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Abstract

A PID (Proportional Integral Derivative) controller is most widespread controller and it is mostly used in industries due to its simple
tuning procedure. But conventional PID controller can’t be used for non-linear system and in real world all system are non-linear.
So, this paper represents an artificial neuro fuzzy logic PID controller with Bacteria Foraging oriented by PSO (BF-PSO) and with
the help of simulation we will reveal that ANFLC gives better result than conventional controllers.
© 2015 The Authors. Published by Elsevier B.V.
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Processing-2015 (IMCIP-2015).
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1. Introduction

PID controller is elementary controller which is used in industries on account of its simple implementation, robust
nature and only three tuning parameters1 but when conventional techniques fails, fuzzy techniques are used. This
technique is also simple and main advantage of fuzzy control is less number of variables and less mathematical
calculation in the designing of the controller.

For controlling of the any system with the help of fuzzy technique designer needs control rules which are defined by
an expert with the help of their prior knowledge about the system and this is the prime deficiency of fuzzy technique.
In this method, controller is massively affected by the expert who is providing knowledge about the system. In another
fuzzy technique, a reference model is applied to control the system which is replica of the system and it always gives
ideal response.

Techniques to tune PID have so much botheration. To avoid these botheration, we are suggesting a simple as well as
effective way to generate the fuzzy rules itself according to the system response. This technique is known as Artificial
Neuro Fuzzy Logic control and it requires off line training.

To optimize the system, we will adopt Bacteria foraging oriented PSO which is motivated by the nature of
Escherichia Coli bacteria. We will use the combination of PSO and Escherichia Coli based optimization to tune
controller.

∗Corresponding author.
E-mail address: rahul444patel@gmail.com

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the Eleventh International Multi-Conference on Information 
Processing-2015 (IMCIP-2015)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82147886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.06.053&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.06.053&domain=pdf


464   Rahul Patel and Vijay Kumar  /  Procedia Computer Science   54  ( 2015 )  463 – 471 

2. The PID Controller

There are so many forms exists to describe the PID but one of the best and versatile way to represent the PID is on
view

y(t) = K pe(t) + Ki

∫
e(t)dt + Kd

de(t)

dt
(1)

where,

e(t) = difference between output and input
K p = proportional gain
Ki = integral gain
Kd = differential gain

3. Generation of Fuzzy Rule Base for Fuzzy PID

Our purpose is control the system in human like way because human control the system in much easier way than
artificial controller due to their imagination. They do not go for exact calculation else they just approximate the
required measurement but produces exact result. In generation of rule base, two major problems exists (i) to generate
the rule base according to the system knowledge (ii) to generate effective rule base and less number of rules because
as number of rules increase complication in the controller increase. But here our aim is to solve first problem.

3.1 Rule generating algorithm

Let us take PD controller to generate rule base

y(t) = K pe(t) + Kd
de(t)

dt
(2)

where, K p = proportional gain, Kd = derivative gain, e(t) = output − input & u(t) = output of the controller. Kd

can also expressed as

Kd = K p ∗ Td

T
(3)

Td = derivative time constant & T = sampling period.
For digital control system equation (2) can be written as

y(n) = K px1(n) + Kd x2(n) (4)

where u(n) = controller’s output at time n, x1(n) = e(n) and x2(n) = �e(n) = e(n) − e(n − 1).
After fuzzifying the eqn. (4)

U(n) = K ∗
p E(n) + K ∗

d C E(n) (5)

U(n) ∈ U, E(n) ∈ X1(n) and C E(n) ∈ X2(n) where U , X1 and X2 are universe of discourse (uod) for control output,
error and change in error respectively. U, E &C E fuzzy sets can be shown as

U(n) = {−M, . . . . . . ,−1, 0, 1. . . . . . . . + M}
E(n) = {−N, . . . . . . ,−1, 0, 1. . . . . . . . + N}

C E(n) = {−N, . . . . . . ,−1, 0, 1. . . . . . . . + N}
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Fig. 1. PID controller.

where N, M are fuzzy linguistic number to limit the uod of the input and control output and this is the main limitation
in fuzzy system because if input is not in the uod, it can’t generate the result. K ∗

p & K ∗
d can be represented as

K ∗
p = k ∗ a,

K ∗
d = K ∗ (1 − α) a ∈ [0, 1]

α is weighting factor to regulate the parameters. So eqn. (5) can be written as

U = βK [α ∗ E + (1 − α) ∗ C E] (6)

where β is a constant to match the uod of control with uod of inputs and β = M/N . Equation (6) gives the relation
between control output and inputs and it will help to generate the control rules for the controller. Format to derive the
rule base is

Ri : If e is Ei and �e is Ci then u is Ui. (7)

Ri represents i th rule base for the controller and result will be obtained with the help of eqn. (6). ‘If’ shows the causes
on the controller while ‘then’ show their consequences of the inputs on the controller. Ei , C Ei and Ui must belong to
their respective uod.

General steps to derive fuzzy rules are:

a) Decide fuzzy sets E , C E and U and their uod X1, X2 and U respectively.
b) Select the weighting factor α.
c) Obtain fuzzy rule based on eqn. (7).
d) Adjust α and β for better results.

3.2 Parameter tuning

To make controller’s output in their uod weighting factor α and β must be predetermined. So for different values
of α and β, it will produce different rules. If α is constant then it generates linear control surface and for variable α it
generates NL control surface as in Fig. 1. For NL control surface,

α = |E |
N

(α2 − α1) + α1; 0 ≤ α1 ≤ α2 ≤ 1 (8)

It is clear from eqn. (8) that α depends upon |E | due to this depends controller becomes self-adjusting for any
deviation in error and change in error. So system becomes adaptive for error.

4. Decision Making Based on Rule Base

The task after rule base making is to generate appropriate control output according to the rule base designed. This
process has two stages:
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Fig. 2. Control surface for variable values of α.

Fig. 3. Hybird Fuzzy (PI+PD) control schematic.

a) decide which rule should be used on the basis of given input and system condition.
b) calculate output from each rule and conclude all the result to generate the control output.

To calculate the control output there are numerous techniques such as COG, COA, LOM, SOM and Bisector methods
but we go for COG generally. For COG (Centre of Gravity)

UOutput =
∑

i μc(xi ) · xi∑
μi (xi )

(9)

where μc represents membership grade xi is point where i th rule occurs in uod. To increase the efficiency of
the controller, we can change mf, number of mf or defuzzification method but it may lead entire calculation to a
cumbersome process. So for desired response, settlement between parameters is needed.

5. Learning Algorithm for Single Neuron

For intelligent i.e. neuro control online adaption of parameters is an important feature. To tune any fuzzy control, we
have multiple strategies: a) mf adjustment, b) modification of scaling factor c) change in rule base. Every single strategy
is useful for tuning the controller. To make controller online adaptive, MLP can be used for adjusting scaling factors.
In hybrid fuzzy controller four scaling factors: Ke, Kce, K P I &K P D for tuning are present but Ke&Kce are adjusted
by heuristic rules3 while K P I &K P D are tuned by MLP because these parameters affects the controller significantly.
If we replace MLP by unbiased single neuron with linear activation function, K P I &K P D will be self-learning. The
hybrid neuro-fuzzy schematic is:

Fig. 4. Hybird neuro fuzzy control schematic.
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In the Fig. 4 K P I &K P D are represented by w1 &w2 and the output eqn. is

u = u1w1 + u2w2 (10)

For learning mechanism, we need reference model to match the transient and steady state characteristics. Let us take
a 2nd order system with a time delay

TR(s) = ω2
ne−τ ds

s2 + 2ξω2
ns + ω2

n
(11)

Cost function Ed is minimized to derive the adaptive mechanism,

Ed = 1

2
[y2

d(t) − y2(t)]2 = 1

2
e2

d(t) (12)

BP algorithm can be adopted for the tuning of scaling weights by BP learning formula10

�wi (t) = −η
∂ Ed(t)

∂ t
+ λ�wi (t − 1), λ ∈ [0, 1], η ∈ [0, 1] (13)

where,

wi (t) = synaptic weight of i th neuron,
η = learning rate
λ = momentum factor

derivative of Ed w.r.t. wi is
∂ Ed

∂wi
= ∂ Ed

∂y

∂y

∂u

∂u

∂v

∂v

∂wi
(14)

From the eqn. (12)

∂ Ed

∂y
= −(yd − y) = −ed (15)

∂u

∂v
= f ′(v)&

∂v

∂wi
= ui (16)

From the eqn. (14), (15) & (16) eqn. (13) can be written as

�wi (t) = η[yd(t) − y(t)]ui
∂y

∂u
+ λ�wi (t − 1) (17)

We have to estimate ∂y
∂u each time w.r.t. present change in output to the change in input because generally quantitative

analysis is not present.
If the system is monotonic decreasing or increasing

∂y

∂u
< 0 or

∂y

∂u
> 0. (18)

System will be automatically optimized if the search algorithm is in right direction. So, ∂y
∂u > 0 can be replaced by

sgn function in the BP learning algorithm.

�wi (t) = η

(
sgn

∂y

∂u

)
edui + λ�wi (t − 1) (19)

The learning speed of BP algorithm is very slow because of slow convergence. To remove this problem, modified
controller is suggested as

�wi (t) = sgn

(
∂y

∂u

)
ui (K ped (t) + Kd�ed(t) +

r∑
j=1

ed( j) (20)
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Fig. 5. Adaptive neuro fuzzy controller.

where �ed(t) = ed(t) − ed(t − 1) and in eqn (18), η and λ are substituted K p and integral & derivative terms.
Derivative and integral terms are used to remove large gradient rate and offset respectively. A non-linear system is
used to analyse the learning efficiency as in Fig. 5.

6. Tuning of Neuro Fuzzy PID by BF-PSO Algorithm

BF-PSO is a combination of two algorithms – BF (Bacterial Foraging) and PSO (Particle Swarm Optimization).
The fundamental problem with BF technique is its very low convergence speed. So, to conquer this problem PSO is
combined. This combination provides search ability as PSO and ability to acquire new solution. These are steps to
obtain optimized solution from BF-PSO:

1) Initialization

The parameters such as s, Ns, Nc, Ned, Nre, Ped, a1 , a2, w, vmax are inputted.
Where,

s = no. of Bacteria
Ns = no. of bacteria tumbling step
Nc = no. of bacteria chemotaxis
Ned = no. of dispersed bacteria
Nre = no. of reproduced bacteria
Ped = dispersal probability
a1, a2, w = control parameters
vmax = velocity of bacteria

2) Reproduction

Generate Nre for i = 1;

3) Chemotaxis

Target to be calculated as Nc for i = 1;

4) Tumbling

If Nc < Ns, update variables and their current positions.

5) Dispersal

If rand < Ped, relocate the initial position.

6) Update the position, velocity and local minima according to

vid (t + 1) = wvid (t) + a1Ø1(pid (t) − yid (t)) + a2Ø2(pgd(t) − yid (t)) (21)

yid (t + 1) = yid (t) + vid (t) (22)
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where

Pgd = previous best stage of group
Pid = previous best stage of particle
Ø1, Ø2 = any two random numbers

and return to step (3).

7) Return to step (2).
8) Thus we obtained optimized result.

The obtained values after every invocation must limit to upper and lower boundaries.

7. Simulation and Results

Fig. 6. ANFIS editor layout on MATLAB.

Fig. 7. Structure of ANFIS.

Fig. 8. Simulink model for adaptive neuro fuzzy PID controller.
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Fig. 9. Response for fuzzy PID.

Fig. 10. Response for ANFIS PID controller.

Fig. 11. Response of ANFIS PID with BF-PSO.

The step response for a system with various methods is in figure to analyse the result.
To analyze the result, we can compare some parameters such that rise time (tr ), steady state error (ess), settling time

(ts) and percentage peak overshoot (Mp) by Table 1.
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Table 1. Analysis of various parameters for various tuning methods of PID.

Parameters Name of Tuning Methods

ZN Fuzzy ANFIS BF-PSO

Rise Time (tr ) 1.789 1.865 2.578 4.125
Settling Time (ts ) 3.745 5.624 7.125 4.220
Overshoot (%Mp) 20.05 17.95 1.0149 0
Steady State Error (ess ) 0 0 0 0

We can wind up the table by:

• Every performance characteristics of the system improves excluding rise time but we don’t bother about it because
our basic requirements are less settling time and less peak overshoot and that are attained.

• It is obvious ANFIS produces best result because of combine features of fuzzy and neuro logics and main
advantage is ess is zero for all tuning methods.

8. Conclusion

In the whole analysis, we simply analyzed the various fuzzy, neuro and ZN analogies of PID tuning. We used
ANFIS tuning method as neuro technique and BF-PSO for the optimization and these results are acquired for 2nd order
system with no poles and zeros in right half i.e. stable system. Retrieved MATLAB results conclude that best output
is processed for ANFIS controller for the characteristics overshoot (Mv ) and settling time (ts ). Optimization algorithm
BF-PSO provides modest result if we don’t bother rise time. In general plants we don’t need best results in terms of
all the characteristics but we go for modest result according to the necessity of the plant output.
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