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A Note on &-Plane integral Transforms* 

Do~~r.n C. SOLMON 

Let IT be a k-dimensional subspace of R”, n : 2, and write .x --: (x’, x”) 

with w’ in li’ and x” in the orthogonal complement 17l. The K-plane transform 

of a measurable function f in the direction 17 at the point X” is defined by 

Lf(Ii’, d’) - Inf(x’, x”) d.\‘. In this article certain a priori inequalities are 

established which show in particlllar that if f FL”(R”), I < p C: n!k, then f is 

integrable over almost every translate of almost every k-space. Mapping propcrt- 

its of the k-plane transform between the spaces L”(R”), p < 2, and certain 
I,chesgur spaces with mixed norm on a vector bundle over the Grassmann 
manifold of k-spaces in R” arc also obtained. 

I. INTRODUCTION 

Let I7 be a k-dimensional subspace of R”, n i:: 2, and write x = (x’, x”) 
with x’ in ZI and X” in the orthogonal complement IIT’. The k-plane transform 
of a measurable function f  in the direction I;T at the point x” is defined by 

Lf(L7, x”) I,nf(.vc) = d,f(.x’, .A!‘) fix’, (1.1) 

provided the integral exists in the Lebesgue sense. 
From the point of view of applications, the h-plane transform is of particular 

current interest in the following cases: k := I, where it is the transform arising 
in radiographic reconstruction; K -- 2, where it is the transform arising in 
nuclear magnetic-resonance reconstruction; and k = n - 1, where it is 
the Radon transform [2-5, 71. 

It is easy to see that iffEL’(R”), th en for any fixed 17 the integral in (I. 1) 
exists for almost every S” in II- and ;j&fli,,~(~~) < Ilfi!,l(,,,). On the other hand, 
again with Ii’ fixed, it is easy to give examples of functions .f which lie in all 
D’(R”), p ‘2 I, while the integral in (1.1) does not exist for any x”. Withf fixed, 
however, such subspaces 17 are exceptional. One purpose of this article is to 
establish certain a priori inequalities which show in particular that iffELY(Rn), 
1 <p < n/k, then f is integrable over almost every translate of almost every 
k-space I7. Such is not the case for p :.> n/k, as is shown by the function f (x) == 
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(2 j- [ x y:p (log(2 -I- 1 X !)) ‘, which lies in I,p(H”) if p 1, 1, but is not 
integrable over any h-plane of dimension +$. 

A second and related purpose of the article is to establish the identity LcLf = 
(2~r)~ Rkf, L.* being the formal adjoint of L, and RI, the Riesz potential of order K. 
The adjoint f,# is expressed explicitly, so that the identity contains an explicit 

formula for the inverse of the k-plane transform L. 
Some of these results arc given for p .: 2 in [6, 91. 

2. THE RIESZ POWNTIAI.. 

The Riesz kernel of order CL is the function 

0 -: IX -<: n. (2.1) 

The Riesz potential of a measurable function f is the convolution 

H,f(x) .-: R, +f(.4 ( R,(y).f(x - ?!) dJv, (2.2) 
‘p 

whenever the integral exists in the I,cbesguc sense. 

We set 

“,,(X) ..Y (1 j- j .y .yw (2.3) 

and write LP(v,) for the LI’ space with measure v,Jx) dx. Since 

R,v, .,<(x) ..:I cur(x), a ‘._. ’ k, (2.4) 

it follows that 

In particular, if f E L1(vk), then R,;f is defined almost everywhere and lies in 
Ll(v,-J for all 01 < k. On the other hand, if f $ L’(Q), it is easily seen that Rkf 
is defined nowhere. 

With the Fourier transform on Rn given by 

the Fourier transform of R, is given by 

R(t) -= (27T-+ j 5: !-II) (2.7) 
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so that 

(R,f)^ (5) c I 5 IPf(O* (2.8) 

Conditions onf for the validity of (2.8) are discussed in some detail in [6]. Here 
the formula is needed only in simple cases. 

According to (2.8) the inverse of the operator R, , commonly denoted by AX, 
is expressed in I:ourier transforms by 

3. LOWKR DIMENSIONAL INTEGRABILITY 

Let dIl be the unique finite measure on the Grassmann manifold G,,, of 
K-spaces in Rn which is invariant under orthogonal transformations and 
normalized so that the measure of G,,, is ( P-1 l/l Sn-7z-1 I , the bars denoting 
the appropriate area measures on the spheres. Iffis a function on R”, then Lf is a 
function on the bundle T(G,,J = ((17, x”): 17~ Gn,k , X” E P-}. A natural 
measure 7 is defined on T(G,,r,) by the formula 

J T(G,,k) 
g(lir, x”) dq = j- 1 g(l7, x”) dx” dIl. 

G,,,drI- 
(3.1) 

We consider L as an operator from measurable functions on Rn to measurable 
functions on T(G,,,). 

The following integration formulas are valid when f is a nonnegative measur- 
able function on R” or when either side is finite when f is replaced by its absolute 
value [6J 

. . 
1 J SC,,., II’ 

) x” Ikf(x”) dx” dl7 = 
I 
Rnf (x) dx, (3.2) 

( S” k 1 j JG 1 ( x’ In-“,f(x’) dx’ dIl7 -.-.. ( Sk- I ( JRnf(x) dx. (3.3) 
n.k r7 

THEOREM 3.4. The formal adjoint of I, is given by 

‘8!(x) = j+ g(K Pnlx) dn, 
G”., 

(3.5) 

where P,,, is the orthogonal projection in Rn on ZF. 
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Proof If  f  and g are nonnegative measurable functions on A?’ and ‘I’((;,,,.), 
respectively, then 

THEOREM 3.6. lf f is nonngative and measurable on. l-P’? then 

p&f) (4’) 1 (2ny H,f( y). 

Proof. Formulas (l.l), (3.5), a change of variable z’ = x’ .... j-’ on flp, and 
(3.3) give 

As a consequence of (2.4), Th eorem 3.6, and the simple dentit! 

Lnv,~p(xc) = cl+!“), (3.7) 

we have the following a priori inequality. 

THEOREM 3.8. For each 01 C: k there is a constant c such that 

j-G. ~ ‘I Ll,f j rltv,) dL’ :.c c I,,f !;Lqyk) . 
. L 

Proof. It suffices to establish the inequality when f ;: 0, in which case we 
have 
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Theorem 3.8 shows that iffELl( thenL.is defined almost everywhere on 
T(G,,J (i.e., for almost every k-space i7,fis integrable over almost all translates 
of II) and I,f is locally integrable on T(G,,k). For nonnegative functions the 
converse is true: 

THEOIWM 3.9. If  f  is nonngative, then Lf is defined almost everywhere and is 
locallv integrable on T(G,,,) if and on!y ; f f  EU(V,J. 

Proof. It remains to establish the only if part. Choose M > 0 and let X, be 
the characteristic function of the ball of radius M centered at the origin in Rn. 

SinceLf is locally integrable on T(G,,,), Theorem 3.6 gives 

x‘ ::> (Lx,, Lf > = (x, , L+Lf > = (2+ j-<, Rkf (x) d.r. 

Thus RIEf (x) exists for almost every x with 1 x 1 < M. The remark following 
(2.5) now shows that f  E L’(Q). 

COROLLARY 3.10. For I .< p < n/k and a < k, 

Proof. Since vh: E L*(Rn), q > n/(n - k), the result follows from Theorem 3.8 
and Holder’s inequality. 

Since the Riesz potential R, is one to one on L’(Q), Theorem 3.6 shows that 
the k-plane transform is also. 

COROLLARY 3.1 I . The k-plane transform is one to one on Ll(v,). 

Remark. Formulas (2.8) and (2.9) h s ow that formally f == A’i R,f. This, 
together with Theorem 3.6, gives the inversion formula 

(3.12) 

for the k-plane transform. Various conditions for the validity of (3.12) can be 
found in [6, 91. 

4. L’ MAPPING PROPERTIES 

In this section we establish a priori estimates for the k-plane transform as a 
map between Lp(R”) and certain Lq spaces with mixed norm on the bundle 
T(G,,J. The case p = 2 was treated in [6j. 
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Let X,, be the characteristic function of the ball of radius M centered at the 
origin in Rfl. A simpie computation gives !I L,X,\, i’Lo(nL) :- c~,V’“Q-‘~ l.)‘C~. Since 
!I X,,, !ILutR,,) -: c&‘“~“, it follows that an inequality of the type 

can hold only if (Ili~ - n - k)/q =-. n+, or equivalently only if (I = 
p(n - k)/(n - pk). We will establish (4.1) when r = 2, p < n,‘h, and p 1; 2. 

The restriction p <.: n/k is necessary as is shown in the Introduction. The 

restrictions r =- 2 and p 5: 2 are probably artifacts of the proof. 

THEOREM 4.2. Suppose that f gLP(Rn), p < 2, p < n/k. ‘/‘hen 

We begin with two reductions. 

(a) It suffices to prove the theorem when p -1: 2n,‘(fz k). Indeed, the 

theorem is obvious for p :-- I, q ==: I, and the intermediate values of p and q 
are taken care of bp the interpolation theorem for Z?’ spaces with miscd norms 
[l], since T(G,,,:) is locally a product space. 

(b) For a given value of p it suffices to prove the theorem forf in L,,‘(W), 

i.e., bounded with compact support. Indeed, if f >Y: 0 we can approximate by a 
nonnegative increasing sequence in L,“(R”) and use the monotone convergence 
theorem. The point of this assumption is that there is then no difficulty with 
the validity of (2.8) either forf itself or forL,f. (See [6, Idemma 4. I].) 

In the course of the proof we shall need the Fourier transform relationship 

(l,,Jf )̂  (5”) : (2n)(k-ltJ 2 I, : e--i(l”,S”“L,,f (x”) d.y” 

= (24”‘“j(5”) for 8” E L7l. 
(4.3) 

Proof. Under conditions (a) and (b), set 

a :2= n(2 - p)/2p, 13 : = k/2 - 01 = (p(?z -t k) - 2n)/2p. (4.4) 

Then 

1 1 u: and 1 1 P -- --y: __ _ _ - .: _- _ ._.- ..- 
2 2 n-k 

, 
P n 4 



NOTE ON K-PLANE INTEGRAL TRANSMISSIOKS 

According to (2.9), Parseval’s theorem, (4.3), (4.4), (3.2), and (2.Q 
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Now, (4.5) and Sobolev’s inequality [8] in DL give 

while (4.5) and Sobolev’s inequality in Rn give 

(4.6) 

, for a.e. II, (4.7) 

(4.8) 

Squaring (4.7) integrating over GmSk, and applying (4.6) and (4.8) give the 
desired inequality. (If 01 :.I 0, then (4.8) is not needed.) 

By duality we obtain an a priori inequality for L+. 

‘hEOREM 4.9. Assume that jy is a measurable function on T(G,J, 
p>2(n-k)/n,andp>l. Then 

The assumption p > 1 is necessary, but the assumption p > 2(n - k)/n 
appears to be an artifact of the proof of Thcorcm 4.2. 
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