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1. Introduction

The Stewart platform is a spatial parallel manipulator consisting of two rigid bodies: a moving platform (simply a plat-
form), and a base whose pose (position and orientation) is fixed. The base and the platform are connected by six extensible
legs. The Stewart platform is originated from the mechanism designed by Stewart for flight simulation [17] and the mecha-
nism designed by Gough for tire test [8]. For a set of given lengths of the six legs, the pose of the platform could generally
be determined. The Stewart platform has been studied extensively and has many applications. Comparing to serial mech-
anisms, the main advantages of the Stewart platform are its inherent stiffness and high load/weight ratio. The Stewart
platform has been studied extensively and has many applications. More information on the Stewart platform can be found
in [1,3,9,10,13,15]. A large portion of the work on Stewart platform is focused on the direct kinematics [9,10,13,15] which
can be considered as a geometric constraint problem.

Although a majority of the work on Stewart platform focuses on the spatial case, several people also considered the pla-
nar Stewart platform which consists of a moving platform and a base connected by three extensible legs. The planar parallel
manipulators shown in Figs. 1 and 2 are two typical planar Stewart platforms [13]. Gosselin and Merlet developed robust
solving schemes and established sharper bounds for special planar Stewart platforms [7]. In [16], Pennock and Kanssner
proved that the upper bound of the number of solutions for the direct kinematics of the planar Stewart platform is six.
Other interesting work on the planar Stewart platform could be found in [2,11,12].

In [5], to find new and more practical parallel mechanisms for various purposes, the spatial generalized Stewart platform
(abbr. GSP) consisting of two rigid bodies connected by six distance and/or angular constraints between six pairs of points,
lines and/or planes in the base and moving platform respectively is introduced, which could be considered as the most
general form of parallel manipulators with six DOFs in certain sense and a special class of geometric constraint problems.
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Fig. 1. 3-RPR planar parallel robot.
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Fig. 2. 3-RPR planar parallel robot.
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Fig. 3. Planar generalized Stewart platform.

In [20], the planar GSP shown in Fig. 3 is introduced, which could be considered as the most general form of planar parallel
manipulators with three DOFs at some extent. A planar GSP consists of a fixed rigid body (called base) and a movable rigid
body (called platform) connected by three distance or/and angular constraints between three pairs of points and/or lines on
the base and platform. The pose of the platform is determined by the values of the three constraints.

Geometric constraint solving (GCS) is the key technique of parametric CAD, which allows the user to make modifications
to existing designs by changing parameter values. There are four major approaches to geometric constraint solving: the
numerical approach, the symbolic computation approach, the rule-based approach and the graph based approach. GCS
methods may also be used in other fields like robotics, computer vision, molecular modeling, feature-based design and so
on. For a review on geometric constraint solving and its applications can be found in [4] and references therein.

From the viewpoint of GCS, direct kinematics GSP is a typical geometric constraint solving problem. In [6], a general ge-
ometric constraint problem is reduced to three minimal merge patterns: (1) to compute the position of a single geometric
primitive, (2) to compute the pose of a rigid body, and (3) the general merge pattern. The direct kinematics GSP is actually
to merge or assemble two rigid bodies. The direct kinematics is to solve an algebraic equation system with several param-
eters. Using the characteristic set method [14,19], the solving of parametric equation systems is reduced to the resolution
of equations in triangular form which is called closed-form solutions in [20] and hence the solving of univariate equations.
In [20], it is shown that closed-form solutions to the direct kinematics of all planar GSPs could be found with the charac-
teristic set method. With these closed-form solutions, upper bounds for the number of solutions of the direct kinematics in
the general cases can also be given. For a class of GSPs involving an angular constraint, a solution to the direct kinematics
based on ruler and compass constructions was provided.

The research of classification of linkages is an interesting and important problem. The reason is that we can know
whether the direct kinematics exist, and obtain the number of solutions to direct kinematics directly with the given param-
eters furthermore, once the condition of the parameters for a planar GSP is given. In [18], Su et al. classified the movement
of the RRSS spatial linkage in terms of its link dimensions with the method in [21], where the highest degree of the polyno-
mial is four. In this paper, we give the classification of direct kinematics for sixteen planar GSPs and the explicit conditions
on the parameters for the GSP to have a given number of real solutions. The rest of the paper is organized as follows. In
Section 2, the basic concepts to planar GSP are given. In Section 3, we give the classification of direct kinematics for the
sixteen planar GSPs. In Section 4, conclusions are given.



460 G.-E Zhang / Computational Geometry 45 (2012) 458-473

2. Basic concepts to planar GSP

A rigid body in the plane has three DOFs. Therefore to determine its pose, we need three geometric constraints. The
planar GSP can be divided into two classes according to the three constraints added. DDA means there are one angular and
two distance constraints to be imposed. DDD means there are three distance constraints to be imposed. We cannot have
more than one angular constraints due to the fact that a rigid body in the plane has one rotational DOF and the rotational
DOF can generally be determined by one angular constraint.

We use LP to represent constraint between a line L and a point P in a GSP. Thus PP, represents constraint between two
points P; and P; in a GSP and L;L; represents constraint between two lines L; and L, in a GSP. A GSP can be represented
by the primitives involved in the three constraints. For example, LLL-PPP represents a GSP consisting of three lines in the
platform and three points in the base, and PPP-LLL represents a GSP consisting of three points in the platform and three
lines in the base. Thus six different sub-cases of DDA are LLL-LPP, LLP-LPP, LLP-LPL, LPP-LLL, LPP-LLP and LPP-LPP. Ten
different sub-cases of DDD are PPP-LLL, PPP-LLP, PPP-LPP, LLL-PPP, LLP-PPP, LPP-PPP, LPP-PLL, LLP-PPL, LPP-PLP and
PPP-PPP.

Because the primitives involved in the base and the primitives are points and lines, we can always take three points in
the base and three points in the platform, respectively. For a line, we can take a point on it. Let three points in the base be
B1, By and B3, and three points in the platform be P, P, and Ps.

Let By be the origin of the fixed coordinate system in the base, BiB, the x-axis. The coordinates of three points in the
base are By = (0, 0), B = (b1,0) and B3 = (by, b3). Because a rigid body cannot be fixed with one point, by, by, bs should
not equal to zero simultaneously. So we could let b1 > 0. And if b3 =0, three points in the base are colinear.

Assuming that point D is the foot of perpendicular of point P3 to P1P,, let point D be the origin of the moving coordinate
system in the platform. The coordinate of point D in the fixed coordinate system is D = (x3,X4). Let Z(B1By,P1Py) =0,
X1 = cos0, xy = sinf. The moving coordinates of three points in the platform are P = (—hq,0), P» = (hz,0), P3 = (0, h3),
where hi, hy are two nonnegative parameters [12]. Because a rigid body cannot be fixed with one point, hq, hy, h3 should
not equal to zero simultaneously, we could let h; + hy > 0. P;P, is the x-axis of the moving coordinate system. Their
coordinates in the fixed coordinate system are

P} = (—h1X1 + X3, —h1x2 + X4),
P, = (hox1 + X3, hoXy + X4),
P3 = (—h3xy +x3, h3x1 + X4).

There exist at most three lines in the base which satisfy the three distance constraints. Let the parametric equations of
these lines be

Li: P=Bs+uis; (s1=(,m),Is1/=1),
Ly: P=By+uzs; (s2=(lo.my),|s2| =1),
L3: P=B; +uss3 (s3=(I3,m3),[s3]=1).

There exist at most three lines in the platform which satisfy the three distance constraints. Let the parametric equations
of these lines be

Loi: P=P3+uisy (s1=(l1,m),[s1]=1),
Lozt P=Py+uzsy (s2=(I2,m2), [s2] =1),
Lo3: P=P; +u3s3 (s3=(I3,m3), s3] =1).

Although we use the same s; in L; and Ly; (i =1, 2, 3), there will cause no confusion. The reason is that lines s; in L; and
Loi (i=1,2,3) will not appear in the same cases when the three constraints between the base and the platform are three
distance constraint simultaneity. After the three distance constraint are imposed, the corresponding parametric equations of
three lines in the platform are

Lii: P=P;+uisit, Is11l=1, s11 = (lix1 —mixz, l1xy + mixq),

Ly: P=P, +uzspy, Isz2] =1, so2 = (lox1 — maxz, Xy + maxy),

L33t P=P] +usss3, [s33] =1, s33 = (I3x; — m3xz, [3X2 + m3xq).
In the following sections, we use |PL| to denote the distance between point P and line L, and |P1P,| to denote the distance
between two points P; and P,, where the distance between two points is more than zero.
3. Classification of direct kinematics to planar generalized Stewart platform

3.1. Case DDA

For DDA, we will impose angular constraint firstly. Because the expressions of angular constraint only involves unit
vectors parallel to the corresponding line on the platform or the base. So we need only to consider angular constraints
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between two unit vectors. Let s; be unit vector on the base which is parallel to line BiB, and sy unit vector on the
platform which is parallel to line P{P,, and /(sy,Rsy) = 6. Assuming that the rotational matrix is R = (rij)2x2 and the
angular constraint is cos6 = x1(x2 =siné). Let s; = (1,0) and s, = (1, 0), we can obtain the following equation system.

R'R=1,
det(R) =1, (1)
s1-Rsy) = xq.

Equation system (1) can be reduced to the following triangular form with Wu-Ritt’s characteristic set method [14,19].

2
r, —1+x=0,

ry; +ri2 =0, 2)
r) —x1 =0,
ri1 —x1 =0.

It is obvious that equation system (2) has two real solutions if x; # 1. If x; = 1, equation system (2) has one real solution.

After the angular constraint is imposed, we will impose the two remaining distance constraints simultaneously. It is clear
that imposing distance constraints will not break the angular constraint imposed previously. Thus we only need to solve an
equation system consisting of two distance constraints.

3.1.1. Case LL-PP
In this case, each of the two distance constraints is between a line in the platform and a point in the base. Let the
distance constraints be |L11B3| =d13 and |Ly2B>| = d»;. The equation system is as follows, where di; = +dq3 and dy = +d>>.

{ (l1xz +m1x1)(—h3xa +x3 — b2) — (l1x1 — mqX2)(h3x1 + x4 — b3) —d; =0,
(Ioxa +myx1)(hax1 + X3 — b1) — (lax1 —max2)(haxy +x4) —dp =0.

(3)

If myl; — Imy # 0, equation system (3) can be reduced to triangular form (4) with Wu-Ritt’s characteristic set method
[14,19].

(maly — Iomp)x3 + ((lamy +maly) (b — b2) + (Il — mzm1)b3)x§
+ (((mamy — Ll1) (b1 — ba) + (Iamy +maly)b3)xy —mymahy — dymy — l1hsmy 4+ mydy)x;
+ (Iblihs — dylq + Iod1 + mohali)x1 — b1lymy — blibs + lbmiby =0,
(maly — bmy)xy + ((mamy — bly)(by — b) + (lamy +maly)bs)x3
+ (((tamy +maly) (by — by) + (mamy — Ll1)b3)xq + Llhs — daly + Ldy + mahaly )x;
+ (mymyhy + dymy — mydy + lihsmy)x; +mymy(by — b1) — l1bsm;, = 0.

(4)

If myly —Ipmy =0, two lines in the platform are parallel. There is no solution and the pose of the platform cannot be
fixed.

3.1.2. Case LP-PL

In this case, one distance constraint is between a point in the platform and a line in the base, the other is between a
line in the platform and a point in the base. Let the distance constraints be |L11B3| =dq3 and |P/2L2| = dy;. The equation
system is as follows, where di; = +dq3 and d = +d», respectively.

{ (l1xy +myx1)(—h3xa +x3 — b2) — (l1x1 — mqx2)(h3x1 + x4 — b3) —d; =0, (5)

ma(haX1 +x3 —b1) —lh(haXxa +x4) —d =0.
If (myly — lbmy)xy — (I2ly + momy)xy # 0, equation system (5) can be reduced to triangular form (6) with Wu-Ritt’s
characteristic set method [14,19].
((maly — bmy)xy — (Ll +mamy)x2)X3 + (lamy —mal)hax3 + (— (bl +mamy)haxy + bliby + lhmybs
+mydy + mymabq)xa + (=lidz + l;myby — blibs — lymab1)xy + mahaly + lhdy + Llihs =0,
((maly — bmy)xy — (Ll +mamy)x2)Xa — (Il +mami)hax3 + ((—lamy +maly)haxy +mamibs

+maly(by — b1) — lyda)xa 4 (mamy(by — b1) — myda — malib3)xq 4+ mymahy 4+ mady 4+ malihs =0.

(6)

If (maly — Iomy)xy — (Ial1 +mymy)xy =0, there is no finite solution and the pose of the platform cannot be determined.
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3.1.3. Case LP-PP

In this case, one distance constraint is between a line in the platform and a point in the base, the other is between
a point in the platform and a point in the base. Let the two distance constraints be |L11B3| =di3 and |P}B;| =t3;. The
equation system is as follows, where dy = 4-d13 and d; = t%z > 0.

{ (lixg +mix1)(—h3xa + X3 — b2) — (l1x1 — m1X2)(h3x1 + x4 — b3) —dy =0, )

(hax1 +x3 — b1)? + (haxo +x4)* — dp = 0.
If myx; — l1x1 # 0, equation system (7) can be reduced to triangular form (8) with Wu-Ritt’s characteristic set method
[14,19].
X3 +2(((m§ — B) (b2 — by) — 2ml1b3)x3 + (((13 — m?)b3 + 2limy (b1 — b2))x1 — Ly (m1ha + Lihs +d1))x
+ (1#ha — midy — mylihs)xq +mylibs — miba — 13b1)X3 + 2((m? — [3)habs + 2myl1ha (b — b))%
+ (2((m} — B)ha(b2 — b1) — 2l1b3smyhy)x1 + (m3 — 1) (b3 — b3 + b3 + h3 — d2) -+ 2dym1hy + 4m1bal1bs
+ 2lthsmyhz)x5 + 2(((m§ — 13)babs — Bhshy + 1ymy (da — b5 — bt — h3 +b3) — dilihz)x (8)
+ (liby +myb3)dy + 2lymyhaby + (mihs + lihy)libs + (Ihs — myliha)b2)xo + 2((myby — I1bs)d,
+mibalihs — 3 (hsbs + hab1))x1 + 13 (b% + h3 — d2) + (I1hs +d1)* + (m1by — l1b3)? =0,
(m1xa — l1x1)X4 + (lix2 + m1x1)X3 — (Myb3 + l1b2)xy — (myby — l1b3)%1 —dy —l1h3 =0.
If mixy —l1x1 =0, we can get the following equation system.
x% +x§ -1=0,
(l1x2 +m1x1)(=h3x2 + X3 — b2) — (lix1 — m1x2)(h3X1 + X4 — b3) —d1 =0,
(haxy + X3 — b1)? + (haxy +x4)* — dy =0,
mixy —l1x1 =0.

(9)

If my #0, I; #0, equation system (9) can be reduced to triangular form (10) with Wu-Ritt's characteristic set method
[14,19].

x3—12=0,
11X1 —mqxy =0,
X1X3 — baxy —my(dy +11h3) =0, (10)

mx2 + 2hal1x1Xq + 2(ba — b1)(d1 + I1h3 +mqha)x;
+my ((dq +11h3)? 4 2myhy(dq + lih3) + (by — by)? —dy + h%) =0.

It is obviously that for the case that mx; — l{x; =0, only when x% = I%, we have solution and the pose of the platform
can be determined.

If my =0 and myx; —l1x;1 =0, we can get [; = +1 and x; = 0. Thus we can get the following equation system.
X3 —-1=0,
lixa(—h3xy +x3 —by) —d1 =0, (11)
(x3 —b1)? + (hax2 +x4)* —dp = 0.
Equation system (11) can be reduced to triangular form (12) and (13) with Wu-Ritt’s characteristic set method [14,19].

X — 1=0,

l1x3 —di1 —l1(by + h3) =0, (12)
X + 2hpX4 + 2(h3 — by + bp)lidy + (h3 — by + b)* + h3 — da +df =0.

X2 +1=0,

lixz +d1 —l1(b2 — h3) =0, (13)

x2 — 2hX4 + 2(h3 + b1 — by)lidy + (h3 + b1 — b2)? +h3 —dy +d? = 0.

If l; =0 and mix, — l1x1 =0, we can get m; = +1 and x; = 0. Thus we can get the following equation system.

X —1=0,

mix1(x3 — bz) —d; =0, (14)
(hax1 +x3 — b1)2 + (haxy + X4)2 —dy=0.
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Equation system (14) can be reduced to triangular form (15) and (16) with Wu-Ritt's characteristic set method [14,19].

X1 —1=0,

miX3 —dy —mqby =0, (15)
X3 —da +d2 +2my(by — by + ha)dy 4 b3 4 2(hy — by)by 4+ b? — 2hyby +h3 =0,

X1 +1=0,

myx3 +dy —mby =0, (16)
x5 —da +d3 +2my (b1 — by + ha)dy 4 b3 — 2(by + hy)by 4 b? 4 2haby 4+ h3 =0.

3.1.4. Case PP-LL

In this case, each of the two distance constraints is between a point in the platform and a line in the base. Let the two
distance constraints be |P/3L1| =d37 and |P/2L2| =dy,. The equation system is as follows, where di; = +d3; and dy = +d2;
respectively.

!m1(—h3x2 +x3 —b2) —l1(h3x1 + x4 —b3) —d1 =0, (17)

my(hax1 +x3 —b1) — lh(haxo +Xx4) —dy =0.

If ymy —mqly # 0, equation system (17) can be reduced to triangular form (18) with Wu-Ritt’s characteristic set method
[14,19].

! (limy — Ibmq)x3 + I (m1hs — l1ha)x; + 11 (mahy + Lbh3)x1 + I (dy +myby — 11b3) — 11 (mabq +d3) =0, (18)
(Iimy — Ihmq)X4 4+ mq(mah3 — lbhy)xo + ma(mqhy + l1h3)xy + ma(dy +m1by — l1b3) — mq1(maby 4+ dz) =0.

If ymy — mql, =0, two lines in the base are parallel. There is no solution and the pose of the platform cannot be
determined.

3.1.5. Case PP-LP

In this case, one distance constraint is between a point in the platform and a line in the base, the other distance
constraint is between a point in the platform and a point in the base. Let two distance constraints be |P’232| =ty and
|P/3L1| =d13. The equation system is as follows, where d; = t%z >0 and dy = +dq3.

{ (hax1 + X3 — b1)? + (haxa +x4)? —d1 =0, (19)

my(—=hsxy +x3 —by) — 1 (h3x1 4+ x4 — b3) —d =0.

If l; #0 and l% * m%, equation system (19) can be reduced to triangular form (20) with Wu-Ritt’s characteristic set
method [14,19].

(2 —m?)x3 + 2(m1(m1hs — l1h2)x2 + l1(m1hs + 11h2)x1 +m2by — by +m1(d2 — l1b3))x3
+ ((12 —m3)h3 + 2liha(myh3 — 11h))x3 + 2(Ithy — mih3)(ihsxy +d2 — libs +myba)x;
+2((lhbs — do — myba)hs — lihaby)lix1 — (miby +dy — lib3)? + 2 (b3 — dy +h3 — h3) =0,
l1X4 —mix3 +mqh3xy +lih3xy +miby — b3 +dy =0.

If I} =0, equation system (19) can be reduced to triangular form (21) with Wu-Ritt’s characteristic set method [14,19].

miX3 —mqphsxy —miby —d> =0,
X5 + 2haxoX4 + (2h3 — h3)x3 — 2hs(hox1 + by — by +mida)x; (21)
— 2hy(by — by +myda)x1 — (b2 — by +myd)* — h3 +dy =0.

If 2 =m?, then my ==l and | = :i:‘/TE.
If my =11 and (h3 — hy)x2 + (h2 4+ h3)x1 — (b1 — by + b3 —d3) # 0, we can get the following equation system, where
d
d3 = 2.
{ (hax1 + X3 — b1)® + (haXa +x4)* —d1 =0, (22)

(—h3xa +x3 — by) — (h3x1 +x4 — b3) —d3 =0.

Equation system (22) can be reduced to triangular form (23) with Wu-Ritt's characteristic set method [14,19].
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2((h3 — h2)x2 + (h2 + h3)x1 — (b1 — bz + b3 — d3))Xs + 2ha(h3 — h2)x5
+2(h2 — h3)(h3x1 — (b3 — bz — d3))X2 + 2(h3(b3 — by — d3) — hab1)x:
—dy — (b3 —by —d3)® + b3 +h3 —h3 =0,
2((hs — h2)xa + (h2 + h3)x1 — (b1 — by + b3 — d3))X4 — 2hy(h3 + h)x3
+ 2h3((hz + h3)x1 — (b1 — by 4+ b3 — d3))x2 — 2(hz + h3) (b1 — by + b3 — d3)x1 — d;
+ (h2 + h3)> + (b1 — by + b3 — d3)> =0.

(23)

If my =1; and (hs — hy)x2 + (hy + h3)xy — (b1 — by + b3 —d3) =0, we can get no solution.
If my = -1y and (hy + h3)x2 + (ha — h3)x; — (b1 — by — b3 —d3) # 0, we can get the following equation system, where
dy =2

=&,
{ (hax1 4 X3 — b1)? 4 (h1x2 +x4)? —dy =0, (24)
(—h3xy 4+ x3 — by) + (h3xy + x4 — b3) —d3 =0.

Equation system (24) can be reduced to triangular form (25) with Wu-Ritt’s characteristic set method [14,19].

2((hz + h3)xz + (hy — h3)xy — (b1 — by — b3 — d3))x3 — 2hy (hz + h3)x3
+ 2(hy + h3)(h3xq — (b2 + b3 + d3))x2 4 2(h3(bz + b3 + d3) — hab1)x; — di
— (by +b3 +d3)” + b3 +h3 —h3 =0,
2((ha + h3)x2 + (h2 — h3)xy — (b1 — by — b3 — d3))X4 + 2ha(h — h3)x3
— 2h3((hy — h3)xy — (b1 — by — b3 —d3))x2 + 2(hy — h3) (b1 — by — b3 —d3)x1 +di
— (hy — h3)®> — (b1 — bz — b3 —d3)* =0.

(25)

If my = —1; and (hy + h3)xy + (ho — h3)x; — (b1 — by — b3 —d3) =0, we could get no solution.

3.1.6. Case PP-PP

In this case, each of the two distance constraints is between a point in the platform and a point in the base. Let the
distance constraints be |P§Bg| =t33 and |P/232| = t97. The equation system is as follows, where d; = t§3 >0and d; = t%z >0
respectively.

{ (=h3xz +x3 — b2)? + (h3x1 + X4 — b3)? —d; =0, (26)

(hax1 +x3 — b1)? + (haxa +x4)® —dy = 0.
If hoxy — h3x1 + b3 #0 and 2(h3(by — b1) + bshy)xz + 2(ha (b2 — b1) — h3b3)x1 + b% + (by — b])z + h% + h% # 0, equation

system (26) can be reduced to triangular form (27) with Wu-Ritt's characteristic set method [14,19], where c;; are the
polynomials in the parameters I;, mj, hi, and d;.

4(2(h3(bz — b1) + bsha)xa +2(ha(ba — b1) — h3bs)x1 + b3 + (by — b1)? + h3 + h3)x3

+ (C31X% + (C32X1 + €33)X2 + C34X1 + C35)X3 + C36%3 + (C37X1 + C38)%5

+ (€39X1 + €310)X2 + €311X1 4+ €312 =0, (27)
2(haxy — h3x1 + b3)X4 + 2(h3xa + haxy 4+ by — b1)x3 — 2h3byxy + 2(hsbs — hab1)xy

—dy+dy —h34+h3 —b3—b3+b3=0.

If hox, — h3x1 + b3 =0, we have the following equation system.

xf + x% —-1=0,

(=h3Xz +x3 — b2)? + (h3x1 + X4 — b3)? —dq =0,
(hax1 +x3 — b1)? + (haxa +x4)* —dy =0,

hyxy — h3xq + b3 =0.

(28)

If (b2 + (b2 —b1)? — h3 —h3)hy # 0, equation system (28) can be reduced to triangular form (29) with Wu-Ritt's charac-
teristic set method [14,19].
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(h3 + h3)x} — 2h3x1b3 + b3 — h3 =0,

haxy —h3xq +b3 =0,

2((h3 + h3)x1 — hsbs + ha(b2 — b1))x3 + 2(h2(h3bs — hab1) — bah3)x1 + 2bahsbs
+ (b} —b% — b3 +h3 —h3 +di —da)hy =0,

(h3 + h3)(2(h3 + h3) (b1 — b2)x1 — ((ba — b1)* — b3 + h3 + h3)ha + 2(b2 — b1)h3bs)x]
+ (C41X1 + Ca2)X4 + C43X1 + C44 = 0.

If 2(bshy + h3(ba — b1))x2 — 2(bshs — ha(ba — b1))x1 + (b2 — b1)? + b3 + h3 + h3 = 0, we have the following equation
system.

(29)

x% + x% —-1=0,

(—h3xz + X3 — b3)® + (h3x1 + X4 — b3)* —d1 =0,

(h2x1 +x3 — b1)? + (hoXa +x4)* — d =0,

2(bshy + h3(ba — b1))x2 — 2(bshs — ha(ba — b1))x1 + (b2 — b1)? + b5 +h3 +h} =0.
If b2 + (b, —b1)? —h% —h3 #£0 and (bshy + h3(b2 — b1))(d2 — d1)(h% + h3) (b3 + (b — b1)?) # 0, equation system (30) can

be reduced to triangular form (31) with Wu-Ritt’s characteristic set method [14,19], where c;; are the polynomials in the
parameters l;, mj, hy, and d;.

(30)

(h% + h%)(b% + (b% — bf))xf +c11x1 +¢c12 =0,

2(b3h2 + h3(by — b1))X2 — 2(b3h3 —hy(by — b1))X1 + (by — b1)2 + b% + h% +h2=0,
(€31X1 + €32)X3 + €33X1 + €34 =0,

(c41X1 + C42)X4 + C43X1 + €44 =0.

If hax, — h3xy + b3 =0 and 2(bshy + h3(ba — b1))x2 — 2(bshs — ha (b2 — b1))x1 + (by — b1)? + b2 +h% + h2 = 0, we have
the following equation system.

(31)

x% + x% -1=0,

(—hsXz +x3 — b3)? + (h3x1 + x4 — b3)* —dy =0,

(hox1 + X3 — b1)? + (haxz + X4)? —do =0, (32)
haxy — h3xy + b3 =0,

2(bshy + h3(b2 — b1))x2 — 2(bsh3 — ha(ba — b1))xq + (b2 — b1)* + b3 +h3 +hj =0.

If (b1 — b2)? +b2 —h3 —h3 =0 and (b, — by) # 0, equation system (32) can be reduced to triangular form (33) with
Wau-Ritt’s characteristic set method [14,19], where c;j; are the polynomials in the parameters l;, mj, hi, and d;.

X1 +c11 =0,
X2 + 21 =0,

33
X3+c31 =0, (33)

Xﬁ + C41X4 +c42 =0.

For case DDA, the degree of freedom of triangular form to each GSP is no more than two, so it is ruler and compass
constructible.

3.2. Case DDD

For case DDD, the problem becomes more complexity. The reason is that the parameters increase and we have to solve an
equation system consisting of three distance constraints simultaneously. We will classify real solutions to direct kinematics
for each planar GSP with the method in [21].

3.2.1. Case PPP-LLL

In this case, each of the three distance constraints is between a point in the platform and a line in the base. Let the
three constraints be |P|Ls3| =di3, |P,Ly| =dp, and |P{L;| =d3;.

If (I3my — bms)mihs + (lhms — lsmy)lhy + (hmy — bmp)lshy #0 and (Ims — mal3)?h% + (hms — myl3)?hs + (hmy —
m112)2h% + 2(lymy — mib)(Iyms — mqyl3)((Iom3 — myl3)(hy + ha)hs + (mym3 + lpl3)h1hy) # 0 equation system consisting of
the three constraints and xf + x% — 1 =0 can be reduced to triangular form (34) with Wu-Ritt’s characteristic set method
[14,19], where c;; are the polynomials in the parameters I;, mj, hy, and d;.
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X% +c11x1 +c12 =0,
X2 +C21X1 + €22 =0, (34)
X3 +€31X1 + 32 =0,
X4 +C41X1 +C42 = 0.
Thus, the number of solution to above characteristic set is equal to the number of solution to xf +c11X1 +¢c12=0. It is
clear that there is two solution if cf] —4c1y > 0, one solution if c%l —4c12 =0, and no solution if c% —4cqp < 0.

3.2.2. Case LLL-PPP

In this case, each of the three distance constraints is between a line in the platform and a point in the base. Let the
constraints be |L33B1| =d31, [Ly2B2| =d22, |L11B3| =dis.

If (Ioms — Izsmp)mybs + (hmz — lsmy)liby + (myl3 — m3ly)lby # 0 and myl3 — Iyms # 0, equation system consisting of
the three constraints and x% +x% — 1 =0 can be reduced to triangular form (35) with Wu-Ritt’s characteristic set method
[14,19], where c¢;j are the polynomials in the parameters I;, m;, hy, and d;.

X} +c11x1 + 12 =0,
X2 +C21X1 + €22 =0,
X3 +€31X1 + €32 =0,
(Ca0X1 + C41)X4 + C42X1 + €43 =0.

(35)

3.2.3. Case LLP-PPL

In this case, one of the three distance constraints is between a point in the platform and a line in the base. Each of
the remaining two distance constraints is between a line in the platform and a point in the base. Let the constraints be
|B1L33| =d13, [B2Loz| =d22, and |D33Lq| =d31.

If I; # 0, equation system consisting of the three constraints and xf + x% — 1 =0 can be reduced to triangular form (36)
with Wu-Ritt’s characteristic set method [14,19], where c;; are the polynomials in the parameters I;, mj, hi, and d;.

X? + C11X? + C12X% +c13%1 + 14 =0,

(C20X1 + C21)X2 + C22X3 + C23X1 + C24 =0,

(X% + Ax1 + B)x3 + C31X? + C32X% +€33X1 + 34 =0,

(X% + Axq1 + B)X4 + C41X:i} + C42X% + C43X1 + C44 =0.
3.2.4. Case LLP-PPP

In this case, one of the three distance constraints is between a point in the platform and a point in the base. Each of
the remaining two distance constraints is between a line in the platform and a point in the base. Let the constraints be
[B1P}| =t11, [BoLoa| =d22 and [B3Lyi| =d31.

If imylahy (limy — ) #0 and (b1 — b2)? + b3)(4((mF — B)maly — (m3 — 13)mil)b1bs + 2(4mylimaly + (m3 — 3) (m3 —
12))b1by — b3 — b3 — b?) # 0, equation system consisting of the three constraints and x3 +x3 — 1= 0 can be reduced to
triangular form (37) with Wu-Ritt’s characteristic set method [14,19], where c;; are the polynomials in the parameters I;,
mj, hy, and d;.

4 3 2 _
X7 +C11%] +€12X] +C13X1 + 14 =0,
(C20%1 +C21)X2 + szx% +C23%1 +C24 =0,
(Ax1 + B)x3 + C31X% + C32Xf +€33%1 + 33 =0,
(AX1 + B)x4 + C41X? + C42X% +C43X1 + €44 =0.

If b3 =0, by = by, lymilh1 (limz — lomy) # 0, (—mydaa +mymahy +madsy +1imahs) #0, and (lymahy —lbmihy +Llihs +
lydsy — lid + 11mzh2)? + (lhhs +myhy +d31)?m3 — 2mydaz (I1hs + my12hy + ds1)my +m3da; # 0, equation system consisting
of the three constraints and x% +x§ —1 =0 can be reduced to triangular form (34) with Wu-Ritt’s characteristic set method
[14,19].

(37)

3.2.5. Case LPP-PLL

In this case, one of the three distance constraints is between a line in the platform and a point in the base. Each of
the remaining two distance constraints is between a point in the platform and a line in the base. Let the constraints be
|B1L33| =d13, |P)La| =dap, |[PSLy| =d31.

If (h3 + h3)(maly —myly) # 0, equation system consisting of the three constraints and x2 +x3 — 1 =0 can be reduced to
triangular form (38) with Wu-Ritt’s characteristic set method [14,19], where c;; are the polynomials in the parameters [;,
mj, hy, and d;.
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X? + Cllx:i; + ClZX% +c13%1 + €14 =0,

2
(C20%1 + C21)X2 + C22X7 + C23X1 + €24 =0,
(Ax1 4+ B)X3 + C3]X% + c32%1 + ¢33 =0,

(Ax1 + B)X4 + c41x3 + ca2X1 + €43 = 0.

3.2.6. Case PPP-LLP

In this case, one of the three distance constraints is between a point in the platform and a point in the base. Each of
the remaining two distance constraints is between a point in the platform and a line in the base. Let the constraints be
[P}Bi| =t11, [PyLo| =d22, [P5L1| =d31.

If (4(h1 + ho)(limy — myly)((lhimz — mily)hy + (mamy + Ll)hs) + h% + h2)(h3 + h3) # 0, equation system consisting of
the three constraints and x% + x% — 1 =0 can be reduced to triangular form (38) with Wu-Ritt’s characteristic set method
[14,19].

3.2.7. Case LPP-PLP

In this case, the three distance constraints are a constraint between a line in the platform and a point in the base,
a constraint between a point in the platform and a line in the base, and a constraint between a point in the platform and a
point in the base. Let the constraints be |B1P/1| =t11, |Baloa| =daa, |PSLy| =d31.

If h% +h% # 0, equation system consisting of the three constraints and x% +x§ —1=0 can be reduced to triangular form
(39) with Wu-Ritt’s characteristic set method [14,19], where c;; are the polynomials in the parameters l;, mj, hy, and d;.

X? + C11Xf15 + C12X‘11 + C13X? + C14X% +C15X%1 +¢16 =0,
2 3 2
(620X1 +C21X1 + sz)Xz + C23X] + C24X] + C25%1 + €26 =0,
(AX? + BX% + Cx1 + D)X3 + C3]X‘1l + C32X? + C33X% + €34X1 + ¢35 =0,

(AX? + BX% + Cx1 + D)X4 + C41X‘1l + C42X‘;’ + C43X% + C44X1 + 45 =0.

(39)

If h% + h% =0, t11 —b1 =0, my =0 and l1b3 + (b1 — b2)m1 —d31 # 0, equation system consisting of the three constraints
and x% +x% —1=0 can be reduced to triangular form (38) with Wu-Ritt’s characteristic set method [14,19].

3.2.8. Case LPP-PPP

In this case, one of the three distance constraints is between a line in the platform and a point in the base. Each of
the remaining two distance constraints is between a point in the platform and a point in the base. Let the constraints be
[B1P}| =t11, [BoP,| =t3 and |BsLy1| =d31.

If my (b% +b%)((b2 —by)? —l—b%) # 0, equation system consisting of the three constraints and xf —|—x§ —1 =0 can be reduced
to triangular form (39) with Wu-Ritt’s characteristic set method [14,19], where c;; are the polynomials in the parameters [;,
mj, hy, and d;.

If my =0, (b3 4+ b2)((b2 — b1)? +b3) #0, equation system consisting of the three constraints and x? +x3 — 1 =0 can be
reduced to triangular form (40) with Wu-Ritt’s characteristic set method [14,19].

X? + Cllx? + ClZX‘]l + 613X? + 614X% +c15%1 + €16 =0,
(b3x1 — l1d31 — h3)(Ax1 + B)Xa + €213 + C22X3 + €31 +C24 =0,
(b1x1 — (h2 + h1)) (AX1 + B)X3 + 3145 + C32X] + C33%1 + €34 = 0,
(b1x1 — (h2 + h1)) (b3xq — lid31 — h3)(Ax1 + B)X4 + ca1X} 4 c423 + ca3%3 + Caax1 + a5 =0.
If (b3 +b3) =0, l1(Iths +d31) # 0 and t}; +2(hy + h2)2(m1ha +lhs +d3my — (ha +h)tF; —4my — D(my + D(hy +
h2)?h3 +4ly (hy +h2)? (2d31 4 (hy — h1)m1)hs + (hy +h2)?((h1 4+ h2)? — 4m2h1hy — 4hydsymy +4hadsymy +4d3,) # 0, equation

system consisting of the three constraints can be reduced to triangular form (41) with Wu-Ritt's characteristic set method
[14,19], where c;; are the polynomials in the parameters I;, mj, hy, and d;.

X? + CnX? + ClZX% +Cc13%1 + €14 =0,

(Ax1 + B)X2 4 €21X3 + +c2%1 +C23 =0,

(b1x1 — (h2 +h1))(Ax1 + B)X3 + 31X} + 327 + C33%1 + €34 =0,
(b1x1 — (ha +h1)) (Ax1 + B)X4 + C41X3 + CazX? + Cazxy + Cag = 0.
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3.2.9. Case PPP-LPP

In this case, one of the three distance constraints is between a point in the platform and a line in the base. Each of
the remaining two distance constraints is between a point in the platform and a point in the base. Let the constraints be
[P}B{| =t11, [PyBa| =t22, [P4L1| =d31.

If (h% + h%) # 0, equation system consisting of the three constraints and x% +x§ — 1 =0 can be reduced to triangular
form (39) with Wu-Ritt’s characteristic set method [14,19].

If (h% + h%) =0 and t?l — 2b1(b1l% — 2lym1b3 — by m% + Zm%bz + 2m1d31)t%1 + b‘]1 + 4m1(l1b3 — myby — d3q )b? +4(1b3 —
miby — d31)2b% # 0, equation system consisting of the three constraints can be reduced to triangular form (42) with Wu-
Ritt’s characteristic set method [14,19].

3.2.10. Case PPP-PPP

In this case, each of the three distance constraints is between a point in the platform and a point in the base. Let the
constraints be [P{B1| =t11, [P,By| =t22, |P;B3| =t33.

If (b3 +b3) (b3 + (b2 — b1)?)(h3 + h%)(h? + h3) # 0, equation system consisting of the three constraints and x2 +x3 —1=0
can be reduced to triangular form (39) with Wu-Ritt’s characteristic set method [14,19].

If (h2 +h2) =0, (b3 +b2)((b3 + (b — b))}, — 2by (ba(ba — b1)? — t2;(ba — by) + b3by)t3, + (b3 + b3)bT — 2by (b3 + b2 —
t2,)b3 + (b3 + b3 — t3,)?b?) # 0, equation system consisting of the three constraints and X2 +x3 —1=0 can be reduced to
triangular form (42) with Wu-Ritt’s characteristic set method [14,19].

X{ +c118 + c12x5 + c13x1 + €14 =0,

(C20%1 4 C21)X2 + C22X3 4 C23X1 + €24 =0,
(Ax% + Bx1 + C)x3 + €31%% 4 c32%1 + €33 =0,
(AX] + Bxy + C)X4 + C41X] + Canx1 + ca43 = 0.

If (b3 +b3) =0, (h§+h$)((h3 +ht]; — 2(h1 +h2)(h1hd +hihd + hat3)e2, + (hy +ho)? (h§ + (h2 +h3 — 2t2)h% + (hahy +
t§3)2)) # 0, equation system consisting of the three constraints and x% + x% — 1 =0 can be reduced to triangular form (36)
with Wu-Ritt’s characteristic set method [14,19].

(42)

3.3. Classification of real solutions to planar GSP

For DDD planar GSPs, with Wu-Ritt’s characteristic set method, we can reduce them to triangular form consisting of one
quadratic and three linear equations shown as equation systems (34), (35), one quartic and three linear equations shown
as equation systems (36), (37), (38), (41), (42), or an equation of degree six and three linear equations shown as equation
systems (39), (40). So the number of the real solutions to the triangular form is equal to that of the nonlinear equation.
Equation systems (34), (35) are ruler and compass constructible. With the method in [21], we can obtain the conditions to
get real solution of direct kinematics for remaining triangular forms.

For equation x‘f + blx? + bzxf + b3x1 + bg = 0, the discriminant sequence is {D1, D3, D3, D4} shown in Appendix A. We
can obtain the following conclusions [21].

1. There is no real solution if the revised sign of the discriminant sequence is any one of the set {[1,—1,-1,1],
n,-1,1,-1,1,-1,0,01,[1,-1,1,11,11,-1,1,01,[1,1, -1, 1]};

2. There is one real solution if the revised sign of the discriminant sequence is any one of the set {[1,—1,—1,0],
[1,0,0,0],[1,1,—-1,01};

3. There are two real solutions if the revised sign of the discriminant sequence is any one of the set: {[1,—1,—1, —1],
[1,1,-1,-11,[1,1,0,0], [1,1,1, —-1]};

4. There are three real solutions if the revised sign of the discriminant sequence is [1,1, 1, 0];

5. There are four real solutions if the revised sign of the discriminant sequence is [1,1,1, 1].

For equation x8 +c1x3 +cox} +c3x3 4 c4x3 + 51 + ¢ = 0, the discrimination sequence is {D1, D2, D3, D4, Ds, Dg} shown
in Appendix B. We can obtain the following conclusions [21].

1. There is no real solution if the revised sign of the discriminant sequence is any one of the set {[1,—-1,—-1,—-1,1, —1],
n,-1,-1,1,-1,-1y,11,-1,-1,1,1,-1},[1,-1,1, -1, -1, -1}, [1, -1,1, -1, -1,1],[1,-1,1,—-1,1, —-1],[1,—-1,1,
1,-1,-11,11,-1,1,1,-1,1},[1,1, -1, -1,1,-1],[1,1, -1,1, -1, -1],[1,1,-1,1,-1,1],[1,-1,1,1,1, —1],[1, 1,
-1,1,1,-11,11,1,1,-1,1,-1],[1,-1,1,-1,1,1}],[1, -1, -1,1,-1,1],[1, -1,-1,1,-1,0],[1,-1,1,1,-1,0],[1, 1,
-1,1,-1,01,11, -1,1, -1, -1,0],[1, —-1,1, -1, 1,0],[1, —1,1,1,0,0],[1, -1, -1,1,0,0],[1,1,-1,1,0,0],[1,—1,1,
-1,0,0],[1,-1,0,0,0,0],[1,-1,1,0,0,0]};

2. There is one real solution if the revised sign of the discriminant sequence is any one of the set {[1,—-1,—1,—-1,1,0],
,-1,1,1,1,0),11,1,1,-1,1,01,[1,-1,-1,1,1,0],1,1,-1,1,1,0],[1,1, -1, —1,1,0], [1, -1, —1,0,0,0], [1, 1, —1,
0,0,01],[1,0,0,0,0,0]};
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Fig. 4. An example of planar DDD GSPs.

3. There are two real solutions if the revised sign of the discriminant sequence is any one of the set {[1, -1, -1, -1, —1, 1],
,-1,-1,-1,0,0y,[1,-1,-1,-1,1,1},[1, -1,-1,1,1,11,[11, -1,1,1,1,1},[1,1, -1, -1, -1,1],[1,1,—-1,—1,0, 0],
m1,-1,-1,1,1,1,1,-1,1,1,1j,1,1,o0,0,0,0,[1,1,1, -1, -1,1],[1,1,1,-1,0,0],[1,1,1,-1,1,1],[1,1,1,1, -1,
11}

4. There are three real solutions if the revised sign of the discriminant sequence is any one of the set {[1,—1,—-1,—1,
-1,0),[1,1,-1,-1,-1,0],[1,1,1,—1,—1,0],[1,1,1,0,0,0],[1,1,1,1, =1, 0]};

5. There are four real solutions if the revised sign of the discriminant sequence is any one of the set {[1, -1, -1, —1,

-1,-1),[1,1,-1,-1,-1,-1],[1,1,1, -1, -1, —-1],[1,1,1,1, -1, —-1],[1,1,1,1,0,0],[1,1,1,1,1, —1]};

. There are five real solutions if the revised sign of the discriminant sequence is [1,1,1,1,1,0];

7. There are six real solutions if the revised sign of the discriminant sequence is [1,1,1,1,1, 1].

<))

Example 1. The problem in Fig. 4 can be reduced into merging two rigid bodies p1p2p3p4 and pspsp7ps. We take pspsp7ps
as the base and pip2p3pa the platform. The constraints are |l7p4] =0, |lgp3| =0 and |pslz| =0, which is an LPP-PLL case.
Let p7 = (0, 0). The parametric equations for lines lg and I; are p = (0,0) + u1(1,0) and p = (0, 0) 4+ u»(0, 1). Let point p3
be the origin of the moving coordinate system. Then p3 = (x3, X4). Let |pgp7| = b2, |psps| = b3, |p2p3| =hy and |p3p4| = hs.
Thus the coordinates for points p4 and ps are pq = (—x2h3 + x3, x1h3 + X4) and ps = (by, b3). The parametric equation of
line Iy is p = (X3, X4) + u3(x1, X2).

The equation system is

X2 +x5—1=0,

|X2(b2 —x3) — X1(b3 —X4)} =0,
|—h3xy +x3| =0,

|x4] = 0.

(43)

Equation system (43) can be reduced to triangular form (44) with Wu-Ritt’s characteristic set method [14,19] under the
variable order x; < x3 < x3 if b, #0, b3 #0 and h3 #0.
h3x] — 2bshsx3 + (b3 + b3 — 2h3)x} + 2h3bsx; — b3 +h3 =0,
boxy + h3X% —b3x1 —h3=0,
boxs + h%X% — h3b3xq — h% =0,
x4 =0.

(44)

The discriminant sequence of equation h2x} — 2bshsx3 + (b% + b3 —2h2)x2 + 2h3b3x; —b3 +h3 =0 is {D1, D2, D3, D4}, where
D1 =h}, Dy = —h$(2b3 — b3 — 4h2), D3 = —hSb3 (b3 + 2b3b3 + 4b2h% + b — 2h2b3) and D4 = —b3hS(—b3h3 +bS + 16h3b3 +
b§ + 3b3b3 + 8h2b4 — 20h3b2b3 + 3b3b%).

If we take pg = (0, 33), hy =30, b, = 15 and b3 =3, we can get Dy =h}, D, =h§(2hs — 21)(2h3 + 21), D3 = h§(23h3 —
3042), Dy = —h§(16h‘31 — 10053h§ 4+ 1423656). Thus, the number of real solution is based on the value of parameter hs.

If we take h3 = 20, the revised sign of the discriminant sequence is [1, 1,1, 1]. So it has four real solutions shown in
Fig. 5, where the solutions to (x1, x2, X3, X4) are
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Fig. 5. Four solutions to planar DDD GSPs in Fig. 4 when h3 = 20.
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Fig. 6. Three solutions to planar DDD GSPs in Fig. 4 when h3 = 37”234;170‘@.

<L3‘/€, 6_1(;/6,2(6—\/6),0>, (M 6+‘/€,2(6+f6),0),

10 10 ° 10
—1434/39 3+4/39 —1-34/39 3-4/39
( +20 ) +20 ,3+v39,0), ( 20 e ,3—v39,0).

If we take h3 = M, the revised sign of the discriminant sequence is [1, 1, 1, 0]. So it has three real solutions

shown in Fig. 6, where the solutions to (x1, X2, X3, X4) are

<\/2234+170 (121+15J_) V22344 170/17(175 — 23J_) 45 — 3J_ )

10816 10816
\/228 475 —501154/17 \/2234 +170+/17(2029 + 475+/1 )
676 281216
V22344173 (1035 + 17341 ) G+v17 )\/228475 50115417
281216 2074
15 4+ 317 (15+3v )\/(22344-170\/ 17)(228475 — 50115+/17)
4 21632 )
\/228 475 — 5011517 \/2234 + 170+4/17(2029 + 475+/1 )
676 281216
V2234 4+1734/17(1035 4+ 1734/17) (5+«/ )\/228475 50115417
281216 2074
154+ 341 7 (1543417 )\/(22344-170«/ 17)(228475 — 50115+/17)
4 21632 )
If we take h3 = 2 , the revised sign of the discriminant sequence is [1, —1, —1, —1]. So it has two real solutions shown

in Fig. 7, where the solutions to (x1, X2, X3, X4) are

(—0.9845022807, —0.1753717746, —1.841403635, 0), (0.9726431468, 0.2323043457, 2.439195628, 0).
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Fig. 7. Two solutions to planar DDD GSPs in Fig. 4 when h3 = %

Because there is one real solution if the revised sign of the discriminant sequence is any one of the set {[1, -1, —1, 0],
[1,0,0,0],[1,1,—1,0]}, let D4 =0. Thus we could obtain four different solutions to hs, which are

3v/2234 4 1704/17 3v/2234 4 1704/17 3v/2234 — 170417 3v/2234 — 170/17
8 ’ 8 T 8 ’ 8 '

For each solution, the revised sign of the discriminant sequence is [1, 1, 1, 0]. This means equation system (44) has three
solutions and the case of containing one real solution will not appear.

4. Conclusions

The classification of direct Kinematics for the planar generalized Stewart platform (GSP) consisting of two rigid bodies
connected by three constraints between three pairs of points or lines in the base and the moving platform respectively
is introduced. The purpose of classifying direct kinematics for these new types of planar Stewart platforms is to find new
and better parallel mechanisms. We solve planar direct Kinematics, and get all the solutions to the problem instead of only
one solution. We also give the conditions to which type of planar GSPs is ruler and compass constructible and the detailed
classification of direct kinematics for every planar GSP. We obtain the explicit conditions on the parameters to have a given
number of real solutions for sixteen forms of planar GSPs. For DDA GSPs, we are able to give the explicit conditions on the
parameters to all of the possible degenerate cases.

Appendix A. The discrimination sequence for a quantic equation

The discriminant sequence of x{ +b1x3 +b2x? +b3x1 +bs = 0 is {D1, D2, D3, D4}, where Dy =1, D = —8b, +3b?, D3 =
14bybsby — 4b3 + 16bgby — 3b3bs + b2b2 — 6b2bs — 18b3, Dy = —6b2byb% — 4b2b3by — 192b3b2b1 + 144b;b2b? + 144b,bsb? +
18byb3by + 256b3 + 18b3b3bsby — 80b3bbsb3 — 4b3b3 — 27bib3 + b2b3b3 — 4b3b% + 16b5bs — 128b3b3 — 27b3.

Appendix B. The discrimination sequence for an equation of degree six
For equation x8 +c1x3 + c2x} + ¢3%3 + cax? + cs5x1 + ¢ = 0 the discrimination sequence is {D1, D, D3, D4, Ds, Dg}, where
D=1,
=—-12¢c3 + 5(,‘%,
D3 = 24c4C7 + 24c303¢1 — 8c2 — 10c1c4 — 5C1 c3 + 2C1 c2 27c3,
Dy = 64C2C5C1 — 12065C3c2 + 120C1C6C4 — 70C164C5 — 18C1C4C3 + 60C?C3C6 + 40c‘1‘C3cs — 24c%c§c6 — 16C?C%C5
— 8c] CZC4 + 3c%c%c§ 288cyc6C4 + 306c§csc1 — 720c3C5¢4 — 3BGC3cﬁc1 — 16863616465 + 38C%C3C4C2
— 224c5¢3 + 384c; — 81¢ + 96¢3¢6 + 32¢3ca — 12¢3¢% +300c2¢2 — 12¢3¢3 — 125¢2¢2 — 45¢ics
+ 324cec3 + 328cyc4c501 — 288cc3C1C6 — 162cz4:3cl c5 + 244czc4cl + 324C2C4C3 + 54czc3c1,
Ds = —1344czcsc4 + 256¢; — 192c2c6 + 16C2C4 + 72C2C5 - 12864c2 - 1296C2C6 27c] c4 + IGOclc5
+ 54OC1 c6 + 81C3C5 — 27c3c4 + 1728c6c4 + 276C3C1C4C2C5 + 296¢3C1 C4c§c6 — 1872C4C5C1C6C%
— 558C361C5C562 + 3024c4cscec1 + 187SC5 + 14C1C2C4C5C3 — 2214clc4cecsc3 — 62cl C3C4C265

— 66¢3c3cac5¢6 + 130c] c3c5c6¢2 — 200cTcach + 1620c3c2cs — 192c3¢4c1 + 3240c3¢5¢5 — 1600c4c
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+ 648c2c5¢3¢6¢1 + 1620c2¢3c1c6¢5 — 602c2¢3¢2c5¢5 + 21602¢5c3cacs — 1452cacacicrcs

+ 1704CZC4C?C566 — 1134CGC5C§ + 21663C1Cé€% — SOC3c1cic§ — 108c§c1c6c§ — 424C3c1c§c§

— 72C366C563 + 24C3C5C1 cﬁ + 112c§csc1 Cg — 56c‘2164C5C3 — 648C4C%C5C% — 644C4216%C6C% + 700C4C%C§C%

+432c5c3cscs + 38ciciesce — 174c3 3605 + 117cicsescs + 18cicscica + 24cicacecr + 97c3cscics

— 40cTcicacs — 6c3cscscs — 28c3cscscs + 122¢; cacies 4 120c]ciceca — 132¢cacic — 300¢3cacscs

+ 166%C3€4Ce - BC%cgcgcs + C%C%C%Ci - GC%cgcgce + 18C%C4C§C5 + IGOCzcsclcf’1 + 384CZC%C%C§

— 54czc§c1cs + 18czc§c1 cﬁ — 630C2C3C?C% — 48662C4C§C5 — 151ZCZC5C§C1 — 1188czc§c%cs + 828cz64céc%
— 270c4c3c6ct + 828c5c5c1€5 + 1620c3c2c6c1 — 2808c3c1cics — 64cscacs + 12c3c3¢c5 — 4eycies
+24c5c3c6 + 248c3c5c + 432c4cics — 616¢4cEc3 + 1420c3cc3 + 558¢5c5¢2 + 1080c2cgc; — 6cic3es

- 4c%c§ci - 18c%c‘2‘c§ + 1265C%C§C3 - SZC%cécﬁ + 837c%céc§ - 366?(‘56‘31 - 886?6%6% + 12C?C§C5

- 4c?c§cézl + 125C?C36é - 50c?c%cé + SGC%CsCi + 330c§’cscé + 2206‘116565 - 24OOCZC§C3 + 592642163&3

+ 648c3cgc5 — 621c2c1c3 + 144cacics + 1440coc2cs + 144cacic; — 5400cacec? — 324c2c4c3
+162c5cgc2 — 1004cac3c — 1344csesc; + 1512¢2c4¢6C5¢3,

Dg = 2808cac3c5c6Cs + 1500cicscs + 16c5cacs — 64cicics + 9216cacich 4 512c5¢ac2 — 192c5c2c2
+108c3c5c2 +16c5c3c2 — 8640c3cacs — 17280c5cacs — 128c3cacs 4 512c;c5c6 — 4352c; ¢3¢t
+2250c2c5¢1 + 43 200cdc3c? — 900cacics + 540c2cic? — 32400c2cieq — 27c2c5cd +1500cicics
—192cfcdcy +256c2c5c2 — 50c2cacs + 2000cicacs + 320cTcscs +410c; cied + 560cic3cacs
- 54286316%c§66c% - 4536C4C%C§C6C% - 3456646261 C3c% - 4464c§c165c§cé +10 152C3C%C5C4C§C§

— 1584c3c1c5c5c6¢5 — 682c3c3cacecs + 356¢5ctcacscs + 3272c3c1ca05¢2c6 + 2808¢3¢1cacicl

- 1086§c1c§csc% + 1663263C1C§CéC% — 2496C3C1C‘21C%C(23 +15 264C5c1cﬁcéc% - 2496CZC%CGC5C3
+ 320c3cq cjcﬁce —13 04OC4C§C1CGC§ — 80C3C1C2C%C§ — 64063C5C1C4cé + BZOCgcﬁcecscg — 96C3C5C] csc?l

— 72C3C§C4C6C5 — 5760C4C56%C3C(23 + lOZOc?cicécGQ + 1980C?C4C5C%C% — 1286‘1lc§cf3l + 108c?c?s,c(?3

+16c3c5c2 — 1350cic3cg — 36¢3cic; — 27ccqc? 4+ 27000c3 cscg + 108c]cic6 — 1600cac2c3
—32400c,c3c2 + 62208c,caca — 1600c3c3cs + 27 000c3c2c2 + 43 200c3c2c2 — 2500c4c3cy
—22500c4c6C2 + 38 880cscact — 46 6563 — 4464c3c5c1C6Cs + 39422 crcacecs + 768c3chc1ce

+ 6912C3C5c6cfl —77 76063C4C5cg + 46 656C3C1C2C421 + ZZSOC3cgc6q — 192C3C?1C1C% — 22896¢3c4C5€1 céc%

— 2412cyc5c3 cEeacs + 3272c2¢3¢3 c506C5 + 324cac5c1CacsCs + 10152co¢2cqc2csc3 — 5760c2¢5c3¢1Ch

— 3456c,¢5cac503 — 640c2¢501C6C — 4536Cac3¢3c5CE +3942c2¢3c2csci + 19800c2¢3¢3 caca
- 12330C2C3C?CéC§ + 1980czc§clcsc§ - 7262c§c1cecf’1 + 18czc§c1c§cﬁ - 74662C3C%C§C‘21

+ 874862C4CéC%C§ +19 80062C4CGC§C3 — ZOSOCZC4C§C1 c3—13 O4Oczcﬁc?céC5 + 976862C4C?C56§

—31320c,c5c3c2 ¢35 + 31968cac5¢3¢1¢4 + 102003 c3¢505¢2 + 560c]c3c2cacs — 2050 cscscacicn

+356¢3c3c5cac6cs — 630c]c3csc6c; + 160cc3cacecn — 80c3cacacaca — 746¢3c3cacscics

3.3 2 3.4 3.3.2 3. 20202 3.2.2 222
—630c7c304C205 — 7207 C3€4C6C5 + 24¢7c3¢5¢6C2 + 560cy c305¢5¢5 — 682cyc5c5c6¢3 + 16 632¢7c;c5¢5¢3
2.3 2 2.4 2 2.3. 3 24, 2 2.3. 22 2322
—108cyc3cyc6c5 — 192¢7¢5C5¢3¢5 + 18cyc5c4C5¢3 + 144c7C5cac5C6 + 144cc5c4C5¢5 — 6C7C505C5C6
2223, 22222 2 3 3., 4 3 30 2 3.3 2

—4cicyc506C, + c1c5¢5C5¢; — 12330c7C4C6C5C3 — 72€7C3C4C2C6 + 18c7C3C¢4C2C5 + 160c7c5C5¢4CG

2.3.2 3.2 3 2.2.3 2.2 .42 2.2.3.3 2.2.2.3
— 80c]¢5C4C6C5C3 + 24¢7¢5C5C6C; + 18¢7¢5C3C4C6C5 — 27¢7C5C3CE — 4CTC5C3C5 — 6CC3C5C,

+ 24c2c3cgch — 6480cacicicd — 10560cacsc2c — 1700cacsc3cd — 27 540cac2cc? + 3888cacacics
- 180062céc1c§ - 486OCZC4c§cé - 630C2C4C§C§ + 560czc§c%4:‘5l - 486C2C§C1Cf23 - 7262c§c1c§
+ 21 384czc§c1 cg + 160czcgc1 cf‘l + 144czc§c§ci — 576czc§c66§11 + 144czcjc%c§ —77 76062C3CéC1

— 576cc3c2 ¢ + 15552c5¢5c3¢1 + 5832c5c3¢1¢4 + 21 384cacicscs — 6318cscicées — 486¢3cacscs
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+162c5c2ceca — 9720c3csc2c2 + 1020c3c3cqc — 128c3ccac — 13824ckcs + 108c5cd — 1024c5c]

+ 256c1 c5 + 3125C]CG +34 992c3c6 - 8748c663 + 108c3c5 + 729c3c6 + 25665c4 - 1024C662

+ 481663636%% + SZOSCﬁcgcécg 63OC3clcsc2 + 6912C3C1C6C2 9720c§c%cgc§ + 7686§csc3cé

+ 144C2C5C]C6 72C2C4C5C3 576C2C4C5 6 — 576C2C4C6C3 + 24C2C3C5C6 1056Oc2c601 Caq

+ 248C%C%C%C% - 12062666563 + 16czc3c6c4 4c§c§c§cft + 24C2CSC1C4 - 6480C4C5C6C2 + 4816C26%Cé€%
+1020c4c3cacs + 46 656¢s5c3c5c3 — 21888cscac3¢1 + 5832¢5¢3¢5¢2 + 15600c5¢3 cics — 120c3c4e3cs
+ 144C?C5C6C4 + SZSC?cgcﬁcé + 144C]C3C5C2 9006l c3cSc6 1600C1C3C5C2 + ZZSOC?C%cgcz

- 37506?C3C§C4 + 20006163(3665 208c1 c3cec5 + 1GC1 c3cec4 4c§c§c§cﬁ + 14461 C3CSC4 BGC?cgcgcs
+2000c]c3cica — 50c]c3cic? — 6cicscics — 1700c] cacic? + 160c3 cacics + 2250c3cacées
- QOOCfCicécz 160061C4C5C5 - 192C]C4C562 +2250c¢] cscgq - 180061C5CSC4 2500clc5cgcz

+248c3cgcie; + 15417ckcciel — 27540c3 cacics + 162c2cachcl + 24c3cacicd — Acicicac?

+16c2c3cice — 31320c3c2crciea +3125¢8 — 13824c3c; — 21888cscicacs + 15600c3cacec
+2000c;cac — 3750c2¢2c3 — 8640c5cics + 2250c5cacs — 1350cscac3 — 22 500cacact + 825¢3c5ca

+ 108c3csc4 900c5c1 c3 + 9216C2C6C4 27c§.fc§cf1
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