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a b s t r a c t

In this paper, we introduce a foundation for computable model theory of rational Pavelka
logic (an extension of Łukasiewicz logic) and continuous logic, and prove effective versions
of some related theorems in model theory. We show how to reduce continuous logic
to rational Pavelka logic. We also define notions of computability and decidability of a
model for logics with computable, but uncountable, set of truth values; we show that
provability degree of a formulawith respect to a linear theory is computable, and use this to
carry out an effective Henkin construction. Therefore, for any effectively given consistent
linear theory in continuous logic, we effectively produce its decidable model. This is the
best possible, since we show that the computable model theory of continuous logic is an
extension of computable model theory of classical logic. We conclude with noting that the
unique separable model of a separably categorical and computably axiomatizable theory
(such as that of a probability space or an Lp Banach lattice) is decidable.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The school of computable mathematics, which is one of the major constructive approaches toward the subject, studies
mathematical structures from the computability theoretic viewpoint. The importance of this school increased significantly
after the realization of digital computers, and after many well-established subjects in mathematics were restudied through
the theme of computability; classical model theory (model theory of classical logic) was not an exception. [27,21,19,20,
33] revisit many classical concepts and theorems in classical model theory under the light of computability. Extending this
approach to various non-classical logics has been carried out, e.g., in [22].
First order logic serves well for a model theoretic study of structures in combinatorics and algebra. On the other hand,

it is not very fruitful to use classical first order logic for model theoretic study of structures in analysis. Therefore, a direct
approach to use computability over uncountable domains for generalizing results is not viable. Using a non-classical logic
can be more fruitful for model theoretic study of analytic structures. Continuous logic (CL), introduced by Chang and Keisler
in [14], seems to be a natural choice for this endeavor. Working with CL has become easier to a considerable extent due to
[7] and [4].
In this paper, we study computable continuous model theory (CCMT), i.e.model theory of continuous logic computably.
Use of a non-classical logic, such as modal or continuous logic, generates considerable complexity in effectivizing

arguments, even in the most basic model theoretic constructions; one such example is in establishing the completeness
theorem via a Henkin construction as seen through comparing the case of classical logic [33] with the case of modal one
[22]. Not every formulation of classical completeness theorem is correct for continuous logic; furthermore, similar to modal
logics, neither the deduction theorem nor the principle of excluded middle (PEM) holds for continuous logic.
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Another main obstacle in extending computable model theory to continuous logic is the uncountability of truth values
involved. The concepts in classical computability theory were mainly developed for countable domains such as natural
numbers, and structures that can be represented by them. These concepts are adopted for the study of effectiveness in
countable structures, not uncountable ones. Again, combinatorics and algebra fit well in this framework, where many
of interesting structures occur naturally in the finite or countable cases. On the other hand, we have analysis, wherein
natural interesting structures are essentially based on real numbers and thus contain uncountable concepts, and which
does not embed well in the classical computability theory. There has been some interest in computability on uncountable
domains since late 1950s but this topic remained mostly out of the mainstream of research in computability theory till
recently. The need for robust and reliable computer software dealing with computation over real numbers, or in analytic
or geometric structures, has changed the situation. Currently there are many proposed foundations, which are, to various
extents, incompatible with each other.1 The main idea behind many of them is the possibility of approximating a result
with arbitrary precision given good enough approximation(s) for the necessary inputs. We use continuous domain theoretic
approach to present our results, as it makes the presentation simpler, although translating them to TTE or Scott–Ershov
ω-algebraic approach is straightforward.
Here, we initiate the study of computable model theory for continuous logic. We believe that CCMT fills the place of

the question mark in the following analogy, thereby offering a satisfactory and unifying framework to the model theoretic,
effective study of analytic structures:

Computable (Classical) Model Theory
Computable Algebra

≈
?

Computable Analysis
.

The first step in this direction is defining primary concepts and adapting basic theorems such as Henkin’s model
construction technique to our framework.

2. Preliminaries

2.1. Łukasiewicz logic, rational Pavelka logic

Weuse LL∀ to denote first order Łukasiewicz logic. Łukasiewicz logic is the onlymany-valued logic given by a continuous t-
norm and a continuous residuum. RPL∀ is first order rational Pavelka logic, the extension of LL∀ by propositional truth values
for rational numbers. Following [32]’s notions, the logical operations are:⊕,�,∧,∨,→,↔,¬,∀, ∃,⊥. The unit interval
[0, 1] is our standard lattice for the evaluation of operators;⊕ is interpreted by the continuous t-norm x+̇y := min{x+y, 1};
� by x ∗ y := max{1 − x − y, 0}; ∧ and ∨ are interpreted by max and min over [0, 1], respectively; x → y by the
y−· x := max{y− x, 0};¬ by x 7→ (1− x);↔ by (x, y) 7→ |x− y|; ∀ by sup; and ∃ by inf. We will use t for sup, interpreting
both∧ and ∀; and u for inf, interpreting both∨ and ∃. The truth value of⊥ is 1. A propositional constant r has truth value r ,
for r in Q[0,1] (the set of rationals in [0, 1]).2 The following conventions are used: x, y, z, . . . represent variables; a, b, c, . . .
represent constants; f , g , h, . . . represent functions; r , s, t, . . . represent terms; P , Q , R, . . . represent relations; and ϕ, ψ ,
σ , . . . represent formulas. nϕ and ϕn abbreviate ϕ ⊕ . . .⊕ ϕ︸ ︷︷ ︸

n-times

and ϕ � . . .� ϕ︸ ︷︷ ︸
n-times

.

A standard structure for a language L is defined similar to the classical bi-valued Boolean logic, but relations take values
in [0, 1]. AnM-evaluation v is a mapping from set of variables to the universe ofM . The truth degree of ϕ in (M, v), ||ϕ||M,v ,
is defined as the truth value of its interpretation, defined inductively from atomic formulas using interpretation of logical
operators. ||ϕ||M and ||ϕ|| abbreviate, respectively,t{||ϕ||M,v : v anM−evaluation} andt{||ϕ||M : M a standard structure}.
ϕ is a tautology iff ||ϕ|| = 0. Amodel of a theory T in the language L, is a standard structure for L,M , and an evaluation v, so
that the truth degree of any formula of T in (M, v) is 0; we write (M, v) � T in this case. If for every v, (M, v) � T , we write
M � T . ||ϕ||T is defined as t{||ϕ||M : M � T }.
We take→,⊥, and ∀ as primitive connectives and define the rest as follows:

¬: ¬ϕ := ϕ→⊥,
⊕: ϕ ⊕ ψ := ¬(ϕ→ ¬ψ),
�: ϕ � ψ := ¬ϕ→ ψ ,
∧: ϕ ∧ ψ := ϕ ⊕ (ϕ→ ψ),
∨: ϕ ∨ ψ := (ϕ→ ψ)→ ψ ,
↔: ϕ ↔ ψ := (ϕ→ ψ)⊕ (ψ → ϕ),
∃: ∃xϕ(x) := ¬∀x¬ϕ(x).

1 E.g., TTE: [38], Banach/Mazur, Grzegorczyk [24,25], Pour-El/Richard [35,34], Ko [30,31]; Continuous Domains: [16,18,17,15]; Scott–Ershov Algebraic
Domains: [36,10,9,8]; Markov School, Real-RAM: [13,11,12], Sharp Filters [28,29]. For a comparison of these, see [38, §9].
2 Notice that we consider 0 as the highest degree of truth (the least degree of falsity), and 1 as the least. Although this is not the usual practice, see [26]
for example, it simplifies the interpretation of operators. This will be helpful when we consider continuous logic later. Also, the isomorphism x 7→ (1− x)
can be used to get [26]’s notions.
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The axioms and rules of LL∀ from [32, p. 94], [26, 3.1.3]:
LL∀

L1: ϕ→ (ψ → ϕ),
L2: (ϕ→ ψ)→ ((ψ → σ)→ (ϕ→ σ)),
L3: ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ),
L4: ((ϕ→⊥)→ (ψ →⊥))→ (ψ → ϕ),
∀1: ∀xϕ→ ϕ[t/x], where no free variable of t becomes bounded by substitution for x in ϕ,
∀2: ∀x (ϕ→ ψ)→ (ϕ→ ∀xψ), where x is not free in ϕ,
mp: ϕ ϕ→ψ

ψ
,

gen: ϕ

∀xϕ .

And RPL∀ is given by adding:
RPL∀

R: (r → s)↔ s−· r , for r and s in Q[0,1].
RPL∀ is a definable extension of LL∀. For r ∈ Q[0,1], let ϕr be new atomic propositions, and consider the following axioms:

ϕ0 ↔ (ϕ0 �¬ϕ0), ϕ1 ↔ (ϕ1 ⊕¬ϕ1), ϕ 1
2
↔ ¬ϕ 1

2
, nϕ 1

2n
↔ ϕ 1

2
, ϕm

n
↔ 2mϕ 1

2n
.

The completeness theorem of LL∀ holds when restricted to standard models, which are also models of RPL∀; therefore
adding these axioms will not change properties of theories such as consistency.
Following [26], we do not consider equality as a logical relation, and do not interpret it by identity. This means that there

are distinct elements which are equal with the truth degree 0. We do not have any set of axioms forcing the equality, which
is a congruence relation, to be the true identity. Theoretically, one can create a model that interprets equality as identity
in a model, by taking a quotient over the crisp equality relation of the model, but as we will see, this process is not always
effective.
Following is the list of axioms for fuzzy equality,≈, which is called similarity:

Similarity

S1(Reflexivity): x ≈ x,
S2(Symmetry): x ≈ y→ y ≈ x,
S3(Transitivity): (x ≈ y⊕ y ≈ z)→ x ≈ z.
It is easy to check that any interpretation of the similarity relation, satisfying above axioms, is actually a pseudo-metric.

It is sometimes useful to require similarity to satisfy the following axioms:
Congruence

S4R:
−→x ≈ −→y → (R ↔ R[−→x /−→y ]), where −→x = (x1, . . . , xn),

−→y = (y1, . . . , yn), and n is the arity of R,
−→x ≈ −→y

abbreviating x1 ≈ y1 ⊕ · · · ⊕ xn ≈ yn,
S4f :
−→x ≈ −→y → (f (−→x ) ≈ f (−→y )), with the same conditions as above.

In every structure that S4 holds, all interpretations will become 1-Lipschitz. Such structures are called extensional. 3 S4
is not assumed below, unless explicitly stated.
We write T ` ϕ when there is a proof for ϕ from T in RPL∀. ϕ is valid if ` ϕ. The provability degree of ϕ over T , |ϕ|T is

defined as u{r ∈ Q[0,1] : T ` r → ϕ}. We say T is consistent if T 0 ⊥. We say T is strongly consistent if ∀r ∈ Q(0,1] T 0 r .
In a standard modelM , and for all r ∈ Q(0,1], we haveM 2 r . This is the motivation behind the definition. Every satisfiable
theory is strongly consistent. This condition is necessary to prove the existence of a standard model for a theory, but it is
easy to see this is equivalent to consistency (the less obvious direction holds by taking a natural n such that nr ≥ 1 and
showing T ` nr). T is complete iff for any sentence ϕ, either T ` ϕ or T ` ¬ϕ. T is linear complete if for any two sentences
ϕ and ψ , either T ` ϕ → ψ or T ` ψ → ϕ.4 T is Henkin if for any sentence of the form ∃xϕ, if T ` ∃xϕ, then there is a
constant c such that T ` ϕ[c/x].
For a consistent, linear complete T , provability degree is equal to t{r ∈ Q[0,1] : T ` ϕ → r} [26, Theorem 3.3.8 part

1]. Provability degree commutes with logical connectives [26, Theorem 3.3.8 part 2]. It also commutes with quantifiers over
the constants of language, if the theory is Henkin [26, Theorem 5.2.6 part 2].
Deduction Theorem is not valid for RPL∀, but we have the following weak form [26]:

Lemma 2.1. If T , ϕ ` ψ , then for some natural n, T ` nϕ→ ψ .5

RPL∀ is sound: if T ` ϕ, then T � ϕ, with respect to models. RPL∀ also satisfies completeness theorem: ||ϕ||T = |ϕ|T .6

3 See [26, p.142].
4 [26] calls this complete. Linear complete seemsmore appropriate, because the condition forces the Lindenbaum Algebra of the theory to be a linear order,
and it will not conflict with completeness in the classical sense.
5 See [26, p.43].
6 Let T = {np→ q : n ∈ ω} ∪ {¬p→ q}. Then T � q, but T 0 q! Therefore T � ϕ ⇒ T ` ϕ does not hold.
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In RPL∀, T � ϕ and T ` ϕ are not equivalent. The following lemma shows their relationship.
Lemma 2.2. For all q > 0, T ` ϕ−· q iff T � ϕ.
Hence, there are two options for axiomatizability. Axiomatizability using ‘`’ leads to axiomatizability using ‘�’. Thus the

latter will be called weak axiomatizability.
We list some theorems from [26], which we will use.

Lemma 2.3. If T 0 ϕ→ ψ , then T ∪ {ψ → ϕ} is consistent.
Lemma 2.4. If every finite T0 ⊆ T has a model, then T has a model.
Lemma 2.5. T is linear complete iff for each pair (ϕ, ψ) of sentences, if T ` ϕ ∨ ψ , then either T ` ϕ or T ` ψ .
Lemma 2.6. The logical connectives,→, ∀ commute with provability degree for consistent, linear complete, Henkin theories;
|ϕ2|T −· |ϕ1|T = |ϕ1 → ϕ2|T , ta∈C |ψ[x/a]|T = |∀xψ |T .
Lemma 2.7. ` (ϕ→ ψ)n ∨ (ψ → ϕ)n.
There are a few notions for completeness of a theory, to avoid confusion, we list their definitions.

1. Classical completeness: for all ϕ either T ` ϕ or T ` ¬ϕ,
2. Linear completeness: for all ϕ and ψ , either T ` ϕ→ ψ or T ` ψ → ϕ,
3. Semantically linear completeness: for all ϕ and ψ , either T � ϕ→ ψ or T � ψ → ϕ.

2.2. Continuous logic

We follow [7] and [4]. Continuous Logic (CL) is a truth functional logic. The set of truth values is [0, 1]. We call a set of
continuous functions over [0, 1] a full system of connectives, if it contains projections, is closed under composition, and is
dense in compact-open (i.e. uniform convergence) topology over the set of all continuous functions over [0, 1]. By Stone-
Weierstrass Theorem [7, §1.6], {−· } ∪ {q̄ : q ∈ Q[0,1]} is a full system. The natural reinterpretation of classical quantifiers in
this continuous setting are sup and inf [7, p. 6]. Wewill use−· , q̄ for q ∈ Q[0.1], and sup as our connectives. Other connectives
can be defined from these as we did for LL∀ above.
We call a function δ : (0, 1] → (0, 1] amodulus of continuity. Assume that (X1, d1) and (X2, d2) are two (pseudo-)metric

spaces, and f a function from X1 to X2. We say f is uniformly continuous with respect to δ, iff ∀ε > 0∀x, y ∈ X1(d1(x, y) <
δ(ε)→ d2(f (x), f (y)) ≤ ε). A non-metric continuous signature is a set of function and relation symbols with their arities. A
(metric) continuous signature is a non-metric continuous signature with a distinguished binary relation d that has, for each
s of the non-metric continuous signature and for all i < ns, a uniform continuity modulus δs,i.
Let L be a continuous signature. A continuous pre-structure is a setM , a pseudo-metric dM overM , where for each function

symbol f ∈ L, there is a function f M : Mnf → M that is uniformly continuous with respect to δf ,i (i < nF ); and where for
each relation symbol R ∈ L, there is a function RM : MnR → [0, 1] that is uniformly continuous with respect to δR,i (i < nR).
A continuous structure is a pre-structure where d is complete metric. From any pre-structure, we can build an elementary
equivalent structure by first taking quotient (with respect to distance-zero points), and then completing it (with respect to
its metric).
The axioms and rules of CL are:

CL
C1: (ϕ−· ψ)−· ϕ,
C2: ((σ −· ϕ)−· (σ −· ψ))−· (ψ −· ϕ),
C3: (ϕ−· (ϕ−· ψ))−· (ψ −· (ψ −· ϕ)),
C4: (ϕ−· ψ)−· ((1̄−· ψ)−· (1̄−· ϕ)),
sup 1: ϕ[t/x] −· supx ϕ, such that no free variable of t becomes bounded by substitution for x in ϕ,
sup 2: (supx ψ −· ϕ)−· supx(ψ −· ϕ), where x is not free in ϕ,
R1: (r −· s)−· r −· s, for r and s in Q[0,1],
R2: r −· s−· (r −· s), for r and s in Q[0,1],
SM1: d(x, x),
SM2: d(x, y)−· d(y, x),
SM3: (d(x, z)−· d(x, y))−· d(y, z),
ULR: (q−· d(x, y)) ∨ ((R(ā, x, b̄)−· R(ā, y, b̄))−· r),

where ε, r, q ∈ Q[0,1], r > ε, q < δR,i(ε),
ULf : (q−· d(x, y)) ∨ (d(f (ā, x, b̄), f (ā, y, b̄))−· r),

where ε, r, q ∈ Q[0,1], r > ε, q < δf ,i(ε),
mp: ϕ ψ −· ϕ

ψ
,

gen: ϕ

supx ϕ
.

2.3. Reducing CL to RPL∀

We can consider CL as a theory inRPL∀. Every connective in CL can be defined inRPL∀, ϕ−· ψ := ψ → ϕ, supx ϕ := ∀xϕ,
q̄ := q̄. Axioms and rules are identical except for S4 and UL. We assume that S4 is not part of LL∀ or RPL∀, unless explicitly
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stated otherwise. We can put all UL axioms in our theory T , instead of adding it as an axiom for RPL∀. Note that UL axioms
are actually expressed in the language of RPL∀, and also form a decidable subset of its sentences. Given a theory T in CL we
build T ∗ by adding all UL axioms to T , which is an effective process. Anymodel of T ∗ in RPL∀will be a model of T in CL since
in any model of this theory, satisfaction of UL forces every function and relation to be uniformly continuous with respect to
their given modulus of continuity. Therefore a problem in CL is reduced to a problem in RPL∀.

2.4. Examples of continuous structures and theories

We give a few metric structures and continuous theories as examples from [4]:

1. A complete, bounded metric space (M, d)with no additional structure.
2. A structure M in the usual sense from first order logic. d is the discrete metric on the underlying set, i.e. d(a, b) ={

0 a = b
1 a 6= b

and a relation is considered as a predicate taking values (truth values) in the set {0, 1}. So, CL is, in a sense, a

generalization of first order logic.
3. Let C be the set of continuous functions over [0, 1] and

∫
as a unary predicate, defined as f 7→

∫ 1
0 f (x)dx. Then

(C,
∫
, ||.||∞) is a metric structure.

4. (C, 〈·, ·〉 , ||.||∞), where C is the same as above, and 〈·, ·〉 is the L2 inner product over C , i.e. 〈f , g〉 :=
∫ 1
0 f (x)g(x)dx.

5. An infinite dimensional Hilbert space over R can be considered as a metric structure, according to [4, §15], if only the
range of its metric is assumed to be bounded. This obstacle can be overcome easily by introducing many-sorted models.
We will not study many-sorted structures here, although generalization of our results is straightforward. Let H be an
infinite dimensional Hilbert space over R, i.e. H is a complete normed space with an inner product 〈·, ·〉 which induces
the norm. H can be considered as a metric structure (Bn : n ≥ 1, Im,n : m < n, 0, λ : λ ∈ R,+,−, 〈·, ·〉 , ||.||) where
Bn := {x ∈ H : ||x|| ≤ n2}, Im,n : Bm ↪→ Bn is the inclusion map for m < n. It is proved in [4, §15] that H has quantifier
elimination property and for any H1 and H2, Th(H1) = Th(H2), therefore H is semantically linear complete.

6. The unit ball B of a Banach space X overR orC: as functionswemay take themaps fαβ , defined by fαβ(x, y) = αx+βy, for
each pair of scalars satisfying |α| + |β| ≤ 1; the norm may be included as a predicate, and we may include the additive
identity 0X as a distinguished element. See [7, 4.4, 4.5].

7. Probability spaces can be represented as metric structures using their measure algebra [4, §16]. Assume that (X, B, µ) is
a probability space, i.e. X is an arbitrary set, B is a σ -algebra of subsets of X , and µ is a σ -additive measure in B such that
µ(X) = 1. a ∈ B is an atom iff there is no b ∈ B such that b ⊆ a and 0 < µ(b) < µ(a). a ∈ B is atomless iff no subset
of it is an atom. (X, B, µ) is atomless iff X is atomless. For any atomless a ∈ B and r ∈ [0, 1] there exists b ∈ B such
that b ⊆ a and µ(b) = r · µ(a). a, b ∈ B represent the same event iff µ(a∆b) = 0 (∆ being symmetric difference, i.e.
a∆b := (a∩ bc)∪ (ac ∩ b)), in which case we say a ∼µ b.∼µ is an equivalence relation. Denote equivalence class of a by
[a]µ, and B̂ as set of equivalence classes, which is calledmeasure algebra of (X, B, µ). Since∼µ is congruence with respect
to complement, union, intersection, andµ, these operations are well defined on B̂. We also have that B̂ is a σ -algebra and
µ is a strictly positive countably additive measure over it. The metric structure M = (B̂, 0, 1, ·c,∪,∩, µ, d) is called a
probability structure, where d([a]µ, [b]µ) := µ(a∆b), 0 := [∅]µ, and 1 := [X]µ. Modulus of uniform continuity of ·c , ∪,
and ∩ are respectively ε 7→ ε, ε 7→ ε/2, and ε 7→ ε/2.
It turns out that theory of a probability structure is axiomatizable:

(a) Boolean Algebra Axioms: axioms are closure of equations, thus expressible in CL
(b) Measure Axioms:

µ(0) = 0: µ(0),
µ(1) = 1: ¬µ(1),
supx,y(µ(x ∩ y)−· µ(x)) = 0: ∀x, y (µ(x)→ µ(x ∩ y)),
supx,y(µ(x)−· µ(x ∪ y)) = 0: ∀x, y (µ(x ∪ y)→ µ(x)),
supx,y |(µ(x)−· µ(x ∩ y))− (µ(x ∪ y)−· µ(y))| = 0: ∀x, y ((µ(x ∩ y)→ µ(x))↔ (µ(y)→ µ(x ∪ y))),

(c) Connection between µ and d: supx,y |d(x, y)− µ(x∆y)| = 0,
i.e. ∀x, y (x ≈ y↔ µ(x∆y)),

(d) Atomlessness: supx infy |µ(x ∩ y)− µ(x ∩ yc)| = 0,
i.e. ∀x ∃y (µ(x ∩ y)↔ µ(x ∩ yc)).
The last three axioms of Measure Axioms expressµ(x)+µ(y) = µ(x∪ y)+µ(x∩ y). The theory PR0 satisfies (a), (b),

and (c), and PR satisfies (a), (b), (c), and (d). For every metric structureM in this language we have thatM � PR0 iffM is
the probability structure of some probability space (X, B, µ). PR has quantifier elimination, and is separably categorical,
i.e. every two separable metric models of it are isomorphic, and by using downward Löwenheim–Skolem theorem for
CL one can obtain a separable elementary substructure of any given structure, therefore, PR is semantically linear. We
will show that every axiomatizable semantically linear theory has a computablemodel, thus PR has a unique computable
model.

8. The Lp Banach lattice is another example of [4, §17], [3]. Similarly to PR, it is axiomatizable, has quantifier elimination,
and is separably categorical, therefore is semantically linear complete, and has a unique computable model.
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2.5. Computable analysis and continuous domain theory

We will closely follow [16,18].7 We do not use any special property of effective continuous domain approach to
computable analysis in ourwork, and therefore transferring our results to other approaches, such as TTE [38] or Scott–Ershov
ω-algebraic domains [36], is straightforward. We prefer continuous domains since they are simpler and more intuitive.
We will use fairly standard notions from computability theory. N denotes nonnegative integers. ϕn is the nth partial

computable function, and Wn := dom(ϕn), the nth computably enumerable (c.e.) subset of N. 〈·, ·〉, π0, and π1 are the
usual Cantor’s pairing function and its inverses, satisfying 〈π0(n), π1(n)〉 = n, πi(〈n0, n1〉) = ni for i = 0, 1. Any c.e.
A can be expressed as a computable union of decidable sets {An}n∈ω . K is the associated set with halting problem, i.e.,
K = {n : ϕn(n) is defined}.
Let (P,v) be a partially ordered set (poset), i.e. v is reflexive, antisymmetric, and transitive. We think of P as partial

information andv as refinement (having more information). Upper and lower bounds, maximal, minimal, top (maximum,
>), bottom (minimum, ⊥), supremum (t) and infimum (u) with respect to v are defined as usual. The set of maximal
elements of P is denoted by max(P). Assume that A is a subset of P . We say that A is a chain, if every two elements of A are
comparable; and A is directed, if every two elements have an upper bound in A. Upper set of A (↑ A) is {x ∈ P : ∃y ∈ Ay v x}.
Lower set of A (↓ A) is defined similarly.
A partial order is called dcpo (directed complete partial order), or bcpo (bounded complete partial order), if it contains

sups of all directed sets, or if it contains all bounded sets, respectively. We call a dcpo pointed if it contains a least element
⊥. A cpo (complete partial order) is a pointed dcpo.
If S is a set, the flat domain of S, S⊥, is the partial order over S ∪ {⊥}, where⊥ is minimum and no two elements of S are

comparable. For example, if B is the bi-valued Boolean set {0, 1}, B⊥ is flat domain of B.
We say that x is way-below y, or x approximates y, and write x � y, iff for all directed A, y v tA implies x v a for some

a ∈ A. An element which approximates itself is called compact or finite. We denote the set of all elements way-below x
(way-above x) by

�

x ( �x). A base for D is a subset B of D such that for all x ∈ D we can approximate x by elements of D, i.e.�

x∩ B is directed and x = t(

�

x∩ B). A dcpo is called (ω-)continuous iff it has a (countable) base. A continuous dcpo is called
a continuous domain or simply a domain.
Real interval domain, IR, is the set of all closed intervals in R including R itself, partially ordered by reverse inclusion

relation. Unit interval domain, I[0, 1], is defined similarly. It is easy to see that both IR and I[0, 1] areω-continuous domains,
and x � y iff xo ⊇ y, where xo is the interior of x. The set of maximal elements are homeomorphic to the original space by
x 7→ {x}.
Assume that (D,v) and (E,v) are twodcpos.We say that a function f : D→ E is Scott-continuous (or simply continuous),

iff:

• monotonicity: for all x, y ∈ D, x v y→ f (x) v f (y)
• continuity: for all directed subsets A of D, f (tA) = tf (A)

We denote the set of all continuous functions from D to E by [D→ E], which is itself a dcpo by pointwise ordering, i.e. f v g
iff ∀x ∈ D f (x) v g(x). f ∈ [D→ E] is strict iff f (⊥D) = ⊥E .
The product of two domains is also a domain, where (x0, y0) v (x1, y1) iff x0 v x1 ∧ y0 v y1. It is also easy to check

that (x0, y0) � (x1, y1) iff x0 � x1 ∧ y0 � y1; a function from product is continuous if it is continuous in each variable
separately.
Let D be a ω-continuous dcpo with a given countable base B = {bn : n ∈ ω}. Without loss of generality, assume that

b0 = ⊥. We say thatD is computably given with respect to b iff {(m, n) : bm � bn} is a c.e. set. An element x ∈ D is computable
iff {n : bn � x} is computably enumerable, i.e. {n : bn � x} is the range of a computable function; thus xwill be supremum
of this c.e. set. A sequence of elements of D, {xn : n ∈ ω} is computable iff there exists a computable function ϕ : ω×ω→ ω
such that {m : bm � xn} = {ϕ(n, k) : k ∈ ω}, i.e. approximations of the elements of the sequence are uniformly computable.
If D and E are computable domains, then their product is a computable domain too.
Let f ∈ [D→ E], where D and E are computably given by bases A = {an : n ∈ ω} and B = {bn : n ∈ ω}. We say that f

is computable iff f takes computable sequences in D to computable sequences in E, i.e. {(m, n) : bm � f (an)} is computably
enumerable.
Let I[0, 1] = {[p, q] : p, q ∈ [0, 1]}where [p, q] v [r, s] iff [p, q] ⊇ [r, s]. Elements of I[0, 1] are approximations to real

numbers in the unit interval. The order of approximation is given by [p, q] � [r, s] iff [p, q] ⊇ (r, s). As an effective base, we
use B = {[p, q] : p, q ∈ Q[0,1]}. The bottom element of this ordering is⊥ = [0, 1]. For r ∈ Q[0,1], {r} is a maximal element.
All maximal elements are of this form. The unit interval is embedded in I[0, 1] by {·} : [0, 1] → I[0, 1], taking x 7→ {x}.
Let (X, d) be a metric space. Formal ball construction on X is defined as BX := {(x, r) : x ∈ X, r ∈ R∗}, where R∗ is the

set of nonnegative real numbers. We define (x, r) v (y, s) iff d(x, y) ≤ r − s. (BX,v) is a poset. Many notions for dcpo can
be generalized for posets, e.g. continuity, by replacing quantifications over ‘‘directed’’ with ‘‘directed with an upper bound’’.
We now state some important properties of Formal Balls: BX is always a continuous poset. (X, d) is a complete metric space
iff BX is a dcpo. (x, r)� (y, s) iff d(x, y) < r− s. If A is a dense subset of X and Q is a dense subset ofR∗, then A×Q is a base

7 See also [1].
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for BX . X is separable iff BX is ω-continuous. X is embedded in BX by x 7→ (x, 0), where each (x, 0) is a maximal element of
BX . This embedding is continuous with respect to Scott and Lawson topologies.
Therefore, if X is a separable complete metric space, then BX is ω-continuous dcpo. X is a computable metric space if its

domain is computable. Maximal elements will be homeomorphic to X . We denote this homeomorphism by ιX : Max(D)→
X . We adopt some concepts from [36] to apply to continuous domains. Let X and Y be metric spaces represented by D and
E. A function f : X → Y is represented by f̂ : D→ E iff f̂ [Max(D)] ⊆ Max(E) and for any x ∈ Max(D), ιY (f̂ (x)) = f (ιX (x)). f
is a computable function iff f̂ is a computable function between corresponding domains.
(X0, X1, . . . , f0, . . .) is called a many-sorted topological structure when Xis are topological spaces and fjs are continuous

functions over them. A (pre-)metric structure is a special case, where R is one of the spaces, and for every space X in the
structurewehave a continuous function dX that is a (pre-)metric onX . Definition of a domainpresentation is straightforward.
A structure is computably presentable iff there is a computable domain presentation for it.

2.6. Effective model theory

A countable, first order language L is said to be computably given iff the sets of variables, functions, relations are
decidable and arity of functions and relations are computable. Let T be a theory in L. T is computably axiomatizable or simply
axiomatizable iff the set of axioms are computably enumerable. T is decidable iff the set of theorems of T is decidable.
A countable structure is called computably representable iff its relations are decidable and its functions are computable, i.e.

its atomic diagram,Diamat(M) := {ϕ ∈ LM : M � ϕ ∧ ϕ is atomic}, is decidable. A countable structure is called decidable iff it
is computably presented and satisfaction is decidable. Equivalently, its Elementary Diagram, Diagel(M) := {ϕ ∈ LM : M � ϕ},
is decidable. When adopting this notion to logics with an uncountable set of truth values, we need to clarify what we mean
by decidable and computable. We use effective domain theory. Decidability of relations in classical models is equivalent to
computability of their characteristic functions. Extending this to continuous case, where the range of characteristic functions
is [0, 1], in a computable continuous structure, we require characteristic functions of relations to be computable. Therefore,
a computable continuous model of a theory is a computable continuous structure that is also a model of the theory.
For countable models, accordingly, equivalent formulations by Diagat(M) and Diagel(M) can be adopted by replacing

classical decidability of truth for formulas with computability of their truth degree. However, we want to allow a complete
metric space as the underlying set of models of continuous logic, and since most of these structures are uncountable,
we cannot use this formulations directly. For complete metric spaces with continuous operations and relations, we can
use a countable dense set for approximating elements, and consider only formulas that use parameters only from this
dense subset. Since operations and relations are continuous, every formula in the full diagrams can be approximated
with arbitrary precision. Assume that M is a complete metric space. We say that M is computably representable iff there
is a countable dense subset X of M so that Diagat(M, X) := {(ϕ, x) ∈ LX × B : x � ||ϕ||M ∧ ϕ is atomic} is
computably enumerable, where B is the effective base of the unit interval discussed in previous section. M is decidable
iff Diagel(M, X) := {(ϕ, x) ∈ LX × B : x� ||ϕ||M} is computably enumerable. (The construction of a computably presented
structure from a computable enumeration of elementary diagram is straightforward.)
Note that every linear complete theory that has a decidable model is weakly axiomatizable.

3. Constructive Henkin construction

In this section, we will construct an effective model for an effectively given theory.
Theorem 3.1. Every consistent, complete, computably axiomatizable theory in RPL∀ is decidable.
Proof. Assume that T is a theory as stated. Because RPL∀ is an effective deduction system with computably enumerable
axioms and two deduction rules, we can effectively list all valid proofs with assumptions in T . Since T is complete and
consistent, we have T 0 ϕ ⇔ T ` ¬ϕ. For any given sentence such as ϕ, either T ` ϕ or T ` ¬ϕ has a proof, and, at some
point, that proof will appear in the list. According to whether it is a proof of ϕ or¬ϕ, we answer positively or negatively. �

Completeness is too strong to be satisfied by a theory. The Lindenbaum Algebra of a complete theory will have just two
classes, in other words, the logic will be the classical bi-valued logic. We want to allow truth degrees in [0, 1], not just in
{0, 1}. Linear completeness is an acceptable condition, which forces the classes of the Lindenbaum Algebra of a theory to
be linearly ordered. The concepts of decidable model and decidable theory are not as useful for many-valued logics as for the
classical bi-valued one. Decidability is the same as saying the characteristic functions of truth and validity are computable.
The natural extensions of these concepts tomany-valued cases are the computability of the degree of the truth and provability
of formulas. Crisp truth and validity are not computable functions because of discontinuity [38, §2.4]. It is proved in [26,
Theorem 6.3.15] that crisp truth in LL∀ isΠ2-complete.
Theorem 3.2. For every consistent, linear complete, computably axiomatizable theory in RPL∀, the provability degrees of
sentences is computably comparable.

Proof. The proof is similar to previous one. Since T is linear complete, for any given two sentences such as ϕ andψ , at least
one of T ` ϕ→ ψ and T ` ψ → ϕ has a proof, and, at some point, that proof will appear in the list. According to whether
it is a proof of T ` ϕ→ ψ or T ` ψ → ϕ, we answer |ψ |T ≤ |ϕ|T , or |ϕ|T ≤ |ψ |T . �
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We use Henkin’s technique for model construction. To construct a decidable model, we need to deal effectively with real
numbers. For this purpose, we need a model for computable analysis.
The provability degree of a formulawith respect to a theory is a real number, and since comparison of real numbers is not

decidable in finite time, we have to accept the existence of distinct elements in our model which are equal with provability
degree 0. The underlying set for a computably representable (which is the weakest computability notion) model in classical
computable model theory is natural numbers (although often not explicitly stated) and, therefore, has a decidable equality.
Theorem 3.3. There is a computably axiomatizable, consistent theory that does not have a computable model (with a decidable
equality on its domain), where equality is interpreted as identity.

Proof. Assume that a is a computable real number in [0, 1] such that ‘a ?
= 0’ is not decidable.8 Suppose {si}i∈ω ({ri}i∈ω)

is a decreasing (increasing) computable sequence of rationals converging to a. Let c and d be two distinct constants of the
language, and T = {si → c ≈ d : i ∈ ω ∧ si ∈ Q[0,1]} ∪ {c ≈ d → ri : i ∈ ω ∧ ri ∈ Q[0,1]}. T is computably axiomatized.
If there existed a computable modelM � T , then by checking whether the interpretation of c and d are identical, we could
decide ‘a ?= 0’ a contradiction. �
This can be avoided at the expense of allowing computable models over domains that lack a decidable equality. For

countable domains, this is very artificial. But computable uncountable domains essentially lack a decidable equality, since
they are represented by a countable sequence of approximating elements from a countable domain.
Before proceeding, we prove a lemma.

Lemma 3.4. The provability degree of a formulawith respect to a consistent, linear complete, computably axiomatizable (Henkin)
theory is computable.
Proof. Since T is linear complete, |ϕ|T = u{r ∈ Q[0,1] : T ` r → ϕ} = t{r ∈ Q[0,1] : T ` ϕ → r}, which is a maximal
element of I[0, 1], using the embedding x 7→ {x}.
Let B = {[r, s] ∈ I[0, 1] : r < s ∈ Q[0,1]}. B is an effective base for the unit interval domain I[0, 1]. We have

|ϕ|T =
⊔
I[0,1]{[r, s] ∈ B : (T ` s → ϕ) ∧ (T ` ϕ → r)}. It is easy to check that this set is directed, and effectively

listable. Let {qi}i∈ω be an effective list of rationals in [0, 1]. The following algorithm gives an enumeration of the set:
1. list [0, 1];
2. r ← 0; s← 1;
3. for i ∈ ω,
if r ≤ qi ≤ s, depending on whether T ` ϕ→ qi or T ` qi → ϕ, go to (a) or (b)
(a) s← qi; for j < i and qj < s, list [qj, s];
(b) r ← qi; for j < i and r < qj, list [r, qj];

For any r ∈ Q[0,1], either T ` ϕ → r or T ` r → ϕ. Listing the proofs, we will find, at some point, which is the case.
Therefore, |ϕ|T =

⊔
I[0,1]{[r, s] ∈ B : (T ` s→ ϕ) ∧ (T ` ϕ → r)} is computable, using the effective base B of I[0, 1] as

defined above. �
Theorem 3.5. Every consistent, linear complete, computably axiomatizable Henkin theory in RPL∀ has a decidable model.
Proof. Assume that T is as stated, and C = {ci}i∈ω is the set of constants of the language of T . First, note that all of the logical
connectives, specially→, commutewith provability degree, and for aHenkin theory,wehave |∀xϕ|T = t{|ϕ[c/x]T : c ∈ C}.
Let the underlying set of our model, M , be C . Assuming that the language of T is decidable, M is a decidable set. As we

stated before, we cannot expect our model to identify elements that are equal with provability degree 0. The notion of
similarity,9 i.e. fuzzy equality, will be interpreted by a pseudo-metric ρ on M . We define ρ(x, y) = |x ≈ y|T . Similarity is
computable since provability degree with respect to T is computable. It is easy to check that ρ is a pseudo-metric, because
of similarity axioms (2.1).

S1
x ≈ x
========
0→ x ≈ x

r → x ≈ y,
S2

x ≈ y→ y ≈ x
====================

r → y ≈ x
r1 → x ≈ y, r2 → y ≈ z
==================
r1 � r2 → x ≈ y� y ≈ z ,

S3
x ≈ y� y ≈ z → x ≈ z

======================================
r1 u r2 → x ≈ z

Hence, ρ(a, a) = 0, ρ(a, b) ≤ ρ(b, a), ρ(a, c) ≤ ρ(a, b) u ρ(b, c) ≤ ρ(a, b)+ ρ(b, c). For each function symbol f of T ,
we have T ` ∀−→x ∃y f (−→x ) ≈ y, and therefore for any−→a ∈ M , T ` ∃y f (−→a ) ≈ y. Since T is Henkin, there is a constant c in T
so that T ` f (−→a ) ≈ c. We define the interpretation of f over−→a inM , f M(−→a ), as the first constant c where we find a proof
of T ` f (−→a ) = c . This gives a computable interpretation of f in M . This procedure can be used repeatedly for computing
complex terms.

8 See [37,2], and [38].
9 Actually we use a pseudo-metric, because of the isomorphism x 7→ 1− x. This transformation maps an interpretation of similarity to a pseudo-metric
and vice versa; see [26, §5.6].
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Interpret rM by r , for r ∈ Q[0,1]. For any relation symbol R of T , define RM(a) as |R(a)|T , which is again computable.
Actually, we can compute the value of any sentence ofM directly using provability degree.
So far, we have created a decidable structureM . Using commutativity of provability degree with logical connectives, we

now show thatM is indeed a model of T , i.e.M � T . We prove the stronger |ϕ|T = ||ϕ||M by induction on formulas.
For any r, s ∈ Q[0,1], by axiom R of 2.1, T ` r → s iff T ` s−· r; by strong consistency (which is equivalent to consistency),

that is equivalent to s−· r = 0, i.e. s ≤ r .
Let q ∈ Q[0,1], then

|q|T =
⊔
I[0,1]

{[r, s] ∈ B : T ` q→ r ∧ T ` s→ q} =
⊔
I[0,1]

{[r, s] ∈ B : r ≤ q ≤ s} = {q}.

On the other hand, ||q||M is defined as q.
For relational symbol R, we have ||R(−→a )||M = |R(

−→a )|T , by definition. Similarly, for≈.
For ϕ = ϕ1 → ϕ2,

||ϕ||M =

||ϕ1 → ϕ2||M = (by definition)
||ϕ2||M −· ||ϕ1||M = (by induction hypothesis)
|ϕ2|T −· |ϕ1|T = (by lemma 2.6)
|ϕ1 → ϕ2|T =

|ϕ|T

For ϕ = ∀xψ ,

||ϕ||M =

||∀xψ ||M = (by definition)
ta∈M ||ψ[x/a]||M = (by induction hypothesis)
ta∈M |ψ[x/a]|T = (M = C)
ta∈C |ψ[x/a]|T = (by lemma 2.6)
|∀xψ |T =
|ϕ|T

Therefore the above interpretations overM give a decidable model of T . �
Remark 3.6. If the theory contains S4, the resulting model will be extensional.
We state two results about completion process of a theory.

Theorem 3.7. Every computably axiomatizable, consistent theory in RPL∀ has a K-computably axiomatizable, consistent, linear
complete Henkin extension.
Proof. Assume that T is as stated. L∗ is created by adding {cn}n∈ω to L. Let {(ϕn, ψn)}n∈ω be an enumeration of pairs of
L∗-sentences, so that any sentence ϕ appears in {ϕn}n∈ω infinitely many times. We build T ∗ in ω steps:
1. Let T0 ← T ;

2. For n ∈ ω,

(a) If Tn 0 ϕn → ψn, then let Tn+1 ← Tn ∪ {ψn → ϕn};

(b) If ϕn is of the form ∃xψ , and Tn ` ∃xψ ,
take an unused constant c , and put Tn+1 ← Tn ∪ {ψ[x/c]};

3. Let T ∗ = ∪n∈ωTn.

T ∗ is linear complete, since for any pair of sentences such as (ϕn, ψn), either Tn ` ϕn → ψn and thus T ∗ ` ϕn → ψn, or
Tn 0 ϕn → ψn, and thus ψn → ϕn ∈ Tn+1 ⊆ T ∗ and T ∗ ` ψn → ϕn.
To see T ∗ is Henkin, assume that T ∗ ` ∃xψ . There is an m ∈ ω such that Tm ` ∃xψ . ϕn = ∃xψ for some m ≤ n.

Tn ` ∃xψ , therefore ψ[x/c] ∈ Tn+1 ⊆ T ∗ for some c , and T ∗ ` ψ[x/c].
To see T ∗ is consistent, it is sufficient to prove that if Tn is consistent, then Tn+1 is consistent. T0 is consistent. Assume

that S ∪ {ϕ → ψ} ` 1, i.e. is inconsistent. By 2.1, there is an n ∈ ω such that S ` (ϕ → ψ)n → 1. By 2.7,
S ` (ϕ→ ψ)n ∨ (ψ → ϕ)n, therefore S ` 1 ∨ (ψ → ϕ)n, S ` (ψ → ϕ)n, S ` (ψ → ϕ).
On the other hand, if S ` ∃xψ , S 0 1, and c does not occur in S, then S ∪ {ψ[x/c]}must be consistent.
The above algorithm is computable in K , thus it is in class∆02, i.e. it is limit computable. �

Remark 3.8. It is easy to check that if the theory were to be computably enumerable in A, the procedure above would yield
a theory computably enumerable in A′, and, therefore, would have a A′-decidable model.
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We now show that this is the best result one can achieve. We actually prove a much stronger result by showing that for
theories in classical logic, i.e. those containing {ϕ ∨ ¬ϕ : ϕ ∈ L}, a classical decidable model can effectively be generated
from our construction. This shows that computable continuous model theory is a generalization of classical computable
model theory, as continuous logic is a generalization of classical logic.

Theorem 3.9. There is an algorithm that given a classical theory T in RPL∀, and a countable decidable model M � T , produces a
classical computable model.

Proof. Take M as our underlying set of the model. Since the theory is classical, M is a classical model (just forget that the
range is [0, 1], since all values fall in {0, 1}). It is sufficient to show that its elementary diagram is decidable. Let ϕ ∈ LM
be a sentence. Since T is classical, it proves PEM for all instances of ϕ and we have T ` ϕ ∨ ¬ϕ, therefore M � ϕ ∨ ¬ϕ,
i.e. min{||ϕ||M , 1 − ||ϕ||M} = 0, or ||ϕ||M is either 0 or 1. Since ||ϕ||M is a maximal element, at some point of ||ϕ||M ’s
computation, we will see that the approximation does not contain either 0 or 1. Since ||ϕ||M is either 0 or 1, we can say at
this point which of them it is, and can decide whether it is true or false in our model. �

It is now easy to get the following corollary:

Corollary 3.10. There exists a computably axiomatizable, consistent theory in RPL∀ (and thus in LL∀) that has no decidable
model.

Proof. There is a consistent theory in classical logic which is computably axiomatizable but does not have a decidable
classical model by [33]. Since RPL∀ is a conservative extension of classical logic, this theory is consistent in RPL∀. By the
previous theorem, it can’t have a decidable continuous model. 10 �

Corollary 3.11. The theory discussed above has no computably axiomatizable, consistent, linear complete extension.

Proof. Take the theory in the previous theorem. If it had a computably axiomatizable consistent linear complete extension,
then by 3.5, it would have a decidable model, contradicting 3.10. �

This technique can be used easily to carry over negative results from computable classical model theory to computable
continuous model theory.
Our last theorem is a construction of a decidable complete metric model from the countable metric model produced by

a Henkin construction.

Theorem 3.12. Given a countable, decidable model of T as in the 3.5, there is an elementarily equivalent, decidable, complete,
metric model of T .11

Proof. TakeM as themetric completion of the underlying countable pseudo-metric space B of our Henkinmodel after taking
the quotient with respect to its pseudo-metric. Functions and relations of B can be extended to M by taking limits of their
values over elements of B (a countable dense subset of M) since they are continuous. An easy induction shows that B is an
elementary substructure ofM . Therefore, for every ϕ ∈ LB, B � ϕ iffM � ϕ. ThusDiagel(M, B) = Diagel(B), and is computably
enumerable. �

Remark 3.13. We have shown in Theorem 3.5 that any computable linear complete theory has a decidable model. It is easy
to see the essential property of a linear theory we use is the computability of the truth degree of the formulas. Therefore
with minor adjustments, the proofs will hold also for semantically linear complete theories in continuous logic. Hence the
following corollary follows.

Corollary 3.14. The unique separable models of probability spaces and Lp Banach lattices are decidable.

4. Conclusions and further works

In this paperwe defined basic notions of computability for continuousmodel theory.We proved a constructive version of
Henkin’s construction. A paper in preparation will discuss constructive versions of omitting types theorem, elementary chain
construction, and existence of prime and saturated models. The work on other theorems and concepts such as computably
categorical theories is still in progress.
Extending definitions and theorems to multi-sorted case is straightforward. Another interesting topic is the study of

partial models. Partial models for CL and LL∀, are what Boolean-valued models are for classical first order logic. The
formulation of a satisfactory definition for a partial model is in a sense more complicated than that of the definition of
Boolean-valued models. The basic trick is to require ||ϕ||M −· ||ψ ||M v ||ϕ−· ψ ||M in the domain theoretic sense. For
example, [0, 1] −· [0, 1] = [0, 1] 6= {0}, therefore the stronger condition ||ϕ−· ϕ||M = ||ϕ||M −· ||ϕ||M does not work for
ϕ → ϕ, which is a logical tautology, for ||ϕ||M = [0, 1]. We think that partial models can be helpful in the study of forcing
constructions in continuous logic. For model theoretic forcing in continuous logic see [5].

10 The idea of the proof is the well-known fact in constructive mathematics that (∀x < y ∈ R)(∀z ∈ R), (x < z ∨ z < y) [37].
11 This is a computable version of one of the fundamental results of continuous logic, e.g., see [7, 2.10].
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