
Computational Geometry 45 (2012) 458–473
Contents lists available at SciVerse ScienceDirect

Computational Geometry: Theory and
Applications

www.elsevier.com/locate/comgeo

Classification of direct kinematics to planar generalized Stewart
platforms ✩

Gui-Fang Zhang

College of Sciences, Beijing Forestry University, Beijing 100083, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 October 2009
Accepted 1 June 2010
Available online 27 January 2012
Communicated by D. Michelucci

Keywords:
Geometric constraint solving
Parallel robotics
Planar generalized Stewart platform
Direct kinematics
Closed-form solution

This paper presents the classification of direct kinematics for the planar generalized
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1. Introduction

The Stewart platform is a spatial parallel manipulator consisting of two rigid bodies: a moving platform (simply a plat-
form), and a base whose pose (position and orientation) is fixed. The base and the platform are connected by six extensible
legs. The Stewart platform is originated from the mechanism designed by Stewart for flight simulation [17] and the mecha-
nism designed by Gough for tire test [8]. For a set of given lengths of the six legs, the pose of the platform could generally
be determined. The Stewart platform has been studied extensively and has many applications. Comparing to serial mech-
anisms, the main advantages of the Stewart platform are its inherent stiffness and high load/weight ratio. The Stewart
platform has been studied extensively and has many applications. More information on the Stewart platform can be found
in [1,3,9,10,13,15]. A large portion of the work on Stewart platform is focused on the direct kinematics [9,10,13,15] which
can be considered as a geometric constraint problem.

Although a majority of the work on Stewart platform focuses on the spatial case, several people also considered the pla-
nar Stewart platform which consists of a moving platform and a base connected by three extensible legs. The planar parallel
manipulators shown in Figs. 1 and 2 are two typical planar Stewart platforms [13]. Gosselin and Merlet developed robust
solving schemes and established sharper bounds for special planar Stewart platforms [7]. In [16], Pennock and Kanssner
proved that the upper bound of the number of solutions for the direct kinematics of the planar Stewart platform is six.
Other interesting work on the planar Stewart platform could be found in [2,11,12].

In [5], to find new and more practical parallel mechanisms for various purposes, the spatial generalized Stewart platform
(abbr. GSP) consisting of two rigid bodies connected by six distance and/or angular constraints between six pairs of points,
lines and/or planes in the base and moving platform respectively is introduced, which could be considered as the most
general form of parallel manipulators with six DOFs in certain sense and a special class of geometric constraint problems.
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Fig. 1. 3-RPR planar parallel robot.

Fig. 2. 3-RPR planar parallel robot.

Fig. 3. Planar generalized Stewart platform.

In [20], the planar GSP shown in Fig. 3 is introduced, which could be considered as the most general form of planar parallel
manipulators with three DOFs at some extent. A planar GSP consists of a fixed rigid body (called base) and a movable rigid
body (called platform) connected by three distance or/and angular constraints between three pairs of points and/or lines on
the base and platform. The pose of the platform is determined by the values of the three constraints.

Geometric constraint solving (GCS) is the key technique of parametric CAD, which allows the user to make modifications
to existing designs by changing parameter values. There are four major approaches to geometric constraint solving: the
numerical approach, the symbolic computation approach, the rule-based approach and the graph based approach. GCS
methods may also be used in other fields like robotics, computer vision, molecular modeling, feature-based design and so
on. For a review on geometric constraint solving and its applications can be found in [4] and references therein.

From the viewpoint of GCS, direct kinematics GSP is a typical geometric constraint solving problem. In [6], a general ge-
ometric constraint problem is reduced to three minimal merge patterns: (1) to compute the position of a single geometric
primitive, (2) to compute the pose of a rigid body, and (3) the general merge pattern. The direct kinematics GSP is actually
to merge or assemble two rigid bodies. The direct kinematics is to solve an algebraic equation system with several param-
eters. Using the characteristic set method [14,19], the solving of parametric equation systems is reduced to the resolution
of equations in triangular form which is called closed-form solutions in [20] and hence the solving of univariate equations.
In [20], it is shown that closed-form solutions to the direct kinematics of all planar GSPs could be found with the charac-
teristic set method. With these closed-form solutions, upper bounds for the number of solutions of the direct kinematics in
the general cases can also be given. For a class of GSPs involving an angular constraint, a solution to the direct kinematics
based on ruler and compass constructions was provided.

The research of classification of linkages is an interesting and important problem. The reason is that we can know
whether the direct kinematics exist, and obtain the number of solutions to direct kinematics directly with the given param-
eters furthermore, once the condition of the parameters for a planar GSP is given. In [18], Su et al. classified the movement
of the RRSS spatial linkage in terms of its link dimensions with the method in [21], where the highest degree of the polyno-
mial is four. In this paper, we give the classification of direct kinematics for sixteen planar GSPs and the explicit conditions
on the parameters for the GSP to have a given number of real solutions. The rest of the paper is organized as follows. In
Section 2, the basic concepts to planar GSP are given. In Section 3, we give the classification of direct kinematics for the
sixteen planar GSPs. In Section 4, conclusions are given.
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2. Basic concepts to planar GSP

A rigid body in the plane has three DOFs. Therefore to determine its pose, we need three geometric constraints. The
planar GSP can be divided into two classes according to the three constraints added. DDA means there are one angular and
two distance constraints to be imposed. DDD means there are three distance constraints to be imposed. We cannot have
more than one angular constraints due to the fact that a rigid body in the plane has one rotational DOF and the rotational
DOF can generally be determined by one angular constraint.

We use LP to represent constraint between a line L and a point P in a GSP. Thus P1P2 represents constraint between two
points P1 and P2 in a GSP and L1L2 represents constraint between two lines L1 and L2 in a GSP. A GSP can be represented
by the primitives involved in the three constraints. For example, LLL-PPP represents a GSP consisting of three lines in the
platform and three points in the base, and PPP-LLL represents a GSP consisting of three points in the platform and three
lines in the base. Thus six different sub-cases of DDA are LLL-LPP, LLP-LPP, LLP-LPL, LPP-LLL, LPP-LLP and LPP-LPP. Ten
different sub-cases of DDD are PPP-LLL, PPP-LLP, PPP-LPP, LLL-PPP, LLP-PPP, LPP-PPP, LPP-PLL, LLP-PPL, LPP-PLP and
PPP-PPP.

Because the primitives involved in the base and the primitives are points and lines, we can always take three points in
the base and three points in the platform, respectively. For a line, we can take a point on it. Let three points in the base be
B1, B2 and B3, and three points in the platform be P1, P2 and P3.

Let B1 be the origin of the fixed coordinate system in the base, B1B2 the x-axis. The coordinates of three points in the
base are B1 = (0,0),B2 = (b1,0) and B3 = (b2,b3). Because a rigid body cannot be fixed with one point, b1,b2,b3 should
not equal to zero simultaneously. So we could let b1 > 0. And if b3 = 0, three points in the base are colinear.

Assuming that point D is the foot of perpendicular of point P3 to P1P2, let point D be the origin of the moving coordinate
system in the platform. The coordinate of point D in the fixed coordinate system is D = (x3, x4). Let � (B1B2,P1P2) = θ ,
x1 = cos θ, x2 = sin θ . The moving coordinates of three points in the platform are P1 = (−h1,0), P2 = (h2,0), P3 = (0,h3),
where h1,h2 are two nonnegative parameters [12]. Because a rigid body cannot be fixed with one point, h1,h2,h3 should
not equal to zero simultaneously, we could let h1 + h2 > 0. P1P2 is the x-axis of the moving coordinate system. Their
coordinates in the fixed coordinate system are⎧⎨

⎩
P′

1 = (−h1x1 + x3,−h1x2 + x4),

P′
2 = (h2x1 + x3,h2x2 + x4),

P′
3 = (−h3x2 + x3,h3x1 + x4).

There exist at most three lines in the base which satisfy the three distance constraints. Let the parametric equations of
these lines be⎧⎪⎨

⎪⎩
L1: P = B3 + u1s1

(
s1 = (l1,m1), |s1| = 1

)
,

L2: P = B2 + u2s2
(
s2 = (l2,m2), |s2| = 1

)
,

L3: P = B1 + u3s3
(
s3 = (l3,m3), |s3| = 1

)
.

There exist at most three lines in the platform which satisfy the three distance constraints. Let the parametric equations
of these lines be⎧⎪⎨

⎪⎩
L01: P = P3 + u1s1

(
s1 = (l1,m1), |s1| = 1

)
,

L02: P = P2 + u2s2
(
s2 = (l2,m2), |s2| = 1

)
,

L03: P = P1 + u3s3
(
s3 = (l3,m3), |s3| = 1

)
.

Although we use the same si in Li and L0i (i = 1,2,3), there will cause no confusion. The reason is that lines si in Li and
L0i (i = 1,2,3) will not appear in the same cases when the three constraints between the base and the platform are three
distance constraint simultaneity. After the three distance constraint are imposed, the corresponding parametric equations of
three lines in the platform are⎧⎨

⎩
L11: P = P′

3 + u1s11, |s11| = 1, s11 = (l1x1 − m1x2, l1x2 + m1x1),

L22: P = P′
2 + u2s22, |s22| = 1, s22 = (l2x1 − m2x2, l2x2 + m2x1),

L33: P = P′
1 + u3s33, |s33| = 1, s33 = (l3x1 − m3x2, l3x2 + m3x1).

In the following sections, we use |PL| to denote the distance between point P and line L, and |P1P2| to denote the distance
between two points P1 and P2, where the distance between two points is more than zero.

3. Classification of direct kinematics to planar generalized Stewart platform

3.1. Case DDA

For DDA, we will impose angular constraint firstly. Because the expressions of angular constraint only involves unit
vectors parallel to the corresponding line on the platform or the base. So we need only to consider angular constraints
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between two unit vectors. Let s1 be unit vector on the base which is parallel to line B1B2 and s2 unit vector on the
platform which is parallel to line P1P2, and � (s1,Rs2) = θ . Assuming that the rotational matrix is R = (ri j)2×2 and the
angular constraint is cos θ = x1(x2 = sin θ). Let s1 = (1,0) and s2 = (1,0), we can obtain the following equation system.

⎧⎨
⎩

RTR = I,
det(R) = 1,

s1 · Rs2 = x1.

(1)

Equation system (1) can be reduced to the following triangular form with Wu–Ritt’s characteristic set method [14,19].

⎧⎪⎨
⎪⎩

r2
12 − 1 + x2

1 = 0,

r21 + r12 = 0,

r22 − x1 = 0,

r11 − x1 = 0.

(2)

It is obvious that equation system (2) has two real solutions if x1 �= 1. If x1 = 1, equation system (2) has one real solution.
After the angular constraint is imposed, we will impose the two remaining distance constraints simultaneously. It is clear

that imposing distance constraints will not break the angular constraint imposed previously. Thus we only need to solve an
equation system consisting of two distance constraints.

3.1.1. Case LL-PP
In this case, each of the two distance constraints is between a line in the platform and a point in the base. Let the

distance constraints be |L11 B3| = d13 and |L22 B2| = d22. The equation system is as follows, where d1 = ±d13 and d2 = ±d22.

{
(l1x2 + m1x1)(−h3x2 + x3 − b2) − (l1x1 − m1x2)(h3x1 + x4 − b3) − d1 = 0,

(l2x2 + m2x1)(h2x1 + x3 − b1) − (l2x1 − m2x2)(h2x2 + x4) − d2 = 0.
(3)

If m2l1 − l2m1 �= 0, equation system (3) can be reduced to triangular form (4) with Wu–Ritt’s characteristic set method
[14,19].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m2l1 − l2m1)x3 + (
(l2m1 + m2l1)(b1 − b2) + (l2l1 − m2m1)b3

)
x2

2

+ ((
(m2m1 − l2l1)(b1 − b2) + (l2m1 + m2l1)b3

)
x1 − m1m2h2 − d1m2 − l1h3m2 + m1d2

)
x2

+ (l2l1h3 − d2l1 + l2d1 + m2h2l1)x1 − b1l1m2 − l2l1b3 + l2m1b2 = 0,

(m2l1 − l2m1)x4 + (
(m2m1 − l2l1)(b1 − b2) + (l2m1 + m2l1)b3

)
x2

2

+ ((
(l2m1 + m2l1)(b2 − b1) + (m2m1 − l2l1)b3

)
x1 + l2l1h3 − d2l1 + l2d1 + m2h2l1

)
x2

+ (m1m2h2 + d1m2 − m1d2 + l1h3m2)x1 + m1m2(b2 − b1) − l1b3m2 = 0.

(4)

If m2l1 − l2m1 = 0, two lines in the platform are parallel. There is no solution and the pose of the platform cannot be
fixed.

3.1.2. Case LP-PL
In this case, one distance constraint is between a point in the platform and a line in the base, the other is between a

line in the platform and a point in the base. Let the distance constraints be |L11 B3| = d13 and |P ′
2L2| = d22. The equation

system is as follows, where d1 = ±d13 and d2 = ±d22 respectively.

{
(l1x2 + m1x1)(−h3x2 + x3 − b2) − (l1x1 − m1x2)(h3x1 + x4 − b3) − d1 = 0,

m2(h2x1 + x3 − b1) − l2(h2x2 + x4) − d2 = 0.
(5)

If (m2l1 − l2m1)x1 − (l2l1 + m2m1)x2 �= 0, equation system (5) can be reduced to triangular form (6) with Wu–Ritt’s
characteristic set method [14,19].

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
(m2l1 − l2m1)x1 − (l2l1 + m2m1)x2

)
x3 + (l2m1 − m2l1)h2x2

2 + (−(l2l1 + m2m1)h2x1 + l2l1b2 + l2m1b3

+ m1d2 + m1m2b1
)
x2 + (−l1d2 + l2m1b2 − l2l1b3 − l1m2b1)x1 + m2h2l1 + l2d1 + l2l1h3 = 0,(

(m2l1 − l2m1)x1 − (l2l1 + m2m1)x2
)
x4 − (l2l1 + m2m1)h2x2

2 + (
(−l2m1 + m2l1)h2x1 + m2m1b3

+ m2l1(b2 − b1) − l1d2
)
x2 + (

m2m1(b2 − b1) − m1d2 − m2l1b3
)
x1 + m1m2h2 + m2d1 + m2l1h3 = 0.

(6)

If (m2l1 − l2m1)x1 − (l2l1 + m2m1)x2 = 0, there is no finite solution and the pose of the platform cannot be determined.
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3.1.3. Case LP-PP
In this case, one distance constraint is between a line in the platform and a point in the base, the other is between

a point in the platform and a point in the base. Let the two distance constraints be |L11 B3| = d13 and |P ′
2 B2| = t22. The

equation system is as follows, where d1 = ±d13 and d2 = t2
22 > 0.

{
(l1x2 + m1x1)(−h3x2 + x3 − b2) − (l1x1 − m1x2)(h3x1 + x4 − b3) − d1 = 0,

(h2x1 + x3 − b1)
2 + (h2x2 + x4)

2 − d2 = 0.
(7)

If m1x2 − l1x1 �= 0, equation system (7) can be reduced to triangular form (8) with Wu–Ritt’s characteristic set method
[14,19].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
3 + 2

(((
m2

1 − l21
)
(b2 − b1) − 2m1l1b3

)
x2

2 + (((
l21 − m2

1

)
b3 + 2l1m1(b1 − b2)

)
x1 − l1(m1h2 + l1h3 + d1)

)
x2

+ (
l21h2 − m1d1 − m1l1h3

)
x1 + m1l1b3 − m2

1b2 − l21b1
)
x3 + 2

((
m2

1 − l21
)
h2b3 + 2m1l1h2(b2 − b1)

)
x3

2

+ (
2
((

m2
1 − l21

)
h2(b2 − b1) − 2l1b3m1h2

)
x1 + (

m2
1 − l21

)(
b2

3 − b2
2 + b2

1 + h2
2 − d2

) + 2d1m1h2 + 4m1b2l1b3

+ 2l1h3m1h2
)
x2

2 + 2
(((

m2
1 − l21

)
b2b3 − l21h3h2 + l1m1

(
d2 − b2

3 − b2
1 − h2

2 + b2
2

) − d1l1h2
)
x1

+ (l1b2 + m1b3)d1 + 2l1m1h2b1 + (m1h3 + l1h2)l1b3 + (
l21h3 − m1l1h2

)
b2

)
x2 + 2

(
(m1b2 − l1b3)d1

+ m1b2l1h3 − l21(h3b3 + h2b1)
)
x1 + l21

(
b2

1 + h2
2 − d2

) + (l1h3 + d1)
2 + (m1b2 − l1b3)

2 = 0,

(m1x2 − l1x1)x4 + (l1x2 + m1x1)x3 − (m1b3 + l1b2)x2 − (m1b2 − l1b3)x1 − d1 − l1h3 = 0.

(8)

If m1x2 − l1x1 = 0, we can get the following equation system.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2
1 + x2

2 − 1 = 0,

(l1x2 + m1x1)(−h3x2 + x3 − b2) − (l1x1 − m1x2)(h3x1 + x4 − b3) − d1 = 0,

(h2x1 + x3 − b1)
2 + (h2x2 + x4)

2 − d2 = 0,

m1x2 − l1x1 = 0.

(9)

If m1 �= 0, l1 �= 0, equation system (9) can be reduced to triangular form (10) with Wu–Ritt’s characteristic set method
[14,19].⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x2
2 − l21 = 0,

l1x1 − m1x2 = 0,

x1x3 − b2x1 − m1(d1 + l1h3) = 0,

m1x2
4 + 2h2l1x1x4 + 2(b2 − b1)(d1 + l1h3 + m1h2)x1

+ m1
(
(d1 + l1h3)

2 + 2m1h2(d1 + l1h3) + (b2 − b1)
2 − d2 + h2

2

) = 0.

(10)

It is obviously that for the case that m1x2 − l1x1 = 0, only when x2
2 = l21, we have solution and the pose of the platform

can be determined.
If m1 = 0 and m1x2 − l1x1 = 0, we can get l1 = ±1 and x1 = 0. Thus we can get the following equation system.⎧⎪⎨

⎪⎩
x2

2 − 1 = 0,

l1x2(−h3x2 + x3 − b2) − d1 = 0,

(x3 − b1)
2 + (h2x2 + x4)

2 − d2 = 0.

(11)

Equation system (11) can be reduced to triangular form (12) and (13) with Wu–Ritt’s characteristic set method [14,19].
⎧⎨
⎩

x2 − 1 = 0,

l1x3 − d1 − l1(b2 + h3) = 0,

x2
4 + 2h2x4 + 2(h3 − b1 + b2)l1d1 + (h3 − b1 + b2)

2 + h2
2 − d2 + d2

1 = 0.

(12)

⎧⎨
⎩

x2 + 1 = 0,

l1x3 + d1 − l1(b2 − h3) = 0,

x2
4 − 2h2x4 + 2(h3 + b1 − b2)l1d1 + (h3 + b1 − b2)

2 + h2
2 − d2 + d2

1 = 0.

(13)

If l1 = 0 and m1x2 − l1x1 = 0, we can get m1 = ±1 and x2 = 0. Thus we can get the following equation system.
⎧⎨
⎩

x2
1 − 1 = 0,

m1x1(x3 − b2) − d1 = 0,
2 2

(14)
(h2x1 + x3 − b1) + (h2x2 + x4) − d2 = 0.
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Equation system (14) can be reduced to triangular form (15) and (16) with Wu–Ritt’s characteristic set method [14,19].

⎧⎨
⎩

x1 − 1 = 0,

m1x3 − d1 − m1b2 = 0,

x2
4 − d2 + d2

1 + 2m1(b2 − b1 + h2)d1 + b2
2 + 2(h2 − b1)b2 + b2

1 − 2h2b1 + h2
2 = 0,

(15)

⎧⎨
⎩

x1 + 1 = 0,

m1x3 + d1 − m1b2 = 0,

x2
4 − d2 + d2

1 + 2m1(b1 − b2 + h2)d1 + b2
2 − 2(b1 + h2)b2 + b2

1 + 2h2b1 + h2
2 = 0.

(16)

3.1.4. Case PP-LL
In this case, each of the two distance constraints is between a point in the platform and a line in the base. Let the two

distance constraints be |P ′
3L1| = d31 and |P ′

2L2| = d22. The equation system is as follows, where d1 = ±d31 and d2 = ±d22
respectively.

{
m1(−h3x2 + x3 − b2) − l1(h3x1 + x4 − b3) − d1 = 0,

m2(h2x1 + x3 − b1) − l2(h2x2 + x4) − d2 = 0.
(17)

If l1m2 −m1l2 �= 0, equation system (17) can be reduced to triangular form (18) with Wu–Ritt’s characteristic set method
[14,19].

{
(l1m2 − l2m1)x3 + l2(m1h3 − l1h2)x2 + l1(m2h2 + l2h3)x1 + l2(d1 + m1b2 − l1b3) − l1(m2b1 + d2) = 0,

(l1m2 − l2m1)x4 + m1(m2h3 − l2h2)x2 + m2(m1h2 + l1h3)x1 + m2(d1 + m1b2 − l1b3) − m1(m2b1 + d2) = 0.
(18)

If l1m2 − m1l2 = 0, two lines in the base are parallel. There is no solution and the pose of the platform cannot be
determined.

3.1.5. Case PP-LP
In this case, one distance constraint is between a point in the platform and a line in the base, the other distance

constraint is between a point in the platform and a point in the base. Let two distance constraints be |P ′
2 B2| = t22 and

|P ′
3L1| = d13. The equation system is as follows, where d1 = t2

22 > 0 and d2 = ±d13.

{
(h2x1 + x3 − b1)

2 + (h2x2 + x4)
2 − d1 = 0,

m1(−h3x2 + x3 − b2) − l1(h3x1 + x4 − b3) − d2 = 0.
(19)

If l1 �= 0 and l21 �= m2
1, equation system (19) can be reduced to triangular form (20) with Wu–Ritt’s characteristic set

method [14,19].

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
l21 − m2

1

)
x2

3 + 2
(
m1(m1h3 − l1h2)x2 + l1(m1h3 + l1h2)x1 + m2

1b2 − l21b1 + m1(d2 − l1b3)
)
x3

+ ((
l21 − m2

1

)
h2

3 + 2l1h2(m1h3 − l1h2)
)
x2

2 + 2(l1h2 − m1h3)(l1h3x1 + d2 − l1b3 + m1b2)x2

+ 2
(
(l1b3 − d2 − m1b2)h3 − l1h2b1

)
l1x1 − (m1b2 + d2 − l1b3)

2 + l21
(
b2

1 − d1 + h2
2 − h2

3

) = 0,

l1x4 − m1x3 + m1h3x2 + l1h3x1 + m1b2 − l1b3 + d2 = 0.

(20)

If l1 = 0, equation system (19) can be reduced to triangular form (21) with Wu–Ritt’s characteristic set method [14,19].

⎧⎪⎨
⎪⎩

m1x3 − m1h3x2 − m1b2 − d2 = 0,

x2
4 + 2h2x2x4 + (

2h2
2 − h2

3

)
x2

2 − 2h3(h2x1 + b2 − b1 + m1d2)x2

− 2h2(b2 − b1 + m1d2)x1 − (b2 − b1 + m1d2)
2 − h2

2 + d1 = 0.

(21)

If l21 = m2
1, then m1 = ±l1 and l1 = ±

√
2

2 .
If m1 = l1 and (h3 − h2)x2 + (h2 + h3)x1 − (b1 − b2 + b3 − d3) �= 0, we can get the following equation system, where

d3 = d2
m1

.

{
(h2x1 + x3 − b1)

2 + (h2x2 + x4)
2 − d1 = 0,

(−h3x2 + x3 − b2) − (h3x1 + x4 − b3) − d3 = 0.
(22)

Equation system (22) can be reduced to triangular form (23) with Wu–Ritt’s characteristic set method [14,19].
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(
(h3 − h2)x2 + (h2 + h3)x1 − (b1 − b2 + b3 − d3)

)
x3 + 2h2(h3 − h2)x2

2

+ 2(h2 − h3)
(
h3x1 − (b3 − b2 − d3)

)
x2 + 2

(
h3(b3 − b2 − d3) − h2b1

)
x1

− d1 − (b3 − b2 − d3)
2 + b2

1 + h2
2 − h2

3 = 0,

2
(
(h3 − h2)x2 + (h2 + h3)x1 − (b1 − b2 + b3 − d3)

)
x4 − 2h2(h3 + h2)x2

2

+ 2h3
(
(h2 + h3)x1 − (b1 − b2 + b3 − d3)

)
x2 − 2(h2 + h3)(b1 − b2 + b3 − d3)x1 − d1

+ (h2 + h3)
2 + (b1 − b2 + b3 − d3)

2 = 0.

(23)

If m1 = l1 and (h3 − h2)x2 + (h2 + h3)x1 − (b1 − b2 + b3 − d3) = 0, we can get no solution.
If m1 = −l1 and (h2 + h3)x2 + (h2 − h3)x1 − (b1 − b2 − b3 − d3) �= 0, we can get the following equation system, where

d3 = d2
m1

.

{
(h2x1 + x3 − b1)

2 + (h1x2 + x4)
2 − d1 = 0,

(−h3x2 + x3 − b2) + (h3x1 + x4 − b3) − d3 = 0.
(24)

Equation system (24) can be reduced to triangular form (25) with Wu–Ritt’s characteristic set method [14,19].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(
(h2 + h3)x2 + (h2 − h3)x1 − (b1 − b2 − b3 − d3)

)
x3 − 2h2

(
h2 + h3

)
x2

2

+ 2(h2 + h3)
(
h3x1 − (b2 + b3 + d3)

)
x2 + 2

(
h3(b2 + b3 + d3) − h2b1

)
x1 − d1

− (b2 + b3 + d3)
2 + b2

1 + h2
2 − h2

3 = 0,

2
(
(h2 + h3)x2 + (h2 − h3)x1 − (b1 − b2 − b3 − d3)

)
x4 + 2h2(h2 − h3)x2

2

− 2h3
(
(h2 − h3)x1 − (b1 − b2 − b3 − d3)

)
x2 + 2(h2 − h3)(b1 − b2 − b3 − d3)x1 + d1

− (h2 − h3)
2 − (b1 − b2 − b3 − d3)

2 = 0.

(25)

If m1 = −l1 and (h2 + h3)x2 + (h2 − h3)x1 − (b1 − b2 − b3 − d3) = 0, we could get no solution.

3.1.6. Case PP-PP
In this case, each of the two distance constraints is between a point in the platform and a point in the base. Let the

distance constraints be |P ′
3 B3| = t33 and |P ′

2 B2| = t22. The equation system is as follows, where d1 = t2
33 > 0 and d2 = t2

22 > 0
respectively.

{
(−h3x2 + x3 − b2)

2 + (h3x1 + x4 − b3)
2 − d1 = 0,

(h2x1 + x3 − b1)
2 + (h2x2 + x4)

2 − d2 = 0.
(26)

If h2x2 − h3x1 + b3 �= 0 and 2(h3(b2 − b1) + b3h2)x2 + 2(h2(b2 − b1) − h3b3)x1 + b2
3 + (b2 − b1)

2 + h2
3 + h2

2 �= 0, equation
system (26) can be reduced to triangular form (27) with Wu–Ritt’s characteristic set method [14,19], where ci j are the
polynomials in the parameters li , m j , hk , and dt .

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4
(
2
(
h3(b2 − b1) + b3h2

)
x2 + 2

(
h2(b2 − b1) − h3b3

)
x1 + b2

3 + (b2 − b1)
2 + h2

3 + h2
2

)
x2

3

+ (
c31x2

2 + (c32x1 + c33)x2 + c34x1 + c35
)
x3 + c36x3

2 + (c37x1 + c38)x2
2

+ (c39x1 + c310)x2 + c311x1 + c312 = 0,

2(h2x2 − h3x1 + b3)x4 + 2(h3x2 + h2x1 + b2 − b1)x3 − 2h3b2x2 + 2(h3b3 − h2b1)x1

− d2 + d1 − h2
3 + h2

2 − b2
3 − b2

2 + b2
1 = 0.

(27)

If h2x2 − h3x1 + b3 = 0, we have the following equation system.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2
1 + x2

2 − 1 = 0,

(−h3x2 + x3 − b2)
2 + (h3x1 + x4 − b3)

2 − d1 = 0,

(h2x1 + x3 − b1)
2 + (h2x2 + x4)

2 − d2 = 0,

h2x2 − h3x1 + b3 = 0.

(28)

If (b2
3 + (b2 − b1)

2 − h2
3 − h2

2)h2 �= 0, equation system (28) can be reduced to triangular form (29) with Wu–Ritt’s charac-
teristic set method [14,19].
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(
h2

3 + h2
2

)
x2

1 − 2h3x1b3 + b2
3 − h2

2 = 0,

h2x2 − h3x1 + b3 = 0,

2
((

h2
2 + h2

3

)
x1 − h3b3 + h2(b2 − b1)

)
x3 + 2

(
h2(h3b3 − h2b1) − b2h2

3

)
x1 + 2b2h3b3

+ (
b2

1 − b2
2 − b2

3 + h2
2 − h2

3 + d1 − d2
)
h2 = 0,(

h2
3 + h2

2

)(
2
(
h2

3 + h2
2

)
(b1 − b2)x1 − (

(b2 − b1)
2 − b2

3 + h2
2 + h2

3

)
h2 + 2(b2 − b1)h3b3

)
x2

4

+ (c41x1 + c42)x4 + c43x1 + c44 = 0.

(29)

If 2(b3h2 + h3(b2 − b1))x2 − 2(b3h3 − h2(b2 − b1))x1 + (b2 − b1)
2 + b2

3 + h2
2 + h2

3 = 0, we have the following equation
system.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2
1 + x2

2 − 1 = 0,

(−h3x2 + x3 − b2)
2 + (h3x1 + x4 − b3)

2 − d1 = 0,

(h2x1 + x3 − b1)
2 + (h2x2 + x4)

2 − d2 = 0,

2
(
b3h2 + h3(b2 − b1)

)
x2 − 2

(
b3h3 − h2(b2 − b1)

)
x1 + (b2 − b1)

2 + b2
3 + h2

2 + h2
3 = 0.

(30)

If b2
3 + (b2 − b1)

2 − h2
3 − h2

2 �= 0 and (b3h2 + h3(b2 − b1))(d2 − d1)(h2
3 + h2

2)(b
2
3 + (b2 − b1)

2) �= 0, equation system (30) can
be reduced to triangular form (31) with Wu–Ritt’s characteristic set method [14,19], where ci j are the polynomials in the
parameters li , m j , hk , and dt .

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
h2

2 + h2
3

)(
b2

3 + (
b2

2 − b2
1

))
x2

1 + c11x1 + c12 = 0,

2
(
b3h2 + h3(b2 − b1)

)
x2 − 2

(
b3h3 − h2(b2 − b1)

)
x1 + (b2 − b1)

2 + b2
3 + h2

2 + h2
3 = 0,

(c31x1 + c32)x3 + c33x1 + c34 = 0,

(c41x1 + c42)x4 + c43x1 + c44 = 0.

(31)

If h2x2 − h3x1 + b3 = 0 and 2(b3h2 + h3(b2 − b1))x2 − 2(b3h3 − h2(b2 − b1))x1 + (b2 − b1)
2 + b2

3 + h2
2 + h2

3 = 0, we have
the following equation system.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x2
1 + x2

2 − 1 = 0,

(−h3x2 + x3 − b2)
2 + (h3x1 + x4 − b3)

2 − d1 = 0,

(h2x1 + x3 − b1)
2 + (h2x2 + x4)

2 − d2 = 0,

h2x2 − h3x1 + b3 = 0,

2
(
b3h2 + h3(b2 − b1)

)
x2 − 2

(
b3h3 − h2(b2 − b1)

)
x1 + (b2 − b1)

2 + b2
3 + h2

2 + h2
3 = 0.

(32)

If (b1 − b2)
2 + b2

3 − h2
3 − h2

2 = 0 and (b2 − b1) �= 0, equation system (32) can be reduced to triangular form (33) with
Wu–Ritt’s characteristic set method [14,19], where ci j are the polynomials in the parameters li , m j , hk , and dt .

⎧⎪⎪⎨
⎪⎪⎩

x1 + c11 = 0,

x2 + c21 = 0,

x3 + c31 = 0,

x2
4 + c41x4 + c42 = 0.

(33)

For case DDA, the degree of freedom of triangular form to each GSP is no more than two, so it is ruler and compass
constructible.

3.2. Case DDD

For case DDD, the problem becomes more complexity. The reason is that the parameters increase and we have to solve an
equation system consisting of three distance constraints simultaneously. We will classify real solutions to direct kinematics
for each planar GSP with the method in [21].

3.2.1. Case PPP-LLL
In this case, each of the three distance constraints is between a point in the platform and a line in the base. Let the

three constraints be |P′
1L3| = d13, |P′

2L2| = d22, and |P′
3L1| = d31.

If (l3m2 − l2m3)m1h3 + (l1m3 − l3m1)l2h2 + (l1m2 − l2m1)l3h1 �= 0 and (l2m3 − m2l3)2h2
3 + (l1m3 − m1l3)2h2

2 + (l1m2 −
m1l2)2h2

1 + 2(l1m2 − m1l2)(l1m3 − m1l3)((l2m3 − m2l3)(h1 + h2)h3 + (m2m3 + l2l3)h1h2) �= 0 equation system consisting of
the three constraints and x2

1 + x2
2 − 1 = 0 can be reduced to triangular form (34) with Wu–Ritt’s characteristic set method

[14,19], where ci j are the polynomials in the parameters li , m j , hk , and dt .
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x2
1 + c11x1 + c12 = 0,

x2 + c21x1 + c22 = 0,

x3 + c31x1 + c32 = 0,

x4 + c41x1 + c42 = 0.

(34)

Thus, the number of solution to above characteristic set is equal to the number of solution to x2
1 + c11x1 + c12 = 0. It is

clear that there is two solution if c2
11 − 4c12 > 0, one solution if c2

11 − 4c12 = 0, and no solution if c2
11 − 4c12 < 0.

3.2.2. Case LLL-PPP
In this case, each of the three distance constraints is between a line in the platform and a point in the base. Let the

constraints be |L33B1| = d31, |L22B2| = d22, |L11B3| = d13.
If (l2m3 − l3m2)m1b3 + (l2m3 − l3m2)l1b2 + (m1l3 − m3l1)l2b1 �= 0 and m2l3 − l2m3 �= 0, equation system consisting of

the three constraints and x2
1 + x2

2 − 1 = 0 can be reduced to triangular form (35) with Wu–Ritt’s characteristic set method
[14,19], where ci j are the polynomials in the parameters li , m j , hk , and dt .⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x2
1 + c11x1 + c12 = 0,

x2 + c21x1 + c22 = 0,

x3 + c31x1 + c32 = 0,

(c40x1 + c41)x4 + c42x1 + c43 = 0.

(35)

3.2.3. Case LLP-PPL
In this case, one of the three distance constraints is between a point in the platform and a line in the base. Each of

the remaining two distance constraints is between a line in the platform and a point in the base. Let the constraints be
|B1L33| = d13, |B2L22| = d22, and |D33L1| = d31.

If l1 �= 0, equation system consisting of the three constraints and x2
1 + x2

2 − 1 = 0 can be reduced to triangular form (36)
with Wu–Ritt’s characteristic set method [14,19], where ci j are the polynomials in the parameters li , m j , hk , and dt .⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x4
1 + c11x3

1 + c12x2
1 + c13x1 + c14 = 0,

(c20x1 + c21)x2 + c22x2
1 + c23x1 + c24 = 0,(

x2
1 + Ax1 + B

)
x3 + c31x3

1 + c32x2
1 + c33x1 + c34 = 0,(

x2
1 + Ax1 + B

)
x4 + c41x3

1 + c42x2
1 + c43x1 + c44 = 0.

(36)

3.2.4. Case LLP-PPP
In this case, one of the three distance constraints is between a point in the platform and a point in the base. Each of

the remaining two distance constraints is between a line in the platform and a point in the base. Let the constraints be
|B1P′

1| = t11, |B2L22| = d22 and |B3L11| = d31.
If l1m1l2h1(l1m2 − l2m1) �= 0 and ((b1 − b2)

2 + b2
3)(4((m2

1 − l21)m2l2 − (m2
2 − l22)m1l1)b1b3 + 2(4m1l1m2l2 + (m2

1 − l21)(m
2
2 −

l22))b1b2 − b2
3 − b2

2 − b2
1) �= 0, equation system consisting of the three constraints and x2

1 + x2
2 − 1 = 0 can be reduced to

triangular form (37) with Wu–Ritt’s characteristic set method [14,19], where ci j are the polynomials in the parameters li ,
m j , hk , and dt .⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x4
1 + c11x3

1 + c12x2
1 + c13x1 + c14 = 0,

(c20x1 + c21)x2 + c22x2
1 + c23x1 + c24 = 0,

(Ax1 + B)x3 + c31x3
1 + c32x2

1 + c33x1 + c34 = 0,

(Ax1 + B)x4 + c41x3
1 + c42x2

1 + c43x1 + c44 = 0.

(37)

If b3 = 0, b1 = b2, l1m1l2h1(l1m2 − l2m1) �= 0, (−m1d22 +m1m2h2 +m2d31 + l1m2h3) �= 0, and (l1m2h1 − l2m1h1 + l2l1h3 +
l2d31 − l1d22 + l1m2h2)

2 + (l1h3 + m1h2 + d31)
2m2

2 − 2m1d22(l1h3 + m1l21h2 + d31)m2 + m2
1d22 �= 0, equation system consisting

of the three constraints and x2
1 + x2

2 − 1 = 0 can be reduced to triangular form (34) with Wu–Ritt’s characteristic set method
[14,19].

3.2.5. Case LPP-PLL
In this case, one of the three distance constraints is between a line in the platform and a point in the base. Each of

the remaining two distance constraints is between a point in the platform and a line in the base. Let the constraints be
|B1L33| = d13, |P′

2L2| = d22, |P′
3L1| = d31.

If (h2
2 + h2

3)(m2l1 − m1l2) �= 0, equation system consisting of the three constraints and x2
1 + x2

2 − 1 = 0 can be reduced to
triangular form (38) with Wu–Ritt’s characteristic set method [14,19], where ci j are the polynomials in the parameters li ,
m j , hk , and dt .
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x4
1 + c11x3

1 + c12x2
1 + c13x1 + c14 = 0,

(c20x1 + c21)x2 + c22x2
1 + c23x1 + c24 = 0,

(Ax1 + B)x3 + c31x2
1 + c32x1 + c33 = 0,

(Ax1 + B)x4 + c41x2
1 + c42x1 + c43 = 0.

(38)

3.2.6. Case PPP-LLP
In this case, one of the three distance constraints is between a point in the platform and a point in the base. Each of

the remaining two distance constraints is between a point in the platform and a line in the base. Let the constraints be
|P′

1B1| = t11, |P′
2L2| = d22, |P′

3L1| = d31.
If (4(h1 + h2)(l1m2 − m1l2)((l1m2 − m1l2)h1 + (m2m1 + l2l1)h3) + h2

2 + h2
3)(h

2
2 + h2

3) �= 0, equation system consisting of
the three constraints and x2

1 + x2
2 − 1 = 0 can be reduced to triangular form (38) with Wu–Ritt’s characteristic set method

[14,19].

3.2.7. Case LPP-PLP
In this case, the three distance constraints are a constraint between a line in the platform and a point in the base,

a constraint between a point in the platform and a line in the base, and a constraint between a point in the platform and a
point in the base. Let the constraints be |B1P′

1| = t11, |B2L22| = d22, |P′
3L1| = d31.

If h2
3 + h2

1 �= 0, equation system consisting of the three constraints and x2
1 + x2

2 − 1 = 0 can be reduced to triangular form
(39) with Wu–Ritt’s characteristic set method [14,19], where ci j are the polynomials in the parameters li , m j , hk , and dt .

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x6
1 + c11x5

1 + c12x4
1 + c13x3

1 + c14x2
1 + c15x1 + c16 = 0,(

c20x2
1 + c21x1 + c22

)
x2 + c23x3

1 + c24x2
1 + c25x1 + c26 = 0,(

Ax3
1 + Bx2

1 + Cx1 + D
)
x3 + c31x4

1 + c32x3
1 + c33x2

1 + c34x1 + c35 = 0,(
Ax3

1 + Bx2
1 + Cx1 + D

)
x4 + c41x4

1 + c42x3
1 + c43x2

1 + c44x1 + c45 = 0.

(39)

If h2
3 + h2

1 = 0, t11 − b1 = 0, m2 = 0 and l1b3 + (b1 − b2)m1 − d31 �= 0, equation system consisting of the three constraints
and x2

1 + x2
2 − 1 = 0 can be reduced to triangular form (38) with Wu–Ritt’s characteristic set method [14,19].

3.2.8. Case LPP-PPP
In this case, one of the three distance constraints is between a line in the platform and a point in the base. Each of

the remaining two distance constraints is between a point in the platform and a point in the base. Let the constraints be
|B1P′

1| = t11, |B2P′
2| = t22 and |B3L11| = d31.

If m1(b2
3 +b2

2)((b2 −b1)
2 +b2

3) �= 0, equation system consisting of the three constraints and x2
1 + x2

2 −1 = 0 can be reduced
to triangular form (39) with Wu–Ritt’s characteristic set method [14,19], where ci j are the polynomials in the parameters li ,
m j , hk , and dt .

If m1 = 0, (b2
3 + b2

2)((b2 − b1)
2 + b2

3) �= 0, equation system consisting of the three constraints and x2
1 + x2

2 − 1 = 0 can be
reduced to triangular form (40) with Wu–Ritt’s characteristic set method [14,19].

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x6
1 + c11x5

1 + c12x4
1 + c13x3

1 + c14x2
1 + c15x1 + c16 = 0,

(b3x1 − l1d31 − h3)(Ax1 + B)x2 + c21x3
1 + c22x2

1 + c23x1 + c24 = 0,(
b1x1 − (h2 + h1)

)
(Ax1 + B)x3 + c31x3

1 + c32x2
1 + c33x1 + c34 = 0,(

b1x1 − (h2 + h1)
)
(b3x1 − l1d31 − h3)(Ax1 + B)x4 + c41x4

1 + c42x3
1 + c43x2

1 + c44x1 + c45 = 0.

(40)

If (b2
3 + b2

2) = 0, l1(l1h3 + d31) �= 0 and t4
11 + 2(h1 + h2)(2(m1h2 + l1h3 + d31)m1 − (h2 + h1))t2

11 − 4(m1 − 1)(m1 + 1)(h1 +
h2)

2h2
3 +4l1(h1 +h2)

2(2d31 + (h2 −h1)m1)h3 + (h1 +h2)
2((h1 +h2)

2 −4m2
1h1h2 −4h1d31m1 +4h2d31m1 +4d2

31) �= 0, equation
system consisting of the three constraints can be reduced to triangular form (41) with Wu–Ritt’s characteristic set method
[14,19], where ci j are the polynomials in the parameters li , m j , hk , and dt .

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x4
1 + c11x3

1 + c12x2
1 + c13x1 + c14 = 0,

(Ax1 + B)x2 + c21x2
1 + +c22x1 + c23 = 0,(

b1x1 − (h2 + h1)
)
(Ax1 + B)x3 + c31x3

1 + c32x2
1 + c33x1 + c34 = 0,(

b1x1 − (h2 + h1)
)
(Ax1 + B)x4 + c41x3

1 + c42x2
1 + c43x1 + c44 = 0.

(41)
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3.2.9. Case PPP-LPP
In this case, one of the three distance constraints is between a point in the platform and a line in the base. Each of

the remaining two distance constraints is between a point in the platform and a point in the base. Let the constraints be
|P′

1B1| = t11, |P′
2B2| = t22, |P′

3L1| = d31.
If (h2

1 + h2
3) �= 0, equation system consisting of the three constraints and x2

1 + x2
2 − 1 = 0 can be reduced to triangular

form (39) with Wu–Ritt’s characteristic set method [14,19].
If (h2

1 + h2
3) = 0 and t4

11 − 2b1(b1l21 − 2l1m1b3 − b1m2
1 + 2m2

1b2 + 2m1d31)t2
11 + b4

1 + 4m1(l1b3 − m1b2 − d31)b3
1 + 4(l1b3 −

m1b2 − d31)
2b2

1 �= 0, equation system consisting of the three constraints can be reduced to triangular form (42) with Wu–
Ritt’s characteristic set method [14,19].

3.2.10. Case PPP-PPP
In this case, each of the three distance constraints is between a point in the platform and a point in the base. Let the

constraints be |P′
1B1| = t11, |P′

2B2| = t22, |P′
3B3| = t33.

If (b2
2 +b2

3)(b
2
3 + (b2 −b1)

2)(h2
2 +h2

3)(h
2
1 +h2

3) �= 0, equation system consisting of the three constraints and x2
1 + x2

2 − 1 = 0
can be reduced to triangular form (39) with Wu–Ritt’s characteristic set method [14,19].

If (h2
1 + h2

3) = 0, (b2
2 + b2

3)((b
2
3 + (b2 − b1)

2)t4
11 − 2b1(b2(b2 − b1)

2 − t2
33(b2 − b1) + b2

3b2)t2
11 + (b2

3 + b2
2)b

4
1 − 2b2(b2

2 + b2
3 −

t2
33)b

3
1 + (b2

2 + b2
3 − t2

33)
2b2

1) �= 0, equation system consisting of the three constraints and x2
1 + x2

2 − 1 = 0 can be reduced to
triangular form (42) with Wu–Ritt’s characteristic set method [14,19].⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x4
1 + c11x3

1 + c12x2
1 + c13x1 + c14 = 0,

(c20x1 + c21)x2 + c22x2
1 + c23x1 + c24 = 0,(

Ax2
1 + Bx1 + C

)
x3 + c31x2

1 + c32x1 + c33 = 0,(
Ax2

1 + Bx1 + C
)
x4 + c41x2

1 + c42x1 + c43 = 0.

(42)

If (b2
2 + b2

3) = 0, (h2
3 + h2

1)((h
2
2 + h2

3)t
4
11 − 2(h1 + h2)(h1h2

3 + h1h2
2 + h2t2

33)t
2
11 + (h1 + h2)

2(h4
3 + (h2

1 + h2
2 − 2t2

33)h
2
3 + (h2h1 +

t2
33)

2)) �= 0, equation system consisting of the three constraints and x2
1 + x2

2 − 1 = 0 can be reduced to triangular form (36)
with Wu–Ritt’s characteristic set method [14,19].

3.3. Classification of real solutions to planar GSP

For DDD planar GSPs, with Wu–Ritt’s characteristic set method, we can reduce them to triangular form consisting of one
quadratic and three linear equations shown as equation systems (34), (35), one quartic and three linear equations shown
as equation systems (36), (37), (38), (41), (42), or an equation of degree six and three linear equations shown as equation
systems (39), (40). So the number of the real solutions to the triangular form is equal to that of the nonlinear equation.
Equation systems (34), (35) are ruler and compass constructible. With the method in [21], we can obtain the conditions to
get real solution of direct kinematics for remaining triangular forms.

For equation x4
1 + b1x3

1 + b2x2
1 + b3x1 + b4 = 0, the discriminant sequence is {D1, D2, D3, D4} shown in Appendix A. We

can obtain the following conclusions [21].

1. There is no real solution if the revised sign of the discriminant sequence is any one of the set {[1,−1,−1,1],
[1,−1,1,−1], [1,−1,0,0], [1,−1,1,1], [1,−1,1,0], [1,1,−1,1]};

2. There is one real solution if the revised sign of the discriminant sequence is any one of the set {[1,−1,−1,0],
[1,0,0,0], [1,1,−1,0]};

3. There are two real solutions if the revised sign of the discriminant sequence is any one of the set: {[1,−1,−1,−1],
[1,1,−1,−1], [1,1,0,0], [1,1,1,−1]};

4. There are three real solutions if the revised sign of the discriminant sequence is [1,1,1,0];
5. There are four real solutions if the revised sign of the discriminant sequence is [1,1,1,1].

For equation x6
1 +c1x5

1 +c2x4
1 +c3x3

1 +c4x2
1 +c5x1 +c6 = 0, the discrimination sequence is {D1, D2, D3, D4, D5, D6} shown

in Appendix B. We can obtain the following conclusions [21].

1. There is no real solution if the revised sign of the discriminant sequence is any one of the set {[1,−1,−1,−1,1,−1],
[1,−1,−1,1,−1,−1], [1,−1,−1,1,1,−1], [1,−1,1,−1,−1,−1], [1,−1,1,−1,−1,1], [1,−1,1,−1,1,−1], [1,−1,1,

1,−1,−1], [1,−1,1,1,−1,1], [1,1,−1,−1,1,−1], [1,1,−1,1,−1,−1], [1,1,−1,1,−1,1], [1,−1,1,1,1,−1], [1,1,

−1,1,1,−1], [1,1,1,−1,1,−1], [1,−1,1,−1,1,1], [1,−1,−1,1,−1,1], [1,−1,−1,1,−1,0], [1,−1,1,1,−1,0], [1,1,

−1,1,−1,0], [1,−1,1,−1,−1,0], [1,−1,1,−1,1,0], [1,−1,1,1,0,0], [1,−1,−1,1,0,0], [1,1,−1,1,0,0], [1,−1,1,

−1,0,0], [1,−1,0,0,0,0], [1,−1,1,0,0,0]};
2. There is one real solution if the revised sign of the discriminant sequence is any one of the set {[1,−1,−1,−1,1,0],

[1,−1,1,1,1,0], [1,1,1,−1,1,0], [1,−1,−1,1,1,0], [1,1,−1,1,1,0], [1,1,−1,−1,1,0], [1,−1,−1,0,0,0], [1,1,−1,

0,0,0], [1,0,0,0,0,0]};
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Fig. 4. An example of planar DDD GSPs.

3. There are two real solutions if the revised sign of the discriminant sequence is any one of the set {[1,−1,−1,−1,−1,1],
[1,−1,−1,−1,0,0], [1,−1,−1,−1,1,1], [1,−1,−1,1,1,1], [1,−1,1,1,1,1], [1,1,−1,−1,−1,1], [1,1,−1,−1,0,0],
[1,1,−1,−1,1,1], [1,1,−1,1,1,1], [1,1,0,0,0,0], [1,1,1,−1,−1,1], [1,1,1,−1,0,0], [1,1,1,−1,1,1], [1,1,1,1,−1,

1]};
4. There are three real solutions if the revised sign of the discriminant sequence is any one of the set {[1,−1,−1,−1,

−1,0], [1,1,−1,−1,−1,0], [1,1,1,−1,−1,0], [1,1,1,0,0,0], [1,1,1,1,−1,0]};
5. There are four real solutions if the revised sign of the discriminant sequence is any one of the set {[1,−1,−1,−1,

−1,−1], [1,1,−1,−1,−1,−1], [1,1,1,−1,−1,−1], [1,1,1,1,−1,−1], [1,1,1,1,0,0], [1,1,1,1,1,−1]};
6. There are five real solutions if the revised sign of the discriminant sequence is [1,1,1,1,1,0];
7. There are six real solutions if the revised sign of the discriminant sequence is [1,1,1,1,1,1].

Example 1. The problem in Fig. 4 can be reduced into merging two rigid bodies p1 p2 p3 p4 and p5 p6 p7 p8. We take p5 p6 p7 p8
as the base and p1 p2 p3 p4 the platform. The constraints are |l7 p4| = 0, |l6 p3| = 0 and |p5l2| = 0, which is an LPP-PLL case.
Let p7 = (0,0). The parametric equations for lines l6 and l7 are p = (0,0) + u1(1,0) and p = (0,0) + u2(0,1). Let point p3
be the origin of the moving coordinate system. Then p3 = (x3, x4). Let |p6 p7| = b2, |p5 p6| = b3, |p2 p3| = h2 and |p3 p4| = h3.
Thus the coordinates for points p4 and p5 are p4 = (−x2h3 + x3, x1h3 + x4) and p5 = (b2,b3). The parametric equation of
line l2 is p = (x3, x4) + u3(x1, x2).

The equation system is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2
1 + x2

2 − 1 = 0,∣∣x2(b2 − x3) − x1(b3 − x4)
∣∣ = 0,

|−h3x2 + x3| = 0,

|x4| = 0.

(43)

Equation system (43) can be reduced to triangular form (44) with Wu–Ritt’s characteristic set method [14,19] under the
variable order x1 < x2 < x3 if b2 �= 0, b3 �= 0 and h3 �= 0.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h2
3x4

1 − 2b3h3x3
1 + (

b2
3 + b2

2 − 2h2
3

)
x2

1 + 2h3b3x1 − b2
2 + h2

3 = 0,

b2x2 + h3x2
1 − b3x1 − h3 = 0,

b2x3 + h2
3x2

1 − h3b3x1 − h2
3 = 0,

x4 = 0.

(44)

The discriminant sequence of equation h2
3x4

1 −2b3h3x3
1 + (b2

3 +b2
2 −2h2

3)x2
1 +2h3b3x1 −b2

2 +h2
3 = 0 is {D1, D2, D3, D4}, where

D1 = h4
3, D2 = −h6

3(2b2
2 − b2

3 − 4h2
3), D3 = −h6

3b2
2(b

4
3 + 2b2

2b2
3 + 4b2

3h2
3 + b4

2 − 2h2
3b2

2) and D4 = −b4
2h6

3(−b4
2h2

3 + b6
2 + 16h4

3b2
3 +

b6
3 + 3b4

2b2
3 + 8h2

3b4
3 − 20h2

3b2
3b2

2 + 3b2
2b4

3).
If we take p8 = (0,33), h2 = 30, b2 = 15 and b3 = 3, we can get D1 = h4

3, D2 = h6
3(2h3 − 21)(2h3 + 21), D3 = h6

3(23h2
3 −

3042), D4 = −h6
3(16h4

3 − 10 053h2
3 + 1 423 656). Thus, the number of real solution is based on the value of parameter h3.

If we take h3 = 20, the revised sign of the discriminant sequence is [1,1,1,1]. So it has four real solutions shown in
Fig. 5, where the solutions to (x1, x2, x3, x4) are
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Fig. 5. Four solutions to planar DDD GSPs in Fig. 4 when h3 = 20.

Fig. 6. Three solutions to planar DDD GSPs in Fig. 4 when h3 = 3
√

2234+170
√

17
8 .

(
2 + 3

√
6

10
,

6 − √
6

10
,2(6 − √

6),0

)
,

(
2 − 3

√
6

10
,

6 + √
6

10
,2(6 + √

6),0

)
,

(−1 + 3
√

39

20
,

3 + √
39

20
,3 + √

39,0

)
,

(−1 − 3
√

39

20
,

3 − √
39

20
,3 − √

39,0

)
.

If we take h3 = 3
√
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8 , the revised sign of the discriminant sequence is [1,1,1,0]. So it has three real solutions

shown in Fig. 6, where the solutions to (x1, x2, x3, x4) are
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If we take h3 = 21
2 , the revised sign of the discriminant sequence is [1,−1,−1,−1]. So it has two real solutions shown

in Fig. 7, where the solutions to (x1, x2, x3, x4) are

(−0.9845022807,−0.1753717746,−1.841403635,0), (0.9726431468,0.2323043457,2.439195628,0).
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Fig. 7. Two solutions to planar DDD GSPs in Fig. 4 when h3 = 21
2 .

Because there is one real solution if the revised sign of the discriminant sequence is any one of the set {[1,−1,−1,0],
[1,0,0,0], [1,1,−1,0]}, let D4 = 0. Thus we could obtain four different solutions to h3, which are
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For each solution, the revised sign of the discriminant sequence is [1,1,1,0]. This means equation system (44) has three
solutions and the case of containing one real solution will not appear.

4. Conclusions

The classification of direct Kinematics for the planar generalized Stewart platform (GSP) consisting of two rigid bodies
connected by three constraints between three pairs of points or lines in the base and the moving platform respectively
is introduced. The purpose of classifying direct kinematics for these new types of planar Stewart platforms is to find new
and better parallel mechanisms. We solve planar direct Kinematics, and get all the solutions to the problem instead of only
one solution. We also give the conditions to which type of planar GSPs is ruler and compass constructible and the detailed
classification of direct kinematics for every planar GSP. We obtain the explicit conditions on the parameters to have a given
number of real solutions for sixteen forms of planar GSPs. For DDA GSPs, we are able to give the explicit conditions on the
parameters to all of the possible degenerate cases.

Appendix A. The discrimination sequence for a quantic equation

The discriminant sequence of x4
1 +b1x3

1 +b2x2
1 +b3x1 +b4 = 0 is {D1, D2, D3, D4}, where D1 = 1, D2 = −8b2 + 3b2

1, D3 =
14b2b3b1 − 4b3

2 + 16b4b2 − 3b3
1b3 + b2

1b2
2 − 6b2

1b4 − 18b2
3, D4 = −6b2

1b4b2
3 − 4b2

1b3
2b4 − 192b3b2

4b1 + 144b2b2
4b2

1 + 144b2b4b2
3 +

18b2b3
3b1 + 256b3

4 + 18b3
1b3b4b2 − 80b3b1b4b2

2 − 4b3
1b3

3 − 27b4
1b2

4 + b2
1b2

2b2
3 − 4b3

2b2
3 + 16b4

2b4 − 128b2
4b2

2 − 27b4
3.

Appendix B. The discrimination sequence for an equation of degree six

For equation x6
1 + c1x5

1 + c2x4
1 + c3x3

1 + c4x2
1 + c5x1 + c6 = 0 the discrimination sequence is {D1, D2, D3, D4, D5, D6}, where

D1 = 1,

D2 = −12c2 + 5c2
1,

D3 = 24c4c2 + 24c2c3c1 − 8c3
2 − 10c2

1c4 − 5c3
1c3 + 2c2

1c2
2 − 27c2

3,

D4 = 64c3
2c5c1 − 120c5c3c2

2 + 120c2
1c6c4 − 70c3

1c4c5 − 18c2
1c4c2

3 + 60c3
1c3c6 + 40c4

1c3c5 − 24c2
1c2

2c6 − 16c3
1c2

2c5

− 8c2
1c3

2c4 + 3c2
1c2

2c2
3 − 288c2c6c4 + 306c2

3c5c1 − 720c3c5c4 − 336c3c2
4c1 − 168c3c1c4c2

2 + 38c3
1c3c4c2

− 224c2
4c2

2 + 384c3
4 − 81c4

3 + 96c3
2c6 + 32c4

2c4 − 12c3
2c2

3 + 300c2c2
5 − 12c3

1c3
3 − 125c2

1c2
5 − 45c4

1c2
4

+ 324c6c2
3 + 328c2c4c5c1 − 288c2c3c1c6 − 162c2c3c2

1c5 + 244c2c2
4c2

1 + 324c2c4c2
3 + 54c2c3

3c1,

D5 = −1344c2c6c3
4 + 256c5

4 − 192c4
2c2

6 + 16c4
2c3

4 + 72c5
2c2

5 − 128c4
4c2

2 − 1296c2c3
6 − 27c4

1c4
4 + 160c5

1c3
5

+ 540c2
1c3

6 + 81c5
3c5 − 27c4

3c2
4 + 1728c2

6c2
4 + 276c2

3c1c4c2
2c5 + 296c3c1c4c3

2c6 − 1872c4c5c1c6c2
2

− 558c3c2
1c5c6c2

2 + 3024c2
4c5c6c1 + 1875c4

5 + 14c2
1c3

2c4c5c3 − 2214c2
1c4c6c5c3 − 62c3

1c2
3c4c2c5

− 66c3c3c4c2c6 + 130c4c3c5c6c2 − 200c4c4c2 + 1620c2c2c4 − 192c3c4c1 + 3240c3c5c2 − 1600c4c3c1
1 2 1 1 6 3 5 4 6 5
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+ 648c2c2
4c3c6c1 + 1620c2c2

3c1c6c5 − 602c2c3c2
1c5c2

4 + 216c2c2
3c2

1c4c6 − 1452c2c4c2
5c1c3

+ 1704c2c4c3
1c5c6 − 1134c6c5c3

3 + 216c3c1c2
6c2

2 − 80c3c1c3
4c2

2 − 108c3
3c1c6c2

2 − 424c3c1c2
5c3

2

− 72c3
2c6c5c3 + 24c3

2c5c1c2
4 + 112c4

2c5c1c6 − 56c4
2c4c5c3 − 648c4c2

3c6c2
2 − 644c2

4c2
1c6c2

2 + 700c4c2
1c2

5c2
2

+ 432c2
4c2

2c5c3 + 38c3
1c2

4c3c6 − 174c3
1c2

3c6c5 + 117c4
1c3c5c2

4 + 18c3
1c3c3

4c2 + 24c3
1c3

3c6c2 + 97c3
1c3c2

5c2
2

− 40c4
1c2

3c4c6 − 6c3
1c2

2c5c2
4 − 28c3

1c3
2c5c6 + 122c3

1c4c2
5c3 + 120c4

1c2
4c6c2 − 132c4

1c4c2
5c2 − 300c5

1c4c5c6

+ 16c2
1c4

2c4c6 − 3c2
1c2

2c3
3c5 + c2

1c2
2c2

3c2
4 − 6c2

1c3
2c2

3c6 + 18c2
1c4c3

3c5 + 160c2c5c1c3
4 + 384c2c2

3c2
1c2

5

− 54c2c4
3c1c5 + 18c2c3

3c1c2
4 − 630c2c3c3

1c2
6 − 486c2c4c3

3c5 − 1512c2c5c2
6c1 − 1188c2c2

5c2
1c6 + 828c2c4c2

6c2
1

− 270c4c3
3c6c1 + 828c2

3c5c1c2
4 + 1620c3c2

5c6c1 − 2808c3c1c2
6c4 − 64c5

2c4c6 + 12c3
2c3

3c5 − 4c3
2c2

3c2
4

+ 24c4
2c2

3c6 + 248c3
2c2

6c2
1 + 432c4c2

6c2
2 − 616c4c2

5c3
2 + 1420c3

5c1c2
2 + 558c2

3c2
2c2

5 + 1080c2
5c6c2

2 − 6c2
1c2

3c3
4

− 4c2
1c3

2c3
4 − 18c2

1c4
2c2

5 + 1265c2
1c3

5c3 − 52c2
1c2

5c2
4 + 837c2

1c2
6c2

3 − 36c3
1c5c3

4 − 88c4
1c2

3c2
5 + 12c3

1c4
3c5

− 4c3
1c3

3c2
4 + 125c5

1c3c2
6 − 50c4

1c2
2c2

6 + 56c2
1c6c3

4 + 330c3
1c5c2

6 + 220c4
1c2

5c6 − 2400c2c3
5c3 + 592c2

4c3
2c6

+ 648c2
3c6c2

4 − 621c2
5c1c3

3 + 144c2c4
4c2

1 + 1440c2c2
5c2

4 + 144c2c2
3c3

4 − 5400c4c6c2
5 − 324c2c2

6c2
3

+ 162c4
3c6c2 − 1004c2c3

5c3
1 − 1344c3c5c3

4 + 1512c2c4c6c5c3,

D6 = 2808c2c3
3c2

4c6c5 + 1500c4
5c6c2

2 + 16c4
2c3

4c2
5 − 64c4

2c4
4c6 + 9216c4c3

6c4
2 + 512c5

2c2
4c2

6 − 192c4
2c2

5c2
6

+ 108c3
2c4

3c2
6 + 16c3

2c3
3c3

5 − 8640c3
2c3

6c2
3 − 17 280c2

4c3
6c2

2 − 128c4
4c2

2c2
5 + 512c5

4c2
2c6 − 4352c3

4c3
2c2

6

+ 2250c5
5c2

2c1 + 43 200c4
6c2

2c2
1 − 900c4c4

5c3
2 + 540c2

1c3
6c2

5 − 32 400c2
1c4

6c4 − 27c2
1c4

2c4
5 + 1500c4

1c3
6c2

4

− 192c2
1c2

6c4
4 + 256c2

1c5
2c3

6 − 50c2
1c4

5c2
4 + 2000c2

1c5
5c3 + 320c4

1c6c4
5 + 410c3

1c2
6c3

5 + 560c2
4c2

2c3
5c3

− 5428c2
4c2

1c2
5c6c2

2 − 4536c4c2
3c2

5c6c2
2 − 3456c4c3

6c1c3c2
2 − 4464c2

3c1c5c3
2c2

6 + 10 152c3c2
1c5c4c2

6c2
2

− 1584c2
3c1c2

4c2
2c6c5 − 682c3c2

1c3
5c6c2

2 + 356c2
3c1c4c2

2c3
5 + 3272c3c1c4c3

2c2
5c6 + 2808c3

3c1c4c2
2c2

6

− 108c3
3c1c2

5c6c2
2 + 16 632c3c1c2

5c2
6c2

2 − 2496c3c1c2
4c3

2c2
6 + 15 264c5c1c2

4c2
6c2

2 − 2496c3
4c2

2c6c5c3

+ 320c3c1c4
4c2

2c6 − 13 040c4c3
5c1c6c2

2 − 80c3c1c3
4c2

2c2
5 − 640c4

2c5c1c4c2
6 + 320c4

2c2
4c6c5c3 − 96c3

2c5c1c6c3
4

− 72c3
2c3

3c4c6c5 − 5760c4c5c3
2c3c2

6 + 1020c4
1c2

4c2
5c6c2 + 1980c3

1c4c5c2
6c2

3 − 128c4
1c2

3c4
5 + 108c3

1c5
3c2

6

+ 16c3
1c4

3c3
5 − 1350c3

1c3
3c3

6 − 36c3
1c3

5c3
4 − 27c4

1c4
4c2

5 + 27 000c3
1c3c4

6 + 108c4
1c5

4c6 − 1600c2c5
5c3

1

− 32 400c2c3
6c2

5 + 62 208c2c4
6c4 − 1600c3c3

5c3
4 + 27 000c3c2

6c3
5 + 43 200c2

4c2
6c2

5 − 2500c4c5
5c1

− 22 500c4c6c4
5 + 38 880c5c4

6c1 − 46 656c5
6 − 4464c2

3c5c1c6c3
4 + 3942c2

5c1c4c6c3
3 + 768c3c5

4c1c6

+ 6912c3c5c6c4
4 − 77 760c3c4c5c3

6 + 46 656c3c1c3
6c2

4 + 2250c3c4
5c6c1 − 192c3c4

4c1c2
5 − 22 896c2c4c5c1c2

6c2
3

− 2412c2c2
3c2

1c2
5c4c6 + 3272c2c3c2

1c5c6c3
4 + 324c2c4

3c1c4c6c5 + 10 152c2c2
5c1c2

4c6c3 − 5760c2c3
4c3c1c2

6

− 3456c2c2
4c2

6c5c3 − 640c2c5c1c6c4
4 − 4536c2c2

3c2
1c2

4c2
6 + 3942c2c3

3c2
1c5c2

6 + 19 800c2c3c3
1c3

6c4

− 12 330c2c3c3
1c2

6c2
5 + 1980c2c2

3c1c6c3
5 − 72c2c3

3c1c6c3
4 + 18c2c3

3c1c2
5c2

4 − 746c2c3c2
1c3

5c2
4

+ 8748c2c4c2
6c2

1c2
5 + 19 800c2c4c6c3

5c3 − 2050c2c4c4
5c1c3 − 13 040c2c2

4c3
1c2

6c5 + 9768c2c4c3
1c6c3

5

− 31 320c2c5c3
6c2

1c3 + 31 968c2c5c3
6c1c4 + 1020c3

1c2
3c5c2

2c2
6 + 560c4

1c2
3c2

5c4c6 − 2050c4
1c3c5c4c2

6c2

+ 356c3
1c2

3c2
4c2c6c5 − 630c4

1c3c5c6c3
4 + 160c4

1c3c3
5c6c2 − 80c3

1c2
3c4c2c3

5 − 746c3
1c3c4c2

2c2
5c6

− 630c3
1c3

3c4c2c2
6 − 72c3

1c4
3c4c6c5 + 24c3

1c3
3c2

5c6c2 + 560c3
1c3c2

4c2
2c2

6 − 682c3
1c2

5c2
4c6c3 + 16 632c2

1c2
4c2

6c5c3

− 108c2
1c3

3c2
4c6c5 − 192c2

1c4
2c5c3c2

6 + 18c2
1c3

2c4c3
5c3 + 144c2

1c4
2c4c2

5c6 + 144c2
1c3

2c4c2
6c2

3 − 6c2
1c3

2c2
3c2

5c6

− 4c2
1c2

2c2
3c6c3

4 + c2
1c2

2c2
3c2

5c2
4 − 12 330c2

1c4c6c3
5c3 − 72c3

1c3c4
4c2c6 + 18c3

1c3c3
4c2c2

5 + 160c3
1c3

2c5c4c2
6

− 80c2
1c3

2c2
4c6c5c3 + 24c3

1c2
2c5c6c3

4 + 18c2
1c2

2c3
3c4c6c5 − 27c2

1c2
2c4

3c2
6 − 4c2

1c2
2c3

3c3
5 − 6c2

1c2
3c2

5c3
4

+ 24c2
1c2

3c6c4
4 − 6480c2c3

6c2
1c2

4 − 10 560c2c6c2
5c3

4 − 1700c2c6c2
1c4

5 − 27 540c2c2
5c2

6c2
3 + 3888c2c4c3

6c2
3

− 1800c2c2
6c1c3

5 − 4860c2c4c4
3c2

6 − 630c2c4c3
3c3

5 + 560c2c2
3c2

1c4
5 − 486c2c5

3c1c2
6 − 72c2c4

3c1c3
5

+ 21 384c2c3
3c1c3

6 + 160c2c3
5c1c3

4 + 144c2c2
3c2

5c3
4 − 576c2c2

3c6c4
4 + 144c2c4

4c2
1c2

5 − 77 760c2c3c4
6c1

− 576c2c5c2c6 + 15 552c5c2c3c1 + 5832c2c3c1c2 + 21 384c4c2c5c3 − 6318c5c1c2c4 − 486c5c4c6c5
4 1 3 6 4 3 6 6 3 6 3 3
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+ 162c4
3c2

5c6c2 − 9720c2
3c6c2

5c2
4 + 1020c2

3c3
5c1c2

4 − 128c2
1c4

2c2
4c2

6 − 13 824c4
6c3

2 + 108c5
2c4

5 − 1024c6
2c3

6

+ 256c5
1c5

5 + 3125c6
1c4

6 + 34 992c2
3c4

6 − 8748c3
6c4

3 + 108c5
3c3

5 + 729c6
3c2

6 + 256c2
5c5

4 − 1024c6c6
4

+ 4816c2
4c3

2c2
5c6 + 8208c2

4c2
2c2

6c2
3 − 630c3c1c4

5c3
2 + 6912c3c1c3

6c4
2 − 9720c2

3c2
1c3

6c2
2 + 768c5

2c5c3c2
6

+ 144c4
2c3

5c1c6 − 72c4
2c4c3

5c3 − 576c5
2c4c2

5c6 − 576c4
2c4c2

6c2
3 + 24c4

2c2
3c2

5c6 − 10 560c3
2c3

6c2
1c4

+ 248c3
2c2

6c2
1c2

5 − 120c3
2c6c3

5c3 + 16c3
2c2

3c6c3
4 − 4c3

2c2
3c2

5c2
4 + 24c3

2c3
5c1c2

4 − 6480c4c2
5c2

6c2
2 + 4816c3

4c2
1c2

6c2
2

+ 1020c4c2
1c4

5c2
2 + 46 656c5c3

6c2
2c3 − 21 888c5c3

6c3
2c1 + 5832c5c3

3c2
2c2

6 + 15 600c5c3
1c3

6c2
2 − 120c3

1c3
4c3c2

6

+ 144c3
1c5c6c4

4 + 825c4
1c2

3c2
4c2

6 + 144c3
1c3c4

5c2
2 − 900c4

1c3
3c5c2

6 − 1600c3
1c3c3

6c3
2 + 2250c4

1c2
3c3

6c2

− 3750c5
1c3c3

6c4 + 2000c5
1c3c2

6c2
5 − 208c3

1c2
3c6c3

5 + 16c3
1c3

3c6c3
4 − 4c3

1c3
3c2

5c2
4 + 144c4

1c3c3
5c2

4 − 36c3
1c3

2c3
5c6

+ 2000c4
1c2

2c3
6c4 − 50c4

1c2
2c2

6c2
5 − 6c3

1c2
2c3

5c2
4 − 1700c4

1c4c2
6c2

5 + 160c3
1c4c4

5c3 + 2250c5
1c2

4c2
6c5

− 900c4
1c3

4c2
6c2 − 1600c5

1c4c6c3
5 − 192c4

1c4c4
5c2 + 2250c4

1c5c3
6c3 − 1800c3

1c5c3
6c4 − 2500c5

1c5c3
6c2

+ 248c2
1c6c2

5c3
4 + 15 417c2

1c2
5c2

6c2
3 − 27 540c2

1c4c3
6c2

3 + 162c2
1c4c4

3c2
6 + 24c2

1c4c3
3c3

5 − 4c2
1c3

2c3
4c2

5

+ 16c2
1c3

2c4
4c6 − 31 320c3c2

5c1c2
6c4 + 3125c6

5 − 13 824c3
6c3

4 − 21 888c5c1c2
6c3

4 + 15 600c2
4c3

5c6c1

+ 2000c2c4
5c2

4 − 3750c2c5
5c3 − 8640c2

3c2
6c3

4 + 2250c2
3c4

5c4 − 1350c6c3
5c3

3 − 22 500c2c4
6c4

1 + 825c2
3c2

2c4
5

+ 108c4
3c6c3

4 − 900c4
5c1c3

3 + 9216c2c2
6c4

4 − 27c4
3c2

5c2
4.

References

[1] B. Dasgupta, T.S. Mruthyunjaya, The Stewart platform manipulator: A review, Mechanism and Machine Theory 35 (2000) 15–40.
[2] J. Duffy, Statics and Kinematics with Applications to Robotics, Cambridge University Press, 1996.
[3] J.C. Faugère, D. Lazard, Combinatorial classes of parallel manipulators, Mechanism and Machine Theory 30 (1995) 765–776.
[4] X.S. Gao, K. Jiang, Survey on geometric constraint solving, Journal of Computer-Aided Design & Computer Graphics 16 (2004) 385–396 (in Chinese).
[5] X.S. Gao, D. Lei, Q. Liao, G. Zhang, Generalized Stewart–Gough platforms and their direct kinematics, IEEE Transactions on Robotics 21 (2005) 141–151.
[6] X.S. Gao, Q. Lin, G. Zhang, A C-tree decomposition algorithm for 2D and 3D geometric constraint solving, Computer-Aided Design 38 (2006) 1–13.
[7] G.M. Gosselin, J.P. Merlet, The direct kinematics of planar parallel manipulators: Special architectures and number of solutions, Mechanism and Machine

Theory 29 (1994) 1083–1097.
[8] V.E. Gough, Automobile stability, control, and tyre performance, in: Proceedings of Automobile Division, Institute of Mechanical Engineering, 1956,

pp. 392–394.
[9] D. Kapur, Automated geometric reasoning: Dixon resultants, Gröbner bases and characteristic sets, in: D. Wang (Ed.), Automated Deduction in Geome-

try, in: LNAI, vol. 1360, 1998, pp. 1–36.
[10] D. Lazard, Generalized Stewart platform: How to compute with rigid motions?, in: IMACS Symposium on Symbolic Computation, Lille, June 1993, pp.

85–88.
[11] D. Lazard, J.P. Merlet, The (true) Stewart platform has 12 configurations, in: Proceedings of IEEE International Conference on Robotics and Automation,

1994, pp. 2160–2165.
[12] H.L. Liu, T.Z. Zhang, H.S. Ding, Forward solution of the 3-RPR planar parallel mechanism with Wu’s method, Journal of Beijing Institute of Technology 20

(2000) 565–569 (in Chinese).
[13] J.P. Merlet, Parallel Robots, Kluwer, Dordrecht, 2000.
[14] B. Mishra, Algorithmic Algebra, Springer, Berlin, 1993.
[15] B. Mourrain, Enumeration problems in geometry, robotics and vision, in: L. Gonzalez, T. Recio (Eds.), Algorithms in Algebraic Geometry and Applications,

in: Progress in Mathematics, Birkhäuser Verlag, Basel, Switzerland, 1996, pp. 285–306.
[16] G.R. Pennock, D.J. Kassner, Kinematic analysis of a planar eightbar linkage: Application to a platform-type robot, Journal of Mechanical Design 114

(1992) 87–95.
[17] D. Stewart, A platform with six degrees of freedom, Proceedings of the Institute of Mechanical Engineering 180 (1965) 371–386.
[18] H. Su, C.L. Collins, J.M. McCarthy, Classification of RRSS linkages, Mechanism and Machine Theory 37 (2002) 1413–1433.
[19] W.T. Wu, Basic Principles of Mechanical Theorem Proving in Geometries, Springer, Berlin, 1995.
[20] G.F. Zhang, X.S. Gao, Planar generalized Stewart platforms and their direct kinematics, in: LNAI, vol. 3763, 2006, pp. 198–211.
[21] L. Yang, X.R. Hou, Z.B. Zeng, A complete discrimination system for polynomials, Science in China (Series E) 39 (1996) 628–646.


	Classiﬁcation of direct kinematics to planar generalized Stewart platforms
	1 Introduction
	2 Basic concepts to planar GSP
	3 Classiﬁcation of direct kinematics to planar generalized Stewart platform
	3.1 Case DDA
	3.1.1 Case LL-PP
	3.1.2 Case LP-PL
	3.1.3 Case LP-PP
	3.1.4 Case PP-LL
	3.1.5 Case PP-LP
	3.1.6 Case PP-PP

	3.2 Case DDD
	3.2.1 Case PPP-LLL
	3.2.2 Case LLL-PPP
	3.2.3 Case LLP-PPL
	3.2.4 Case LLP-PPP
	3.2.5 Case LPP-PLL
	3.2.6 Case PPP-LLP
	3.2.7 Case LPP-PLP
	3.2.8 Case LPP-PPP
	3.2.9 Case PPP-LPP
	3.2.10 Case PPP-PPP

	3.3 Classiﬁcation of real solutions to planar GSP

	4 Conclusions
	Appendix A The discrimination sequence for a quantic equation
	Appendix B The discrimination sequence for an equation of degree six
	References


