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We consider the Palatini formalism of the Born–Infeld gravity. In the Palatini formalism, the propagating 
mode is only graviton, whose situation is different from that in the metric formalism. We discuss the 
FRW cosmology by using an effective potential. Especially we consider the condition that the bouncing 
could occur. We also give some speculations about the black hole formation
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1. Introduction

In recent years, many kinds of modified gravity theories have 
been proposed and investigated with several motivations. First mo-
tivation could be the quantum gravity. We have not obtained any 
consistent quantum theory of the gravity. Although Einstein’s gen-
eral relativity is a successful theory of the classical theory of grav-
ity, we cannot obtain the quantum theory based on the general 
relativity due to the non-renormalizability. Motivated by the quan-
tum gravity, many kinds of modification of the Einstein gravity 
have been proposed and investigated. On the other hand, moti-
vated by the accelerating expansion of the present universe, we 
are considering many kinds of gravity theories beyond the Einstein 
gravity (for review, see [1]). As a model of such modified gravities, 
in this paper, we consider the Born–Infeld gravity [2] in the Pala-
tini formalism [3]. The Born–Infeld type theory was first proposed 
as a non-linear model of electro-magnetics [4]. In the Maxwell 
electro-magnetics, the action of the electromagnetic field has no 
dimensional parameter but in the Born–Infeld model, a scale can 
be introduced. Because the action includes the square root, there 
appears the upper limit in the strength given by the scale, which 
may have suggested that there might not appear the divergence 
in the quantum field theory different from the standard quantum 
electro-dynamics. The Born–Infeld type deformation was also con-
sidered in gravity theory [2] and it has been expected that the 
quantum theory of the Born–Infeld gravity might be finite and 
there might not appear any divergence because there could be an 
upper limit in the magnitude of the curvature. By including the 
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idea by Eddington [5], the Born–Infeld gravity has been formulated 
in the Palatini formalism, where the connections are variables in-
dependent of the metric tensor. The corresponding action is given 
by

S = 1

κ2b

∫
d4x

{√∣∣det
(

gμν + bRμν

)∣∣ −
√∣∣det

(
gμν

)∣∣}
+ Smatter . (1)

Here κ is the gravitational constant corresponding to the Einstein 
gravity and we introduce a new parameter b, which has the di-
mension of the square of the length. In Eq. (1), Smatter is an action 
for the matters and Rμν is the Ricci tensor assumed to be sym-
metric and defined by Rμν = −�

ρ
μρ,ν + �

ρ
μν,ρ − �

η
μρ�

ρ
νη + �

η
μν�

ρ
ρη

in terms of the connection �ρ
μν . We regard the connection �ρ

μν as
a variable independent of the metric gμν . The theory described by 
the above action (1) is often called the Eddington inspired Born–
Infeld gravity. By the variations of the action with respect to the 
metric gμν and the connection �λ

μν , we obtain the following equa-
tions, respectively,

0 = √−P
(

P−1
)μν − √−g gμν − bκ2√−gT μν , (2)

0 = ∇λ

(√−P
(

P−1
)μν)

= 0 . (3)

Here T μν is the energy–momentum tensor of the matters and Pμν

is defined by

Pμν ≡ gμν + bRμν , (4)

and P−1 is the inverse of the matrix Pμν , that is, 
(

P−1
)μρ

Pρν =
δ
μ
ν . Then P−1 can be expressed by the infinite power series of 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Rμν , 
(

P−1
)μν = gμν − bgμρ Rρσ gσν + b2 gμρ Rρσ gστ Rτη gην − · · · . 

On the other hand Pμν is defined by Pμν ≡ gμρ Pρσ gσν = gμν +
bRμν .

In the metric formalism of the Born–Infeld gravity, theory in-
cludes a ghost in general and we need to tune the action by adding 
the higher derivative terms so that the ghost does not appear [2]. 
In the Palatini formalism, however, there does not appear ghost [3]
and the only propagating mode is massless graviton. Then in the 
leading order, the standard Newton law can be reproduced al-
though there also appear some corrections [6]. We should note 
that the Born–Infeld gravity in the Palatini formalism is equivalent 
to the Einstein gravity in the vacuum although they are different 
from each other when the matter exists.

The cosmology by the Born–Infeld gravity in the Palatini for-
malism has been considered in [6,7] by including matters. The 
development of the universe in the Born–Infeld gravity in the Pala-
tini formalism shows the behavior which is different from that in 
the Einstein gravity and there often appears the bouncing universe, 
where the shrinking universe turns to expand. We claim, however, 
that the treatments in the previous papers were not complete and 
we re-examine the cosmology and we show that there anyway ap-
pears the bouncing universe as a solution.

Even in the Palatini–Born–Infeld gravity, the Schwarzschild 
space–time and the Kerr black hole space–time are exact solutions. 
Because these solutions are vacuum solution, they are equivalent 
to the solutions in the Einstein gravity and therefore, for example, 
the expressions of the black hole entropies are identical with those 
in the Einstein gravity (in case of the metric formalism, see [8]).

In this paper, we investigate the FRW cosmology. We should 
note that in the previous works, there were too strong constraints 
on the variables but we consider more general treatment in this 
paper. We consider the cosmology by including dust as a mat-
ter and show that the bouncing universe can be realized, whose 
behavior is, in some sense, similar to that in the loop quantum 
gravity [9–11]. We also give some speculations about the formation 
of the black hole by considering the collapse of the sphere of the 
dust. Because the pressure of the dust vanishes, we can regard the 
inside of the sphere as the FRW universe. Then by using the results 
in the FRW universe, we show that the small black hole could not 
be formed by the bouncing although the large black holes might 
be created. We should note, however, we do not use the junction 
conditions in the Born–Infeld gravity in the Palatini formalism but 
we use those in the Einstein gravity. This is because the junction 
conditions in the Born–Infeld gravity in the Palatini formalism are 
very complicated and, to be honest, we have not found the full ex-
pressions of the junction conditions. We will discuss this point in 
more detail later. Therefore the analyses in this paper could not be 
justified in some cases but by using the obtained results, we can 
give some realistic speculations.

2. FRW universe with dust

We consider the FRW space–time with flat spacial part,

ds2 = −dt2 + a(t)2
∑

i=1,2,3

(
dxi

)2
, (5)

and assume that the non-vanishing components of the connection 
are given by

�t
tt = A(t) , �t

i j = a(t)2 B(t)δi j , �i
jt = �i

t j = C(t)δi
j . (6)

In the Einstein gravity, the metric (6) implies A = 0, B = C = H ≡
ȧ/a.

In the previous works [6,7], the FRW metric was assumed for 
Pμν in Eq. (4),
ds2
P =

4∑
μ,ν=0

Pμνdxμdxν = −dt2 + ã(t)2
∑

i=1,2,3

(
dxi

)2
, (7)

in [6] and

ds2
P =

4∑
μ,ν=0

Pμνdxμdxν = −b̃(t)2dt2 + ã(t)2
∑

i=1,2,3

(
dxi

)2
, (8)

in [7] and the connection �λ
μν was given by Pμν :

�λ
μν = 1

2

(
P−1

)λρ (
∂μ Pρν + ∂ν Pμρ − ∂ρ Pμν

)
, (9)

which, however, reduces the degrees of freedom in �λ
μν . We 

should note that Pμν is not the fundamental variable in the Pala-
tini formalism but �λ

μν is the fundamental one. As we find in 
Eq. (6), even if we assume homogeneous and isotropic universe, 
there appear three undetermined variables A, B , and C but in 
Eq. (7), only one undetermined variable ã appears and in Eq. (9), 
two variables b̃ and ã. Therefore the assumption (7) or (9) may 
conflict with the equations of the Born–Infeld gravity in the Pala-
tini formalism. In fact, if we assume Eq. (7), we find A = 0 and 
B = C , which conflict with the analysis given later in this paper. 
Even if we assume Eq. (8), there occur conflictions.1 Although there 
might be cases that the assumption (7) or (8) could be justified, we 
do not know any a priori reason. Therefore we like to re-investigate 
the cosmology under the assumptions (5) and (6).

We now assume that the matter is given by the dust whose 
pressure p vanishes and the energy density is denoted by ρ . One 
of the reasons why we consider the dust as the matter is for 
the simplicity although it is not so difficult if we consider gen-
eral perfect fluid as the matter. Another reason is because we 
like to compare the black hole formation in this model with the 
Oppenheimer–Snyder collapse in the general relativity [14], where 
the inside of the collapsing star is described by the FRW universe 
filled with dust. Because the dust evolves in the space–time whose 
metric is given by gμν , we obtain the conservation law identical 
with that in the Einstein gravity, ∇(g)μTμν = 0. Here ∇(g)μ is the 
covariant derivative where the connection is given in terms of gμν

as in the standard Einstein gravity but not by Pμν . Then in the 
FRW universe (5), we obtain the standard conservation law

ρ̇ + 3Hp = 0 , (10)

and we find

ρ = ρ0a−3 . (11)

Then we obtain the following equations (the derivations of the fol-
lowing equations are given in Appendix A):

A = C − H = −3

4
bκ2 Hρ

(
1 + bκ2ρ

)−1
, (12)

B = H + bκ2

4
Hρ , (13)

C = H − 3

4
bκ2 Hρ

(
1 + bκ2ρ

)−1
, (14)

bκ2ρ =
{

1 + b

(
Ḣ + 3H2 + bκ2

2
Ḣρ

)}2

− 1 . (15)

1 Even in case of Eq. (8), we find A = ˙̃b/b̃, B = ˙̃a/ab2, C = ˙̃a/a, which satisfy the 
relation 2A = Ċ/C − Ḃ/B . If we use this relation for Eqs. (12), (13), and (14) with 
Eq. (10), we obtain

bκ2ρ = −8 ,

which is inconsistent. Furthermore we should note that the difference between 
Eqs. (7) and (9) is nothing but the parametrization of the time coordinate.
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When b < 0, Eq. (15) tells that there is an upper limit ρu for the 
energy density ρ:

ρu = − 1

bκ2
. (16)

Because H = ȧ/a and Ḣ = ä/a − ȧ2/a2, by using Eq. (11), Eq. (15)
can be rewritten as

bκ2ρ0a−3 =
{

1 + b

(
ä

a
+ 2

(
ȧ

a

)2

+ bκ2

4

(
ä

a
−

(
ȧ

a

)2
)

ρ0a−3

)}2

− 1 , (17)

which is a single equation with respect to the scale factor a. If we 
use the e-foldings N defined by a = eN , we obtain

bκ2ρ0e−3N =
{

1 + b

(
N̈ + 3Ṅ2 + bκ2

4
N̈ρ0e−3N

)}2

− 1 , (18)

or

N̈ = − 3Ṅ2

1 + bκ2ρ0
4 e−3N

− 1 − √
1 + bκ2ρ0e−3N

b
(

1 + bκ2ρ0
4 e−3N

) . (19)

By an analogy with the Newton equation in the classical mechan-
ics, the first term in the r.h.s. could be an analogue of the drag 
force in the fluid when the Reynolds number is large and the sec-
ond term could be a force by a potential, which we denote by F (N)

as

F (N) ≡ −1 − √
1 + bκ2ρ0e−3N

b
(

1 + bκ2ρ0
4 e−3N

) . (20)

We should note that the potential force F (N) is positive, which 
does not depend on the sign of the parameter b and therefore the 
force acts so that the e-foldings N increase. Then even if the uni-
verse is shrinking, it may turn to expand. Because

F ′(N) ≡
3κ2ρ0e−3N

(
1 − bκ2ρ0

2 e−3N + √
1 + bκ2ρ0e−3N

)
4
(

1 + bκ2ρ0
4 e−3N

)2 √
1 + bκ2ρ0e−3N

,

(21)

we find:

• When b > 0, there is a maximum F (N) = 2/3b at
bκ2ρ0e−3N = 8. We also find that F (N) → 0 when N → +∞
and F (N) → 0 when N → −∞.

• When b < 0, we find F ′(N) < 0 and therefore there is a maxi-
mum F (N) = −4/3b at bκ2ρ0e−3N = −1 and F (N) → 0 when 
N → +∞, again.

Eq. (19) can be further rewritten in the following form:

0 = d2

dt2

(
e3N

3
+ bκ2ρ0

4
N

)

+
e3N

(
1 − √

1 + bκ2ρ0e−3N
)

b
, (22)

which tells that there is a conserved quantity E ,
E = 1

2

{
d

dt

(
e3N

3
+ bκ2ρ0

4
N

)}2

+
N∫

dN
e3N

(
1 − √

1 + bκ2ρ0e−3N
)(

e3N + bκ2

4 ρ0

)
b

= 1

2

{
d

dt

(
e3N

3
+ bκ2ρ0

4
N

)}2

+ V (N) , (23)

which corresponds to the total energy in the classical mechanics. 
Here V (N) is given by

V (N) = e6N

6b

(
1 + 1

2
bκ2ρ0e−3N

)(
1 −

√
1 + bκ2ρ0e−3N

)

− bκ2ρ0

12b
e3N

√
1 + bκ2ρ0e−3N . (24)

When N is positive and large, V (N) behaves as

V (N) ∼ −κ2ρ0e3N

6
. (25)

In case b > 0, when N is negative and large, we find

V (N) ∼ −
(
bκ2ρ0

) 3
2 e

3
2 N

6b
. (26)

On the other hand, in case b < 0, there is a maximum in V (N)

when 1 + bκ2ρ0e−3N = 0:

V (N) = V max ≡
(
bκ2ρ0

)2

12b
< 0 . (27)

We now assume that the universe may have started from N →
+∞ and after that the universe has started to shrink. Then from 
the above results, by the analogy with the classical mechanics, we 
find the following:

• In case b > 0, if E < 0, the shrinking of the universe will stop 
and turn to expand. On the other hand if E > 0, the universe 
will continue to shrink and the scale factor a vanishes in the 
infinite future.

• In case b < 0, if E < V max, the shrinking of the universe will 
stop and turn to expand. On the other hand if E > V max, the 
universe will reach the singular point at 1 + bκ2ρ0e−3N = 0.

In order to estimate E , we now solve Eq. (19) by assuming N 
 1. 
Then Eq. (19) can be rewritten as

N̈ + 3Ṅ2 − κ2ρ0e−3N

2
= 3

4
bκ2ρ0e−3N Ṅ2

−
(
bκ2ρ0

)2

4b
e−6N +O

(
b2

)
. (28)

Then in the limit b → 0, we find

N = 2

3
ln

∣∣∣∣ t

t0

∣∣∣∣ , t2
0 ≡ 4

3κ2ρ0
. (29)

Then for the finite b, by writing N = 2
3 ln t

t0
+ δN and by using 

Eq. (28), we find

δN̈ + 4

t
δṄ + 1

t
δN = O

(
b2

)
+O

(
(δN)2

)
, (30)

whose solution is given by

δN = C+ |t| −3+√
7

2 + C− |t| −3−√
7

2 +O
(

b2
)

. (31)
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Here C± are arbitrary constants. Because the first and the second 
terms do not depend on b, we may put C± = 0. In fact if we keep 
C+ , we find E diverges and therefore physically not acceptable. On 
the other hand, even if we keep C− , this term does not contribute 
to E . Then for the large N , by using the expression of E in Eq. (23)
with Eq. (24), we find

E = −
(
bκ2ρ0

)2

16b
. (32)

Therefore when b > 0, the shrinking of the universe will always 
stop and turn to expand, that is, we obtain the bouncing universe. 
On the other hand, when b < 0, the shrinking universe always 
reaches the singular point at 1 + bκ2ρ0e−3N = 0.

When b > 0, we may estimate N when the shrinking universe 
turns to expand and therefore V (N) = E . When bκ2ρ0 
 1, by us-
ing the expression of V (N) in Eq. (25) and E in Eq. (32), we find 
the minimum Nmin of N ,

e3Nmin ∼ 3

8
bκ2ρ0 . (33)

On the other hand, when bκ2ρ0 � 1, by using Eq. (26), we find

e3Nmin ∼ 9

64
bκ2ρ0 . (34)

We should note that Eq. (23) can be identified with the first 
FRW equation because H = Ṅ and rewritten as

3

κ2
H2 = 6

κ2
e−6N

(
1 + bκ2ρ0

4
e−3N

)2

(E − V (N)) . (35)

For large N , the r.h.s. of Eq. (35) can be expanded as a power series 
with respect to e−3N and we find

3

κ2
H2 = ρ

(
1 − ρ

ρl

)
+O

(
e−9N

)
,

ρ = ρ0e−3N , ρl ≡ 2

bκ2
. (36)

The above structure is similar to that in the loop quantum cos-
mology [9–11]. In case of the loop quantum cosmology, instead of 
Eq. (36), we have

3

κ2
H2 = ρ

(
1 − ρ

ρc

)
. (37)

Here ρc is the critical density and the energy density ρ is always 
equal to or smaller than ρc , ρ ≤ ρc . In the loop quantum cosmol-
ogy, the shrinking universe turns to expand when ρ = ρc . Even 
in our model, if we define the critical density ρBI

c by the density 
satisfying E = V (N) in Eq. (35), the shrinking universe turns to ex-
pand when ρ = ρBI

c but we find ρBI
c 
= ρl in Eq. (35) due to the 

correction of O
(
e−9N

)
and by using Eq. (35) or (36), we obtain 

ρBI
c as follows,

ρBI
c =

⎧⎨
⎩

8
3bκ2 when bκ2ρ0 
 1

64
9bκ2 when bκ2ρ0 � 1

. (38)

Therefore the obtained behavior of the bouncing is similar to that 
in the loop quantum gravity, although there are quantitative differ-
ences.
3. Black hole formation by the collapse of dust

In the last section, we have concluded that the FRW Universe 
filled with dust would bounce in the Born–Infeld gravity with pos-
itive b. On the other hand, the result could be applied to a grav-
itational collapse of uniform and spherical ball of dust as in [14]. 
In this section, we consider if black hole can be formed by the 
collapse of dust. We now assume there is a spherically symmetric 
and uniform ball made of dust and consider the collapse of ball. In 
the Einstein gravity, this assumption is valid because the pressure 
of the dust vanishes. If the falling matter fluid has a pressure, the 
density of ball cannot be uniform because the pressure should van-
ish at the boundary between the ball and bulk, which is assumed 
to be vacuum. This assumption can be justified in the Einstein 
gravity by using the junction conditions. In the Born–Infeld grav-
ity in the Palatini formalism, however, we do not know the exact 
expressions of the junction condition. Then the arguments below 
might not be justified quantitatively but we may expect that the 
results obtained in this section could be correct qualitatively.

If we can regard that the space–time inside the ball of dust 
could be the shrinking FRW universe as in the last section, the 
results in the last section could tell that there would be a bounc-
ing. If the radius of the ball at the bouncing is larger than the 
Schwarzschild radius, the black hole cannot be formed.

We assume the ball of dust with radius R at N = N0. We choose 
N0 to be large enough. Then the total mass M is given by

M = 4π

3
R3ρ0e−3N0 . (39)

Here ρ0e−3N0 is the energy density of the ball at N = N0. We now 
consider the case that b > 0. First we assume

bκ2ρ0 = 3bκ2Me3N0

4π R3

 1 . (40)

Then by using Eq. (33), we find N = Nb at the bouncing is given 
by

e3Nb ∼ 9bκ2Me3N0

32π R3
, (41)

which gives the radius Rb at the bouncing by

R3
b = R3e3(Nb−N0) = 9bκ2M

32π
. (42)

On the other hand, the Schwarzschild radius Rs is given by

Rs = κ2M

4π
. (43)

Then we find

R3
b

R3
s

= 18π2b

κ4M2
. (44)

Therefore large black hole, where M2 
 b
κ4 , can be formed because 

Rb � Rs and therefore the bouncing can occur after the formation 
of the horizon.

Instead of Eq. (40), we may also consider the case

bκ2ρ0 = 3bκ2Me3N0

4π R3
� 1 . (45)

Then by using Eq. (34), we find that the bouncing occurs when

e3N ∼ e3Ñb ∼ 27bκ2Me3N0

256π R3
, (46)

and the radius R̃b at the bouncing is given by
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R3
b = R3e3(Nb−N0) = 27bκ2M

256π
, (47)

and we obtain

R3
b

R3
s

= 27π2b

4κ4M2
. (48)

Therefore small black hole, where M2 � b
κ4 , cannot be formed be-

cause Rb 
 Rs .
We now consider the case that b < 0. In this case, there is a 

maximum ρmax in the energy density ρ given by Eq. (16). We now 
consider the meaning of the density ρmax in the black hole forma-
tion. We now assume that the black hole is formed by the collapse 
of the star made of the dust with radius r. Then the energy density 
ρ is given by

ρ = ρ̃0r−3 . (49)

Here ρ̃0 is a constant. Then the mass M and the Schwarzschild 
radius Rs of the star is given by

M = 4π

3
ρr3 = 4π

3
ρ̃0 , Rs = κ2M

4π
= κ2ρ̃0

3
. (50)

Then Eq. (16) tells that the minimum of r is given by

rmin = (−3bRs)
1
3 . (51)

The black hole cannot be formed if rmin > Rs , that is

R2
s < −3b . (52)

Therefore small black holes may be prohibited if b < 0 but large 
ones are not prohibited. This result may tell that the creation of 
the primordial black holes might be prohibited.

An important question is how the horizon formation could be 
consistent with the bouncing of the universe. In case of the loop 
quantum gravity, an expectation is the formation of the inner hori-
zon as in the Reissner–Nordstrom space–time. The ball of the dust 
goes through the inner horizon and the ball might appear in an-
other world as in the space–time of the Reissner–Nordstrom black 
hole or the Kerr black hole. Another possibility could be that 
the star which has bounced come back to the asymptotic region 
through the regular black hole structure such as discussed in [16].
At present, we do not have any definite answer and this question 
could be a future problem.

In more realistic way, the above problem about the consistency 
between the horizon formation and the bouncing of the universe 
might be solved by the junction condition. In fact, there is an ap-
plication of the Born–Infeld gravity to study the spherical symmet-
ric compact star [12] by using the junction conditions, where the 
Darmois–Israel formulation [13] has been used. We cannot, how-
ever, consider the junction conditions in a similar way because the 
second junction condition could not be formulated in our case. The 
effective repulsive force which causes the bouncing universe makes 
the dust to move to the outside of the star and then violates the 
homogeneity we assumed. This inhomogeneity could be realized 
by introducing the shell on the boundary of the star. Therefore 
there should appear the surface term proportional to a δ-function 
in the energy–momentum tensor. Furthermore, because the surface 
term depends on time during the collapse, we cannot use simple 
shell model which has a constant tension. Therefore it could be a 
difficult but essential task to construct an appropriate model and 
solve the dynamics of the star.

We do not know the exact expression of the junction condition 
but we could be able to use the junction condition in the Ein-
stein gravity as an approximation. Therefore although the obtained 
results could not be completely justified, we may give the follow-
ing speculation: The dust on the boundary between the sphere 
of the dust and the vacuum may move by the geodesic of the 
Schwarzschild space–time. Inside the sphere, there appears the ef-
fective repulsive force between the dust due to the correction by 
the Born–Infeld gravity, which may lead to the bouncing in the 
FRW universe. As mentioned above, the repulsive force makes the 
dust inhomogeneous and pushes the dust which was inside of the 
sphere, out of the boundary. The dust pushed out from the bound-
ary will move by the geodesic of the Schwarzschild space–time but 
the geodesic is not always infalling one but going outward. There-
fore if the bouncing occurs before the dust goes inside the horizon, 
there will occur the bouncing and the black hole might not be 
formed. On the other hand, even if the bouncing occurs inside the 
horizon, the dust may spread in the time direction, which is space 
like inside the horizon and the dust may not appear outside the 
horizon.

4. Summary

In the Born–Infeld gravity by using the Palatini formalism, we 
have investigated the FRW cosmology where the matter is dust 
and we have shown that when b > 0, there occurs the bouncing. 
The cosmology in the Palatini–Born–Infeld gravity has been inves-
tigated in several papers, but in the most of the previous works, 
the connections are assumed to be given by Pμν , which resem-
bles the metric of the FRW universe but this requirement is too 
strong and we considered more general case. By applying the re-
sults in the FRW universe, we also gave some speculations about 
the collapse of the sphere of dust and the black hole formation. 
Then we have shown that although the large black hole might 
be formed but the small black holes could be prohibited to be 
formed. This naive speculation about the singularity avoidance re-
quires more quantitative arguments and we need to solve the junc-
tion conditions for the metric and connection so that the internal 
FRW space–time connects smoothly to the external Schwarzschild 
space–time. There is an application to the spherically symmetric 
and static compact star in the Palatini formalism by using the 
Darmois–Israel junction condition. In our case, however, there is 
another kind of difficulty. As mentioned in the last section, we 
have assumed that the dust could be homogeneous but because 
there appears the repulsive force between the dust in the Born–
Infeld gravity, the dust becomes inhomogeneous during the col-
lapse when there is a boundary between the dust and vacuum. In 
fact, if we solve the equations by assuming that the dust is homo-
geneous inside the boundary, there should appear a kind of shell, 
where the energy–momentum tensor diverges as a δ-function. If 
we assume the junction condition in the Einstein gravity as an ap-
proximation, the approximation could be valid when the density 
of the dust is small and the total mass is large enough because 
the equations in the Born–Infeld gravity coincide with the Einstein 
equations in the limit that the energy–momentum tensor vanishes, 
that is, the energy density goes to zero. Furthermore, the repul-
sive force could be weak when the curvature at the horizon is 
small enough because the corrections from the Einstein gravity be-
come small when bR � 1. Therefore the junction condition in the 
Einstein gravity can be a leading order approximation of the full 
junction condition in the Born–Infeld gravity in the Palatini for-
malism although the full and exact analysis could be complicated. 
We will consider this problem in the future work.

It could be interesting to investigate the possibility that a spher-
ically symmetric space–time without singularity, as is expected to 
appear in the final stage of dust collapse, may be an exact solution 
in the Born–Infeld gravity. We should note that some regular black 
hole solutions are already known [15–17]. In the Einstein gravity, 
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those solutions are not vacuum solutions, but a non-linear elec-
tromagnetic source is responsible to obtain the regular black holes 
[18–20]. On the other hand, we found that the Born–Infeld gravity 
in the Palatini formalism may have the black hole solution without 
singularity from the speculation about the dust collapse. If so, the 
non-linearity in gravitational action itself would work as the origin 
to remove the singularity as in case of the non-linear electromag-
netic source. Additionally, if we could find the static configuration 
of the non-singular space–time with matter fields, it could be an 
great interest to study the stability, the equation of state of matter 
inside the black hole, and the energy condition [21].
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Appendix A. Derivations of Eqs. (12), (13), (14), and (15)

In this appendix we derive Eqs. (12), (13), (14), and (15). By as-
suming Eqs. (5) and (6), we find that the Ricci tensors are given by

Rtt = −3
(

Ċ + C2 − AC
)

,

Rij = a2 (
Ḃ + 2H B + BC + B A

)
δi j , Rti = Rit = 0 . (A.1)

Then we obtain the following equations:

bκ2ρ = {
1 + b

(
Ḃ + 2H B + BC + B A

)} 3
2

×
{

1 + 3b
(

Ċ + C2 − AC
)}− 1

2 − 1 , (A.2)

0 = {
1 + b

(
Ḃ + 2H B + BC + B A

)} 1
2

×
{

1 + 3b
(

Ċ + C2 − AC
)}1 1

2 − 1 , (A.3)

�t
tt = 1

2

d

dt

{
ln

{
1 + 3b

(
Ċ + C2 − AC

)}}
, (A.4)

�t
i j = a(t)2

2

{
1 + 3b

(
Ċ + C2 − AC

)}−1

×
{

2H + b
{

4H Ḃ + 4H2 B + 2H BC + 2H B A

+ B̈ + 2Ḣ B + Ḃ (C + A) + B
(
Ċ + Ȧ

)}}
δi j , (A.5)

�i
jt = �i

t j = 1

2

d

dt

{
ln

{
a2 + ba2 (

Ḃ + 2H B + BC + B A
)}}

δi
j .

(A.6)

Eq. (A.2) is the (t, t) component of (2) and Eq. (A.3) is the (i, j)
component. Eqs. (A.4), (A.5), and (A.6) are solutions of Eq. (3).

By using Eqs. (6), (A.3), (A.4), and (A.6), we find the first equal-
ity A = C − H in Eq. (12). We may delete A by using Eq. (12) and 
obtain

bκ2ρ = {
1 + b

(
Ḃ + 3H B

)} 3
2

×
{

1 + 3b
(

Ċ + 2C2 − C H
)}− 1

2 − 1 , (A.7)

0 = {
1 + b

(
Ḃ + 3H B

)} 1
2

×
{

1 + 3b
(

Ċ + 2C2 − C H
)} 1

2 − 1 , (A.8)

−C + H = 1

2

d

dt

{
ln

{
1 + 3b

(
Ċ + 2C2 − C H

)}}
, (A.9)
B =
{

1 + 3b
(

Ċ + 2C2 − C H
)}−1

×
{

2H + b
{

5H Ḃ + 6H2 B + 3Ḣ B + B̈
}}

. (A.10)

Furthermore by using Eqs. (A.7) and (A.8), we obtain

bκ2ρ = {
1 + b

(
Ḃ + 3H B

)}2 − 1 . (A.11)

We now delete B and C in Eqs. (A.7), (A.8), (A.9), (A.10) and obtain 
a single equation with respect to the scale factor a. By assuming 
Eq. (11) and by combining Eqs. (A.8) and (A.10), we obtain

4a4 B = d

dt

[
a4 {

1 + b
(

Ḃ + 3H B
)}2

]
. (A.12)

Furthermore by combining (A.11) and (A.12), we find (13). On the 
other hand, Eqs. (A.7) and (A.8) give

bκ2ρ =
{

1 + 3b
(

Ċ + 2C2 − C H
)}−2 − 1 . (A.13)

By using Eqs. (A.9) and (A.13), we obtain Eq. (14) and the second 
equality (12). A single equation (15) with respect to the scale factor 
a can be obtained by deleting B in Eq. (A.11) by using Eq. (13).
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