrak{X}_{3a+2b}
\]

will be denoted by \((t_0, t_1, t_2, t_3)\). The conjugation by an element \(x \in \mathfrak{X} \Phi_a \) induces a linear transformation in \(S \). The image of \((t_0, t_1, t_2, t_3)\) under this transformation will be denoted by \((t_0, t_1, t_2, t_3)x\). We shall also use the the symbol \(s_1 \sim s_2 \) in case \(s_1, s_2 \in S \), and \(s_2 = s_1 x \) for some \(x \in \mathfrak{X} \Phi_a \). We have

\[
(t_0, t_1, t_2, t_3) h(x_1, x_2, x_3^{-1}x_2^{-1}) = (x_1^{-1}x_2^{-1} t_0, x_1^{-1}t_1, x_1^{-1}x_2^{-1}t_2, x_1^{-1}x_2^{-2}t_3), \quad \text{(3.3)}
\]

\[
(t_0, t_1, t_2, t_3) \omega_a = (-t_0, -t_2, t_1, t_0). \quad \text{(3.4)}
\]

By combining (2.1), (3.3) and (3.4), we obtain

\[
(t_0, t_1, t_2, t_3) \Phi_a \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix} = (t_0, t_1, t_2, t_3) \begin{pmatrix} \alpha^a & \alpha^a \beta & \alpha \beta^a & -\beta^a \\ 3 \alpha^a \gamma & \alpha(\alpha \delta + 2 \beta \gamma) & \beta(2 \alpha \delta + \beta \gamma) & -3 \beta \delta \gamma \\ 3 \alpha \beta \gamma & \gamma(2 \alpha \delta + \beta \gamma) & \delta(\alpha \delta + 2 \beta \gamma) & -3 \beta \delta \gamma \\ -\gamma^a & -\gamma^a \delta & -\gamma \delta \gamma & \delta^a \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix} \quad \text{(3.5)}
\]

We determine the orbits of \(\mathfrak{X} \Phi_a \) in \(S - \{0\} \). By a suitable element of \(\mathfrak{X}_a \), then by \(\omega_a \), if necessary, every element of \(S - \{0\} \) can be transformed into
an element of the forms \((z_0, 0, 0, 0), (z_0, z_2, 0), (z_0, 0, z_3), (z_0, 0, z_2, z_3), \)
or \((0, z_1, 0, 0)\), where \(z_i \in K^*\) for \(0 \leq i \leq 3\). Next, by transforming these elements by an element of \(\mathfrak{H}\), we have

\[
\begin{align*}
(x_0, 0, 0, 0) &\sim (1, 0, 0, 0), \\
(0, z_1, 0, 0) &\sim (0, 1, 0, 0), \\
(z_0, 0, z_2, 0) &\sim (1, 0, 1, 0) \quad \text{or} \quad (1, 0, \lambda, 0)
\end{align*}
\]

where \(\lambda\) is a fixed nonsquare in \(K\). In case \(q \equiv -1 \pmod{3}\),

\[
(z_0, 0, 0, z_3) \sim (1, 0, 0, 1),
\]

and in case \(q \equiv 1 \pmod{3}\),

\[
(z_0, 0, 0, z_3) \sim (1, 0, 0, 1), (1, 0, 0, \mu) \quad \text{or} \quad (1, 0, 0, \mu^{-1}),
\]

where \(\mu\) is a fixed noncube in \(K\). Furthermore, we have

\[
(1, 0, 0, \mu^{-1}) \omega \eta h(\mu^{-1}, -1, -\mu) = (1, 0, 0, \mu),
\]

\[
(1, 0, 0, 1) \varphi_a \left(1 \begin{array}{c}
\frac{1}{2} \\
-1
\end{array} \right) h(1, \frac{1}{2}, 2) = (1, 0, 1, 0).
\]

Unlike the above classifications, a rather involved computation is needed for elements of type \((z_0, 0, z_2, z_3)\). We first transform these elements into elements of the form \((1, 0, -1, z)\) by \(h(-z_2 z_3^{-1}, z_2^{-1}z_3, -z_2^{-1}) \omega \eta \zeta(-1)\), then use the following identities derived from (3.3) and (3.4):

\[
(1, 0, -1, t + t^{-1}) \varphi_a \left(1 \begin{array}{c}
\frac{1}{2} \\
-t
\end{array} \right) h(1, 1 - t^2, (1 - t^2)^{-1}) = (1, 0, 0, t^{-1})
\]

\[
(1, 0, -1, s^3 + s^{-3}) F(s) = (1, 0, 1, 0),
\]

where

\[
F(s) = \varphi_a \left(\begin{array}{c}
\frac{s^2 + s^{-2}}{2(s^2 + s^{-2} + 1)} \\
\frac{s + s^{-1}}{2(s^2 + s^{-2} + 1)}
\end{array} \right)
\]

\[
\times h \left(\begin{array}{c}
\frac{s - s^{-1}}{2} \\
\frac{2(s^2 + s^{-2} + 1)}{s + s^{-1}}, \frac{1}{s^2 + s^{-2} + 1}
\end{array} \right).
\]

Put \((1, 0, -1, z) = (1, 0, -1, t + t^{-1})\), where \(t\) is either an element of \(K^*\).
or an element of \(K_2 \) such that \(t^{1+q} = 1 \). In case \(t \in K^* \), \((1, 0, -1, t + t^{-1})\) can be transformed into \((1, 0, 0, t^{-1})\) by (3.6). In case \(t \in K_2 \) (and cubic roots of \(t \) exist in \(K_2 \)), select \(s \) such that \(s^3 = t \) and \(s^{1+q} = 1 \); then, by using (3.7), we have

\[
(1, 0, -1, t + t^{-1}) F(s) h((s - s^{-1})^{-1}, s - s^{-1}, 1) = ((s - s^{-1})^3, 0, 1, 0) \\
\sim (1, 0, \lambda, 0).
\]

Note that \(F(s) h((s - s^{-1})^{-1}, s - s^{-1}, 1) \) is contained in \(S_3 \); i.e., it can be written with the coefficients belonging to \(K \). Finally, suppose that \(t \in K_2 \), \(t^{1+q} = 1 \) and \(t \) is a noncube in \(K_2 \). This occurs only when \(q = -1 \) (mod 3).

Let \(\nu \) be a fixed element of \(K_2 \) of exponent \(q + 1 \) so that every element \(t \) with the above property can be written as \(\nu^{3j+1} \) for some integer \(j \). We show that

\[
(1, 0, -1, \nu^{3j+1} + \nu^{-3j-1}) \sim (1, 0, -1, \nu + \nu^{-1}) \tag{3.8}
\]

for every integer \(j \). Let \(\theta \) be a cubic root of \(\nu \). Since (3.7) yields

\[
(1, 0, -1, \nu^{3j+1} + \nu^{-3j-1}) F(\theta^{3j+1}) = (1, 0, 1, 0)
\]

over the extension \(K_\theta \) of \(K \), it suffices to show that all the coefficients of \(F(\theta^{3j+1}) F(\theta)^{-1} \) may be taken from \(K \). For the sake of simplicity, put \(\theta^k + \theta^{-k} = c(k\theta) \), \(\theta^k - \theta^{-k} = s(k\theta) \). Then we have

\[
F(\theta^{3j+1}) F(\theta)^{-1} = \phi_n \begin{pmatrix}
\frac{s((9j+3)\theta)}{s((9j+3)\theta)} & \frac{s(6j\theta)}{s(3j\theta)} \\
\frac{s((9j+3)\theta)}{s(3j\theta)} & \frac{s((9j+3)\theta)}{s(3j\theta)}
\end{pmatrix}
\times h \left(1, \frac{s((9j+3)\theta)}{s(3\theta)}, \frac{s(3\theta)}{s((9j+3)\theta)} \right).
\]

Since \(s(k\theta) s(\theta) = c((k + 1)\theta) - c((k - 1)\theta) \), every coefficient on the right can be written in terms of \(c(3k\theta) = \nu^k + \nu^{-k} \in K \). This proves (3.8).

Summarizing the above results, we have:

Theorem (3.9). Every element of \(S_3 - \{1\} \) is conjugate to one of the elements \(x_0(1), x_{a+b}(1), x_0(1) x_{2a+b}(1), x_b(1) x_{2a+b}(\lambda) \), and either \(x_0(1) x_{2a+b}(\mu) \) or \(x_0(1) x_{2a+b}(-1) x_{2a+b}(\zeta) \) according as \(q = 1 \) or \(-1 \) (mod 3). Here \(\lambda \) is a fixed nonsquare in \(K \), \(\mu \) is a fixed noncube in \(K \), and \(\zeta \) is a fixed element of \(K \) such that the polynomial \(x^3 - 3x - \zeta \) is irreducible over \(K \).

Next, we determine the orders of the centralizers of the above elements.
By so doing we shall see that no pair of these elements are conjugate in \(G \). Let

\[
\begin{align*}
y_1 &= x_{3a+b}(1) \\
y_2 &= x_{2a+b}(1) \\
y_3 &= x_{a+b}(1) x_{3a+b}(-1) \\
y_4 &= x_{a+b}(1) x_{3a+b}(-1) \\
y_5 &= x_{b}(1) x_{3a+b}(u) \\
y_6 &= x_{b}(1) x_{2a+b}(-1) x_{3a+b}(\xi).
\end{align*}
\]

We first determine \(C_U(y_i) \) and \(K^*_+ = \{ u^{-1}y_iu \mid u \in U \} \) by conjugating \(y_i \) with all the elements in \(U \). Using the fact that \([X_r, X_s] = 1\) if \(r + s \) is not a root, we have \(C_U(y_i) \supseteq \langle X_r \mid r \in R_i \rangle \), where

\[
\begin{align*}
R_1 &= \Sigma^+, \\
R_2 &= \{ b, 2a + b, 3a + b, 3a + 2b \}, \\
R_3 &= \{ a + b, 3a + b, 3a + 2b \}, \\
R_4 &= \{ a + b, 2a + b, 3a + 2b \}, \\
R_5 &= \{ 2a + b, 3a + b, 3a + 2b \}.
\end{align*}
\]

For each \(i \), write elements \(u \in U \) in the form

\[
u = \prod_{r \in R_i} x_r(t_r) \prod_{s \in \Sigma^+ - R_i} x_s(t_s),
\]

where the product \(\prod x_s(t_s) \) is taken in increasing order of \(s \in \Sigma^+ - R_i \); then compute \(u^{-1}y_iu \) by using (2.1). We have

\[
u^{-1}y_1u = y_1,
\]

\[
u^{-1}y_2u = y_2x_{3a+b}(-3t_a) x_{3a+2b}(-3t_a+b),
\]

\[
u^{-1}y_3u = y_3x_{2a+b}(2\lambda t_a) x_{3a+b}(-3\lambda t_a b) x_{3a+2b}(t_a t_b + 3\lambda t_a t_b),
\]

where \(i = 3, 4 \), \(\lambda_3 = 1 \), \(\lambda_4 = \lambda \), and \(t_i = -1 - 3\lambda_i + 3\lambda_i^2t_a \),

\[
u^{-1}y_4u = x_b(1) x_{a+b}(t_a) x_{2a+b}(t_a^2) x_{3a+b}(\mu - t_a^3) x_{3a+2b}(-t_a^3 + t_a t_b - \mu t_b + t_a + t_b),
\]

\[
u^{-1}y_5u = x_b(1) x_{a+b}(t_a) x_{2a+b}(t_a^2 - 1) x_{3a+b}(-t_a + 3t_a + \xi) x_{3a+2b}(-t_a^2 - \xi t_b + t_a + t_b).
\]

The above identities give us \(K^*_+ = \{ u^{-1}y_iu \} \), and enable us to determine \(C_U(y_i) \).

\[
\begin{align*}
C_U(y_1) &= U, \\
C_U(y_2) &= \langle X_b, X_{2a+b}, X_{3a+b}, X_{3a+2b} \rangle, \\
C_U(y_3) &= \langle X_{a+b}, X_{3a+b}, X_{3a+2b}, X_i \rangle, \\
C_U(y_4) &= \langle X_{a+b}, X_{2a+b}, X_{3a+2b}, X_i \rangle, \\
C_U(y_5) &= \langle X_{2a+b}, X_{3a+b}, X_{3a+2b}, X_i \rangle, \\
C_U(y_6) &= \langle X_{2a+b}, X_{3a+b}, X_{3a+2b}, X_i \rangle.
\end{align*}
\]

(3.11)
where
\[X_a = \langle x_a(-3t) x_{2a+b}(t) | t \in K \rangle, \]
\[X_3 = \langle x_3(-3t) x_{2a+b}(t) | t \in K \rangle, \]
\[X_5 = \langle x_5(t) x_{3a+1b}(t) x_{3a+2b}(t) | t \in K \rangle, \]
\[X_6 = \langle x_5(3t) x_{a+b}(t) | t \in K \rangle. \]

The groups \(X_i \) in (3.11) are one-parameter subgroups in the sense that
\[X_i = \{ x_i(t) (t \in K) \text{ and } q(t, x_i(t_1) x_i(t_2) = q(t, + t), t_1, t_2 \in K \}. \]

We know from (3.10) that \(|K^+| = q^2, i \geq 2 \). Hence
\[|C_{i}(y_i)| = q^4 \quad (i \geq 2). \quad (3.12) \]

We note here that if \(u \notin C_{\U}(y_i) \), then \(uh \notin C(y_i) \) for any \(h \in \F \). Hence
\[C(y_i) \cap \U \F = C_{\U}(y_i) C_{\F}(y_i). \]

By using (1.7) and (1.8), we next show that
\[C(y_i) \subseteq \U \F \cup \U \F \omega(w_a)U_{w_a}^{\omega} \quad (i \neq 2) \quad (3.13) \]

and (1.8) implies that
\[\omega(w)^{-1}(uh)^{-1}y_i(uh) \omega(w) = vy_i v^{-1}, \quad (3.14) \]

and (1.8) implies that
\[w(r_i) \geq r_i, \quad w^{-1}(r_i) \geq r_i. \]

By checking the action of each \(w \in W \) on \(\Sigma \), we can see that the above conditions are satisfied only by the following elements of \(W \) besides 1: \(w_a \) in case \(r_i = r_1 \); \(w_b \) in case \(r_i = r_2 \); \(w_a \) and \(w_{3a+b} \) in case \(r_i = r_3 = r_4 \); \(w_a \), \(w_{2a+b} \) and \(w_{3a+b} \) in case \(r_i = r_5 = r_6 \). Assume that \(w = w_{3a+b} \) satisfies (3.14) for \(y_i = y_3 \) or \(y_4 \) and for any \(u, v \in \U, h \in \F \). Then, by substituting the explicit form of \(u^{-1}y_i u \) in (3.10), we have
\[\omega(w_{3a+b})^{-1}h^{-1}_{x_{a+b}(\lambda_i)} x_{2a+b}(2\lambda_i t_a) x_{3a+b}(-1 - 3\lambda_i t_a^2) \]
\[x_{3a+2b}(...) h \omega(w_{3a+b}) \in \U. \]

On the other hand, \(w_{3a+b}(2a + b) < 0 \) and \(w_{3a+b}(3a + b) < 0 \), and hence
2\lambda t_a = 0 \text{ and } -1 - 3\lambda t_a^2 = 0 \text{ by (1.7). This is not possible. In a similar manner, we can delete } \omega_{xa+b} \text{ and } \omega_{3xa+b} \text{ from the case } r_t - r_a - r_b. \text{ These restrictions on } w \text{ and (1.1) yield (3.13).}

The centralizers of \(y_1 \) and \(y_2 \) are now readily determined. We have \(C_5(y_1) = S_a, C_5(y_2) = S_b \text{ from (2.2), } \omega(w_a) \in C(y_1), \omega(w_b) \in C(y_2) \text{ from } [\Phi_a, \Phi_{3a+2b}] = 1, [\Phi_b, \Phi_{2a+b}] = 1, \text{ and } U_{w_a}^* = x_a \subseteq C(y_1), U_{w_b}^* = x_b \subseteq C(y_2). \text{ Then from (3.12) we can derive,}

\[
C(y_1) = U_S \cup U_S \omega(w_a) x_a = U_{\Phi_a}
\]

\[
|C(y_1)| = q^2(q^2 - 1), (3.15)
\]

\[
C(y_2) = C_u(y_2) S_b \cup C_u(y_2) \omega(w_b) x_b
\]

\[
= \langle X_r \mid r = b, 2a + b, 3a + b, 3a + 2b, -b \rangle, (3.16)
\]

\[
|C(y_2)| = q^4(q^2 - 1).
\]

For \(y_i, i \geq 3 \), we reduce the problem as follows: We know from (3.13) that \(C(y_i) \) [from now on \(y_i \) stands for \(y_3, \ldots, y_6 \) only] is contained in \(U_S \cup U_S \omega(w_a)x_a = U_{\Phi_a}S = S_3\Phi_aS \), where \(S_3 = \langle X_r \mid r \geq b \rangle \) as defined at the beginning of this section. Thus every element of \(C(y_i) \) can be written as \(sx, s \in S_3 \), \(x \in \Phi_aS \). Then \(sx \in C(y_i) \) implies that \(y_i = x^{-1}s^{-1}y_ixs \equiv x^{-1}y_i, x \text{ (mod } x_{3a+2b}) \). In other words, \(x \) must fix the vector \(\tilde{y}_i \in S \) that represents \(y_i x_{3a+2b} \), or (using the notations introduced with \(S \)) \(\tilde{x}_i x = \tilde{y}_i \). We shall first determine the group

\[M_i = \langle x \mid x \in \Phi_aS, \tilde{y}_i x = \tilde{y}_i \rangle, \]

for each \(i \). It will turn out that every element of \(M_i \) actually centralizes \(y_i. \)

Suppose we have shown that \(M_i \subseteq C(y_i) \). Then \(sx \in C(y_i), s \in S_3, x \in \Phi_aS \), if and only if \(x \in M_i \) and \(s \in C(y_i) \cap S_3 = C_u(y_i) \). Moreover, \(S_3 \cap M_i \subseteq S_3 \cap \Phi_aS = 1. \text{ Thus we will have}

\[
C(y_i) = C_u(y_i)M_i, (3.17)
\]

\[
|C(y_i)| = |C_u(y_i)||M_i|. \]

The problem is, therefore, to determine \(M_i \) and to prove that \(M_i \subseteq C(y_i) \).

\(C(y_3), C(y_4). \text{ By using (3.5) and (3.3) we can show that } (0, \lambda_t, 0, -1)x = (0, \lambda_t, 0, -1) \text{ holds only if } x \text{ is } h(1, \epsilon_1, \epsilon_1) \text{ or}

\[
q_i a \left(\frac{-1/2}{-3/2 \lambda_t}, \frac{\epsilon_a(\epsilon_a(-3\lambda_t)^{1/2})}{1/2} \right) h(1, \epsilon_1, \epsilon_1),
\]

where \(\epsilon_1 = \pm 1, \epsilon_a = \pm 1. \)
Thus we have,

\[M_3 = \langle \varphi_a \left(\frac{-1}{2}, \frac{(-3)^{1/2}}{2}, h(1, -1, -1) \right) \rangle, \]

\[M_4 = \langle h(1, -1, -1) \rangle, \]

if \(q \equiv 1 \pmod{3} \), and

\[M_2 = \langle h(1, -1, -1) \rangle, \]

\[M_4 = \langle \varphi_a \left(\frac{-1}{2}, \frac{(-3\lambda)^{1/2}}{2}, h(1, -1, -1) \right) \rangle, \]

if \(q \equiv -1 \pmod{3} \). (2.2) shows that \(h(1, -1, -1) \in C(y_i), i = 3, 4 \). Put

\[\varphi_a \left(\frac{-1}{2}, \frac{(-3\lambda)^{1/2}}{2}, \frac{-1}{2} \right) = f_i. \]

Then \(y_i f_i = y_i \) implies that \(f_i, y_i, f_i = y_i x_{3a+2b}(t) \) for some \(t \in K \). Since \([\Phi_a, \Phi_{3a+2b}] = 1 \), we have \(f_i, y_i f_i = y_i x_{3a+2b}(kt) \). On the other hand, \(f_i^3 = 1 \). Hence \(3t = 0 \) and \(f_i \in C(y_i) \). Thus \(M_i \subseteq C(y_i) \) is proved and we have,

\[
| C(y_3) | = \begin{cases} 6q^4 & \text{if } q \equiv 1 \pmod{3} \\ 2q^4 & \text{if } q \equiv -1 \pmod{3} \end{cases} \quad \text{(3.18)}
\]

\[
| C(y_4) | = \begin{cases} 2q^4 & \text{if } q \equiv 1 \pmod{3} \\ 6q^4 & \text{if } q \equiv -1 \pmod{3} \end{cases} \]

\(C(y_5) \). It is assumed that \(q \equiv 1 \pmod{3} \). Again using (3.3) and (3.5), we can see that an element of \(M_5 \) must be in \(\langle h(\omega, \omega, \omega) \rangle \) or of the form \(\omega(\omega, \omega) h(\mu_0, -\mu_0^2, -\mu_0) \), where \(\omega = \frac{1}{3}(-1 + (-3)^{1/3}) \) and \(\mu_0 \) is a cubic root of \(\mu \). Since \(\omega \in K \), but \(\mu_0 \notin K \), we have

\[M_5 = \langle h(\omega, \omega, \omega) \rangle. \]

Then (2.2) shows that \(M_5 \subseteq C(y_5) \).

\[| C(y_5) | = 3q^4. \quad \text{(3.19)} \]

\(C(y_6) \). In this case the elements of \(M_6 \) are not easily obtained from (3.3) and (3.5). We recall that \(\zeta = \lambda + \lambda^{-1} \), where \(\lambda \) is a noncube in \(K_2 \). Identity (3.6) shows that \(y_6 \sim y_5 \) in \(G_2 \). We know from the above argument on \(M_5 \) that the number of elements \(x \in \Phi_{6过去的2} \), such that \(y_5 x = y_5 \), is still 3. Hence \(| M_6 | \) is 3 or 1. On the other hand, (3.9) shows that

\[(1, 0, -1, \zeta) F(\theta) = (1, 0, -1, \zeta) F(\omega \theta), \]

where \(\theta \in K_6 \) is a cubic root of \(\lambda \).
THE CONJUGATE CLASSES OF CHEVALLEY GROUPS OF TYPE (G_2)

Moreover,

$$F(\omega \theta)F(\theta)^{-1} = q_0 \begin{pmatrix} (\theta^3 - \theta^{-3})^{-1} \begin{pmatrix} \theta^3 \omega^2 - \theta^{-3} \omega^{-2} & -\omega + \omega^{-1} \\ \omega - \omega^{-1} & \theta^3 \omega - \theta^{-3} \omega^{-1} \end{pmatrix}
$$

is defined over K. Hence

$$M_6 = \langle F(\omega \theta)F(\theta)^{-1} \rangle.$$

An argument similar to the one used in the proof of $f_i \in C(y_i), i = 3, 4$, shows that $M_i \subseteq C(y_i)$.

$$|C(y_0)| = 3q^4. \quad (3.21)$$

This completes the determination of the conjugate classes of p-elements. Including the identity class, the group G contains 7 conjugate classes of p-elements.

4. CONJUGATE CLASSES OF p_0-ELEMENTS, $p_0 \mid q^6 - 1$

We shall first determine the centralizers of elements of \mathfrak{H} and $\mathfrak{H}(\omega(\omega))$.

THEOREM (4.1). $C(h(\chi)) = \langle \mathfrak{H}_r, \Phi_r \mid \chi(r) = 1 \rangle$.

Proof. If $\chi(r) = 1$, then $x_r(t)$ and $x_{-r}(t)$ for any $t \in K$ commute with $h(x)$ by (1.4). Hence $\Phi_r = \langle \mathfrak{X}_r, \mathfrak{X}_{-r} \rangle \subseteq C(h(\chi))$, and $\langle \mathfrak{H}_r, \Phi_r \mid \chi(r) = 1 \rangle \subseteq C(h(\chi))$.

Let $h = h(x)$ and suppose that $x \in C(h)$. If $x = u \omega(\omega) v$ is the Bruhat factorization of x, then $(h^{-1}u h') h'^{-1} \omega(\omega)(h^{-1}v h')$, where $h'^{-1} \omega(\omega) = h^{-1} \omega(\omega) h$, is also the Bruhat factorization of $x = h^{-1}x h = x$. Hence $h, \omega(\omega) \in C(h)$. Again the uniqueness of the factorization $u = \prod x_r(r)$, $v = \prod x_r(\chi(r)r)$, $h u h^{-1}$ shows that $t_r = 0$ for all r, such that $\chi(r) \neq 1$. Hence $u \in \langle \mathfrak{X}_r \mid \chi(r) = 1 \rangle$. Similarly, $v \in \langle \mathfrak{X}_r \mid \chi(r) = 1 \rangle$. Now we show that if $\omega(\omega) \in C(h)$, then $\omega(\omega)$ is a product of $\omega_r, r \in \Sigma, \chi(r) = 1$, which will imply that $\omega(\omega) \in \langle \Phi_r \mid \chi(r) = 1 \rangle$. Let $h = h(x_1, x_2, x_3)$. If $\omega(\omega) = \omega_{r'}$, $r \in \Sigma$, then (2.4) shows that $\chi(r) = 1$. If $\omega(\omega) = \omega_{\xi_1}$, then $z_i = \pm 1$ for all i, but $z_2 = 1$ for some k. Then $\chi(\xi_k) = \chi(\xi_k - \xi_3) = 1$, where $(ijk) = (23)$. On the other hand, $\omega_3 = \omega_{\xi_3 - \xi_2} \omega_{\xi_2}$. If $\omega(\omega) = \omega_3$, then $z_1 = z_2 = z_3$, and hence $\chi(\xi_1 - \xi_3) = \chi(\xi_2 - \xi_3) = 1$; but, then $\omega_3 = \omega_{\xi_3 - \xi_2} \omega_{\xi_1 - \xi_2}$. Finally, (2.6) and (2.7) show that $\omega_3 \in C(h(\chi))$ only if $h(\chi) = 1$. This completes the proof of (4.1).
As an immediate consequence of (4.1) we obtain (4.2) below. For the sake of simplicity, we shall denote \(\xi_0\) by \(c\) (and \(\xi_1 - \xi_8\) by \(b\)).

\[
C(h(-1, -1, 1)) = \langle \Phi_c, \Phi_e, s \rangle,
C(h(\omega, \omega, \omega)) = \Psi \quad \text{if } \omega \in K
C(h(z, z^{-1}, 1)) = \langle \Phi_c, s \rangle \quad (z^2 \neq 1), \tag{4.2}
C(h(z^{-1}, z^{-1}, z^2)) = \langle \Phi_c, s \rangle \quad (z^2 \neq 1, z^3 \neq 1),
C(h(z_1, z_2, z_3)) = s \quad (z_i z_j^{-1} \neq 1, 1 \leq i, j \leq 3).
\]

(4.1) and (4.2) remain valid when the ground field \(K\) is replaced by its extension \(K_i\). Let \(\Phi_{s} = \Phi_{r, 2} \cap \Gamma(\omega_2)\). We have

\[
C_{\Gamma(\omega_2)}(h(-1, -1, 1)) = \langle \Phi_h, \Phi_c, s \rangle(\omega_2),
C_{\Gamma(\omega_2)}(h(\omega, \omega, \omega)) = \Psi_2 \cap \Gamma(\omega_2) \simeq U(3, K_2),
C_{\Gamma(\omega_2)}(h(z, z^{-1}, 1)) = \langle \Phi_c, s \rangle(\omega_2) \quad (z^{2+1} = 1, z^2 \neq 1),
C_{\Gamma(\omega_2)}(h(z^{-1}, z^{-1}, z^2)) = \langle \Phi_h, s \rangle(\omega_2) \quad (z^{2+1} = 1, z^2 \neq 1, z^3 \neq 1),
C_{\Gamma(\omega_2)}(h(z_1, z_2, z_3)) = s(\omega_2) \quad (z_i z_j^{-1} \neq 1, 1 \leq i, j \leq 3), \tag{4.3}
C_{\Gamma(\omega_2)}(h(z, z^q, z^{-q-1})) = \delta(\omega_2) \quad (z^{2q-1} = 1, z^{q+1} \neq 1),
C_{\Gamma(\omega_2)}(h(z, z^{-q}, z^{q-1})) = \delta(\omega_2) \quad (z^{2q-1} = 1, z^{q+1} \neq 1),
C_{\Gamma(\omega_2)}(h(z, z^q, z^{q-1})) = \delta(\omega_2) \quad (z^{2q+q+1} = 1, z^3 \neq 1),
C_{\Gamma(\omega_2)}(h(z, z^{-q}, z^{q+1})) = \delta(\omega_2) \quad (z^{2q-q+1} = 1, z^3 \neq 1).
\]

We shall now determine the conjugate classes \(K(x)\) for \(|x| = 2\) and \(|x| = 3\). It is known that \(G\) has one class of involutions ([3], [6]). The proof of (4.4) is given here for the sake of completeness.

Theorem (4.4). Every involution of \(G\) is conjugate to \(h(-1, -1, 1)\).

Proof. If \(q = 1 \pmod{4}\), then the subgroup \(<s, \omega_{\xi_1-\xi_8}, \omega_{\xi_8}> = s \cup s \omega_{\xi_1-\xi_8} \cup s \omega_{\xi_8} \cup s \omega_{\xi_8}\) contains a Sylow 2-group of \(G\), and hence every involution of \(G\) is conjugate to an involution of this subgroup. The subgroup \(s\) contains the 3 involutions \(h(-1, -1, 1) = h_0, h(1, -1, -1) = \omega_3 h_0 \omega_3, h(-1, 1, -1) = \omega_3 h_0 \omega_3^{-1}\). The involutions in \(s \omega_{\xi_1-\xi_8}\) are of the form

\[
h(z, -z^{-1}, -1) \omega_{\xi_1-\xi_8} = \varphi_{\xi_1-\xi_8} \begin{pmatrix} 0 & z_i \\ z_i^{-1} & 0 \end{pmatrix} \varphi_{\xi_8} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.
\]
THE CONJUGATE CLASSES OF CHEVALLEY GROUPS OF TYPE \((G_3)\)

Since

\[
\begin{pmatrix}
0 & z_1 \\
z^{-1} & 0
\end{pmatrix}
\sim
\begin{pmatrix}
i & 0 \\
0 & -i
\end{pmatrix}
\]

in \(SL(2, K)\), the above element is conjugate to

\[
\varphi_{\xi_1 - \xi_2}
\begin{pmatrix}
i & 0 \\
0 & i
\end{pmatrix}
\varphi_{\xi_3}
\begin{pmatrix}
i & 0 \\
0 & -i
\end{pmatrix} = h(1, -1, -1).
\]

We can show similarly that every involution in \(\mathfrak{H}_3\) is conjugate to \(h(1, -1, -1)\). Every element \(x = h(z_1, z_2, z_3)\) of \(\mathfrak{H}_3\) is an involution. Since at least one \(z_i\) is a square in \(K\), an element of \(\langle \omega_3 \rangle\) will transform \(x\) into an element of the form

\[
h(z, z^{-1}, 1)h(z'^{-1}, z'^{-1}, z'^3) = \varphi_{\xi_1 - \xi_2}
\begin{pmatrix}
0 & z_1 \\
-z^{-1} & 0
\end{pmatrix}
\varphi_{\xi_3}
\begin{pmatrix}
0 & z' \\
-z'^{-1} & 0
\end{pmatrix},
\]

\(z, z' \in K\).

This element is also conjugate to \(h(1, -1, -1)\). If \(q \equiv -1 \pmod{4}\), then we can show that every involution of \(\Gamma(\omega_3)\) is conjugate to \(h(-1, -1, 1)\) in \(\Gamma(\omega_3)\) by replacing \(G, \mathfrak{H}_3 \) and \(SL(2, K)\) in the foregoing proof by \(\Gamma(\omega_3), \mathfrak{H}(\omega_2)\) and \(U(2, K_2)\). Note that \(\omega(w) \in \Gamma(\omega_2)\) for all \(w \in W\).

Theorem (4.5). The group \(G\) has 2 conjugate classes of elements of order 3. These classes may be represented by \(h(\omega, \omega^{-1}, 1)\) and \(h(\omega, \omega, \omega)\), if \(q \equiv 1 \pmod{3}\).

Proof. The subgroup \(\langle \mathfrak{H}_3, \omega_2 \rangle = \mathfrak{H}_3 \cup \mathfrak{H}_3 \cup \mathfrak{H}_3^{-1}\) contains a Sylow 3-subgroup of \(G\) in the case \(q \equiv 1 \pmod{3}\). Every element of order 3 in \(\mathfrak{H}_3\) is of the form \(h(z_1, z_2, z_3), z_3^3 = 1\), and a suitable element of \(\langle \omega(\omega) \rangle\) will transform it into \(h(\omega, \omega^{-1}, 1)\) or \(h(\omega, \omega, \omega)\). Every element in \(\mathfrak{H}_3 \omega_3\) or \(\mathfrak{H}_3 \omega_3^{-1}\) is of order 3. (Therefore every 3-element of \(G\) of order \(> 3\) is conjugate to an element in \(\mathfrak{H}_3\) if \(q \equiv 1 \pmod{3}\). This fact will be quoted in the proof of (4.6).) Take an arbitrary element

\[
n = h(z_1, z_2, z_3)\omega_3 = \psi
\begin{pmatrix}
0 & z_1 \\
0 & 0 \\
z_3 & 0
\end{pmatrix}
\]

of \(\mathfrak{H}_3 \omega_3\), and let

\[
S = \frac{1}{\omega - \omega^3}
\begin{pmatrix}
1 & z_1 & z_1 z_3 \\
z_1^{-1} & \omega & \omega^{-1} z_2 \\
z_1^{-2} z_2^{-1} & \omega^{-1} z_2^{-1} & \omega
\end{pmatrix}
\]

Then \(\psi(S)^{-1}x\psi(S) = h(1, \omega, \omega^{-1})\). We can show similarly that every element of \(\mathfrak{H}_3 \omega_3^{-1}\) is conjugate to \(h(1, \omega, \omega^{-1})\).
In the case $q \equiv -1 \pmod{3}$, we can show that every element of order 3 in $\Gamma(\omega_3)$ is conjugate to $h(\omega, \omega^{-1}, 1)$ or $h(\omega, \omega, \omega)$ simply by replacing S by $S(\omega_3)$ in the above proof. Again note that $\psi(s)$ is in $\Gamma(\omega_3)$ if $h(z_1, z_2, z_3) \in S(\omega_3)$.

The conjugate classes $K(x), (|x|, q^3 \pm q + 1) \neq 1, 3$, are readily determined. If $g \in \Gamma(\omega_3)$ and $(|g|, q^3 \pm q + 1) \neq 1, 3$, then g is conjugate to an element in $C(h)$ for some $h \in S(\omega_3), h^3 \neq 1$. But $C(h) = S(\omega_3)$ from (4.3), and g itself is conjugate to an element in $S(\omega_3)$. Now two elements h_1 and h_2 of $S(\omega_3)$ are conjugate in G_3 if and only if $h_2 = \omega_3^{-1}h_1\omega_3^i$ from (1.9), (2.4), and (2.7). On the other hand, $\omega_6 \in \Gamma(\omega_3)$. Furthermore, $h \neq \omega_6^{-1}h\omega_6^i$ if $h \in S(\omega_3), h^3 \neq 1$, and $\omega_6 \neq \omega_3^i$. Therefore the elements of the set $\{h \in S(\omega_3), h^3 \neq 1\}$ are divided into $\frac{1}{3}(q^3 + q - 2)$ conjugate classes of $\Gamma(\omega_3)$ if $q \equiv -1 \pmod{3}$. A similar result is obtained for the elements g of $\Gamma(\omega_3)$ such that $(|g|, q^3 \pm q + 1) \neq 1, 3$.

Next we determine the conjugate classes $K(x), (|x|, q^3 \pm q + 1) \neq 1, 3$. For this purpose we introduce some notation. Let T_0 be a fixed element of $SL(2, K_2)$ such that $T_0^{-1}T_0^\phi = (0, 1)\phi$, and $\xi_2 = \phi_0(T_0) \phi_2(T_0)$; then $\xi_2 \in G_2$ and $\xi_2^{-1}\phi_0^{-1} = \omega_2^{-1}$. Denote by γ the inner automorphism $y \rightarrow \gamma y\gamma^{-1}$ of G_2. Then $\gamma(\Gamma(\omega_3)) = G$, $\gamma(\phi_0) = \phi_0$, and $\gamma(\phi_4) = \phi_4$. Let $\gamma(\mathcal{F}) = \langle \phi_0, \phi_4, \mathcal{F} \rangle$, $h_0 = h(-1, -1, 1)$, $\mathcal{R} = \gamma(\mathcal{F}(\omega_3))$, and $\mathcal{R}_r = \gamma(\mathcal{F}(\omega_3) \cap \mathcal{F}_r)$, $r = b, c$. Let

$$h_1 = \phi_r \begin{pmatrix} \alpha \lambda_1 \\ 0 \lambda_1^{-1} \end{pmatrix}, \quad k_1 = \gamma \left(\phi_r \begin{pmatrix} \alpha \lambda_1 \\ 0 \lambda_2 \end{pmatrix} \right),$$

where λ_1 and λ_2 are elements of K_2 of exponents $2(q - 1)$ and $2(q + 1)$ respectively. Then $h_1k_1, h_2k_2, h_3k_3, h_4k_4 \in \mathcal{F} - \phi_0\mathcal{F}$ and

$$\mathcal{H} = \mathcal{S}_b\mathcal{S}_0 + \mathcal{S}_b\mathcal{S}_c(h_0k_0),$$

$$\mathcal{R} = \mathcal{R}_b\mathcal{R}_r + \mathcal{R}_b\mathcal{R}_c(h_0k_c),$$

$$\langle h_1\gamma^{-1}(h_0) \rangle = \langle \phi_s(T_0)^{-1}(h_0k_0) \phi_s(T_0) \rangle = \mathcal{S}(\omega_3),$$

where $(r, s) = (b, c)$ or (c, b). Let $\mathcal{R}(\omega_3) = \langle (h_0k_c) \rangle$ and $\mathcal{R}(\omega_0) = \langle h_0k_c \rangle$.

Lemma (4.6). (i) If $x \in G, (|x|, q^3 \pm 1) \neq 1, 3$, then x is conjugate to an element in \mathcal{H}.

(ii) If $x \in G, (|x|, q^3 \pm 1) = (|x|, q^4 \pm q^2 + 1) = 3, |x| \neq 3$, then $|x| = 3p$ and x is conjugate to an element in \mathcal{F} or \mathcal{R} or $\mathcal{R}(\omega_2)$.

Proof. (i) If $|x|$ is even, then a power of x is an involution and (4.4), (4.2) yield the desired result. If $|x|$ is divisible by 3^p, then a power y of x is of order 3^p and y is conjugate to an element h in S or R, as we have noted in the proof of (4.5). Hence x is conjugate to an element in $C(h), h^3 \neq 1, h \in S$,
or \mathfrak{R}. If $|x|$ is divisible by a prime $p_0 \neq 2, 3$, then either \mathfrak{S} or \mathfrak{R} contains a Sylow p_0-group of G, and again x is conjugate to an element in $C(h), h^3 \neq 1, h \in \mathfrak{S}$, or \mathfrak{R}. In the case $h \in \mathfrak{S}$, (4.2) yields the desired result. In the case $h \in \mathfrak{R}$, (4.4) shows that $\eta^{-1}(x)$ is conjugate to an element in $\eta(\langle \Phi^+_h, \Phi^+_h, \mathfrak{S}(\omega_3) \rangle) = \mathfrak{R}$.

(ii) The conditions on $|x|$ imply that $|x| = 3p^e$ for some $e \geq 1$. Then (4.5), (4.2), and (4.4) yield (ii).

Lemma (4.7). Every element of \mathfrak{S} is conjugate to an element in one of the following subgroups:

$$\mathfrak{S}, \mathfrak{R}, \mathfrak{A}(\omega_3), \mathfrak{A}(\omega_3), \mathfrak{S}_b \mathfrak{S}_c, \mathfrak{S}_c \mathfrak{S}_h, \mathfrak{R}_h \mathfrak{A}_c, \mathfrak{A}_c \mathfrak{X}_b, \langle h_0, X_b X_c \rangle.$$

Proof. For any $x_r \in \Phi_r$, we can find $g_r \in \Phi_r$ such that $y_r = g_r x_r g_r \in \mathfrak{S}_r$, \mathfrak{R}_r, or $\langle h_0, X_r \rangle$. Hence, for any element $x_b x_c$ in $\Phi_b \Phi_c$, we have $(g_b g_c)^{-1} x_b x_c (g_b g_c) = y_b y_c$, as required. If $x \in \mathfrak{S} - \Phi_b \Phi_c$, then $x_2 \in \Phi_b \Phi_c$ and we have $g^{-1} x_2^g = y_b y_c$ for some $g \in \Phi_b \Phi_c$, $y_r \in \mathfrak{S}_r$, \mathfrak{R}_r, or $\langle h_0, X_r \rangle$. We solve $(g^{-1} x_2^g) = y_b y_c$ for $g^{-1} x_2^g$. Let $x = x_b x_c (h_b h_c), x_r \in \Phi_r$, and $y_r = g^{-1} x_r g$. Then $y_r \in \Phi_r h_r = \Phi_r h_r$ and $y_r^2 \in \Phi_r$. From $(g^{-1} x_2^g) = y_b y_c$ and $\Phi_b \cap \Phi_c = \langle h_0 \rangle$, we obtain either $y_b^2 = y_b, y_c^2 = y_c$, or $y_b^2 = h_0 y_b, y_c^2 = h_0 y_c$; in any case, $y_r^2 \in \mathfrak{S}_r, \mathfrak{R}_r$, or $\langle h_0, X_r \rangle$. Then a simple computation of 2×2 matrices shows that $y_r^4 = 1$. If $y_r^4 = 1$, then $g_r^{-1} y_r g_r \in \mathfrak{S}_r h_r$ or $\mathfrak{R}_r h_r$ for some $g_r \in \Phi_r$. In the case $q = 1 (\mod 4)$, let $y_r^* = \varphi_r(T)$; then T must be of the form

$$\begin{pmatrix} \alpha \lambda_1 & \beta \lambda_1 \\ \gamma \lambda_1 & -\alpha \lambda_1 \end{pmatrix}, \quad \alpha, \beta, \gamma \in K.$$

If $\beta \neq 0$, then

$$T' = \begin{pmatrix} 1 & 0 \\ -\alpha \beta^{-1} & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} \beta \lambda_1 i & 1 \\ -\frac{1}{2} (\beta \lambda_1 i)^{-1} \end{pmatrix} \in SL(2, K)$$

transforms T into $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Similarly, we can find an element in $SL(2, K)$ that transforms T into $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ if $\gamma \neq 0$; if $\beta = \gamma = 0$, then $T = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$. Thus y_r^* is transformed into

$$\varphi_r \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \varphi_r \begin{pmatrix} \lambda_r^{-1} i & 0 \\ 0 & -\lambda_r i \end{pmatrix} \varphi_r \begin{pmatrix} \lambda_r & 0 \\ 0 & \lambda_r^{-1} \end{pmatrix} \in \mathfrak{S}_r h_r$$

by an element in Φ_r. In the case $q = 1 (\mod 4)$, let $\eta^{-1}(y_r^*) = \varphi_r(U)$; then

$$U = \begin{pmatrix} \alpha \lambda_2 & \beta \lambda_2^{-1} \\ (\beta \lambda_2^{-1} \gamma) & -\alpha \lambda_2 \end{pmatrix}, \quad \alpha^{1+q} + \beta^{1+q} = 1.$$
Let

\[
U' = \begin{pmatrix}
\beta\lambda_2^{-1} & \alpha\lambda_2 - i \\
-\alpha\lambda_2 + i & (\beta\lambda_2^{-1})^0
\end{pmatrix}
\]

where \(\delta \) is an element of \(K_2 \) such that \(\delta^{-(1+a)} = -2(1 + 2\alpha\lambda_2i) \), the determinant of the first matrix. Then \(\varphi_r(U') \in \Phi_r^* \), and it transforms \(\varphi_r(U) \) into an element in \(\gamma^{-1}(\mathcal{H}_r \mathcal{K}_r) \). Therefore \(\gamma_r \) is transformed into an element in \(\mathcal{H}_r \mathcal{K}_r \) by an element in \(\Phi_r \). We have thus shown that every element of \(\mathcal{G} - \Phi_0 \mathcal{G}_c \) is conjugate to an element in \(\mathcal{H}, \mathcal{R}, \mathcal{R}(\omega_h) \), or \(\mathcal{R}(\omega_e) \) and the proof of (4.7) is completed.

The conjugate classes \(\mathcal{R}(x), x \in \mathcal{S}, \mathcal{R}, \mathcal{R}(\omega_h), \mathcal{R}(\omega_e) \) are readily determined. All the elements in the above subgroups are conjugate in \(G_2 \) to an element in \(\mathcal{S}_2 \). From (1.9) we know that an element in one of the subsets \(\mathcal{S} - \langle h_0 \rangle \), \(\mathcal{R} - \langle h_0 \rangle \), \(\mathcal{R}(\omega_h) - (\mathcal{R}_b \cup \mathcal{H}_c) \), \(\mathcal{R}(\omega_e) - (\mathcal{R}_b \cup \mathcal{H}_c) \), cannot be conjugate in \(G_2 \) (a fortiori, cannot be so in \(G \)) to an element in another one of these subsets. Again from (1.9) we know that two elements of \(\mathcal{S} \) (or \(\mathcal{R} \)) are conjugate to each other if and only if one can be transformed to the other by some \(\omega(w) \) [or \(\eta(\omega(w)) \)]. We can also see that two elements of \(\mathcal{R}(\omega_h) \) [or \(\mathcal{R}(\omega_e) \)] are conjugate to each other if and only if one can be transformed to the other by \(1, \eta(\omega_h), \omega_e, \) or \(\eta(\omega_e) \omega_e \) [or by \(1, \omega_h, \eta(\omega_e), \) or \(\omega_e \eta(\omega_e) \)].

It remains to determine the conjugate classes of the \(p \)-singular elements. From (4.6) and (4.7) we know that if \(|x| = mp \), \(m \neq 1, e \neq 0 \), then \(e = 1 \) and \(m \) is a divisor of \(q - 1 \) or \(q + 1 \). Furthermore, if \(|x| \neq 2p, 3p \), then \(x \) is conjugate to an element in \(\mathcal{S}_0 \mathcal{X}_p, \mathcal{S}_c \mathcal{X}_p, \mathcal{R}_b \mathcal{X}_p, \) or \(\mathcal{R}_c \mathcal{X}_p \). An element \(h, \alpha_x(t) \in \mathcal{S}_r \mathcal{X}_s \), \(t \neq 0 \), can be transformed into \(h, \alpha_x(1) \) by an element of \(\mathcal{S} \), and an element \(k, \alpha_x(t) \in \mathcal{R}_r \mathcal{X}_s \) can be transformed into \(k, \alpha_x(1) \) by an element in \(\mathcal{R}(\omega_e) \). Then, by using (1.9) and the fact that \(x_1 \sim x_2 \) implies \(x_1^p \sim x_2^p \), we can see that a pair of elements \(x_1 \) and \(x_2 \), \(x_1^{2p} \neq 1, x_2^{2p} \neq 1 \), taken from the union of the subsets \(\mathcal{S}_0 x_0(1), \mathcal{S}_c x_0(1), \mathcal{R}_b x_0(1) \) and \(\mathcal{R}_c x_0(1) \), are conjugate to each other if and only if they belong to the same subset and \(x_1^p = x_2^p \). Using this fact, we can find the number of conjugate classes \(\mathcal{R}(x), |x| = mp \), \(m \neq 1, 2, 3 \). For the centralizers, we have

\[
C(h_r, \alpha_x(1)) = \mathcal{S}_r \mathcal{X}_s \quad (h_r \in \mathcal{S}_r, h_r^2 \neq 1, h_r^3 \neq 1)
\]
\[
C(k_r, \alpha_x(1)) = \mathcal{R}_r \mathcal{X}_s \quad (k_r \in \mathcal{R}_r, k_r^2 \neq 1, k_r^3 \neq 1)
\]

\((r = b, c \quad \text{and} \quad s = c, b) \)

which can be shown as follows:

\[
C(h_r x_0(1)) \subseteq C(h_r) \cap C(x_0(1)) = (\Phi_c \mathcal{H}_r \cup \Phi_s \mathcal{H}_r(h_r \mathcal{H}_r)) \cap C(x_0(1)).
\]
Take an arbitrary element $g = g \in \Phi_s$, in the coset $\Phi_s \subseteq \ker(h, h_s)$. Then $g^{-1}x_s(1)g = g^{-1}x_s(\lambda)g_s$, where λ is a nonsquare in K; thus $g^{-1}x_s(\lambda)g_s \neq x_s(1)$ for any $g_s \in \Phi_s$. Hence no element of this coset centralizes $x_s(1)$ and we have

$$C(h, x_s(1)) \subseteq \Phi_s \subseteq \ker(h, h_s)$$

Similarly,

$$C(h, x_s(1)) \subseteq (\Phi_s \cup \Phi_s(h, h_s)) \subseteq \ker(h, h_s)$$

If $x \in G$, $|x| = 2p$, then x is conjugate to one of elements $h_o x_s(1)$, $h_o x_s(1)$, $h_o x_s(1)$, or $h_o x_s(1)$, where λ is a nonsquare in K.

Finally, the conjugate classes $K(x)$, $|x| = 3p$. In the case $q \equiv 1 \pmod{3}$, $x^p \sim h(m, \omega^{-1}, 1)$ or $h(\omega, m, \omega)$, and accordingly $x \sim h(\omega, \omega^{-1}, 1)$ or $x \sim h(\omega, \omega, \omega)$, where γ is a p-element of Ψ. The subgroup Ψ, being isomorphic to $SL(3, K)$, has 4 conjugate classes of p-elements which may be represented by $x_{e_1-e_2(1)}$, $x_{e_1-e_2(1)}$, $x_{e_1-e_2(1)}$, $x_{e_1-e_2(1)}$ or $x_{e_1-e_2(1)}$, where μ is a noncube in K. Hence y is conjugate to one of these 4 elements and we can see that G has 5 conjugate classes of elements of order $3p$. Similarly, in the case $q \equiv -1 \pmod{3}$, every element of order $3p$ of $\Omega(\omega_2)$ is conjugate to $h(\omega, \omega^{-1}, 1)$ or $h(\omega, \omega, \omega)$, where $y_i \sim \Phi_{\epsilon i} y_i \in \Phi_{\epsilon i} y_i$, and y_2, \ldots, y_5 are representatives of 4 conjugate classes of p-elements of $\Psi_2 \cap \Omega(\omega_2) \simeq U(3, K)$.

This completes the determination of the conjugate classes of p-singular elements for all $p_0 | q^3 - 1$. The results of Section 4 are summarized in the following table. Each entry S of the first column denotes a set of elements in $\Phi_{\epsilon i} y_i$ for some ω. Every p_0-singular element of G is conjugate to an element in one and only one of the sets $\Phi_{\epsilon i} y_i$, where $\Phi_{\epsilon i}$ is an isomorphism of $\Omega(\omega)$ onto G such that $\Phi_{\epsilon i}(S) \subseteq G$. The second column denotes the number of conjugate classes of G into which the elements of the set $\Phi_{\epsilon i}(S)$ are divided. The third column denotes the order of the centralizer of an element in $\Phi_{\epsilon i}(S)$. $\epsilon = 1$ or -1 according as $q \equiv 1$ or $-1 \pmod{3}$.

<table>
<thead>
<tr>
<th>$h(-1, -1, 1)$</th>
<th>1</th>
<th>$q^2(q^2 - 1)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(\omega, \omega, \omega)$</td>
<td>1</td>
<td>$q^2(q^2 - 1)(q^2 + \epsilon)$</td>
</tr>
<tr>
<td>$h(\omega, \omega^{-1}, 1)$</td>
<td>$\frac{1}{2}(q - 3)$</td>
<td>$q(q - 1)^2(q + 1)$</td>
</tr>
<tr>
<td>$z^2 = 1$, $z^2 \neq 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$h(\omega, \omega^{-1}, z^2)$</td>
<td>$\frac{1}{2}(q - 4 - \epsilon)$</td>
<td>$q(q - 1)^2(q + 1)$</td>
</tr>
<tr>
<td>$z^2 = 1$, $z^2 \neq 1$, $z^3 \neq 1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[h(x, x, x, x) = \frac{1}{12} (q^2 - 8q + 17 + 2\epsilon) \quad (g - 1)^2 \]

\[z_t^{q-1} = 1, \quad x_t x_j^{q-1} \neq 1 \]

\[h(x, x, x, 1) = \frac{1}{2}(q - 1) \quad q(g - 1)(g + 1)^2 \]

\[z_t^{q+1} = 1, \quad x^2 \neq 1 \]

\[h(x, x, x^2, 1) = \frac{1}{2}(q - 2 + \epsilon) \quad q(g - 1)(g + 1)^2 \]

\[x_t^{q+1} = 1, \quad x^2 \neq 1, \quad x^3 \neq 1 \]

\[h(x, x, x, 1) = \frac{1}{12} (q^2 - 4q + 5 - 2\epsilon) \quad (g + 1)^2 \]

\[z_t^{q+1} = 1, \quad x_t x_j^{q+1} \neq 1 \]

\[h(x, x^2, x^{q-1}) = \frac{1}{2}(q - 1)^2 \quad q^3 - 1 \]

\[x_t^{q+1} = 1, \quad x^2 \neq 1 \]

\[h(x, x^{q-1}, x^{q+1}) = \frac{1}{2}(q^2 + q - 1 - \epsilon) \quad q^2 + q + 1 \]

\[x_t^{1+q+q^2} = 1, \quad x^3 \neq 1 \]

\[h(x, x^{q-1}, x^{q+1}) = \frac{1}{2}(q^2 - q - 1 + \epsilon) \quad q^3 - q + 1 \]

\[x_t^{1+q+q^2} = 1, \quad x^3 \neq 1 \]

\[h(-1, -1, 1) \equiv (1) \quad q^2(q^2 - 1) \]

\[h(-1, -1, 1) \equiv (1) \quad q^2(q^2 - 1) \]

\[h(-1, -1, 1) \equiv (1) \quad 2q^2 \]

\[h(-1, -1, 1) \equiv (1) \quad 2q^2 \]

\[h(\omega, \omega, \omega) \equiv \Psi^* \quad q^2(q - \epsilon) \]

\[y \in \Phi_0 \quad \text{or} \quad \Psi^* \]

\[h(\omega, \omega, \omega) \equiv \Psi^* \quad 3q^2 \]

\[y \in \Psi \quad \text{or} \quad \Psi_2 \cap J(\omega_2) \]

\[h(x, x, x, 1) \equiv (1) \quad \frac{1}{2}(q - 3) \quad q(g - 1) \]

\[z_t^{q-1} = 1, \quad x^2 \neq 1 \]

\[h(x, x, x, 1) \equiv (1) \quad \frac{1}{2}(q - 4 - \epsilon) \quad q(g - 1) \]

\[x_t^{q-1} = 1, \quad x^2 \neq 1, \quad x^3 \neq 1 \]

\[h(x, x, x, 1) \equiv (1) \quad \frac{1}{2}(q - 1) \quad q(g - 1) \]

\[x_t^{q+1} = 1, \quad x^2 \neq 1 \]

\[h(x, x, 1) \equiv (1) \quad \frac{1}{2}(q - 2 + \epsilon) \quad q(g + 1) \]

\[x_t^{q+1} = 1, \quad x^2 \neq 1, \quad x^3 \neq 1 \]

\[h(x, x, x, 1) \equiv (1) \quad \frac{1}{2}(q - 1) \quad q(g + 1) \]

\[x_t^{q+1} = 1, \quad x^2 \neq 1 \]

\[h(x, x, x, 1) \equiv (1) \quad \frac{1}{2}(q - 2 + \epsilon) \quad q(g + 1) \]

\[x_t^{q+1} = 1, \quad x^2 \neq 1, \quad x^3 \neq 1 \]
I am indebted to Professor Rimhak Ree for bringing the result of S. Lang to my attention. Professor Ree has obtained the character table of the groups of type (G_2) for the cases $q \equiv 1 \pmod{6}$.

REFERENCES