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Let IT be a k-dimensional subspace of R", » .- 2, and write x -= (x, x")
with x’ in II and x” in the orthogonal complement IT+. The k-plane transform
of a measurable function f in the direction JI at the point x” is defined by
Lf(II, 5"y - [pf(x’,x")dx’. In this article certain a priori incqualities are
established which show in particular that if fe L4(R"), | < p <. n/k, then f is
integrable over almost every translate of almost every k-spacc. Mapping propert-
ics of the k-plane transform between the spaces LP(R*), p < 2, and certain
.ebesgue spaces with mixed norm on a vector bundle over the Grassmann
manifold of k-spaces in R" arc also obtained.

. INTRODUCTION

Let IT be a k-dimensional subspace of R®, n .z 2, and write x == (', x")
with x' in IT and x” in the orthogonal complement IT'. The k-plane transform
of a measurable function f in the direction I7 at the point x” is dcfined by

LF(T, x") - L,—,f(x"):J:lf(x’, X"y dx, (1.1)

provided the integral exists in the Lebesgue sense.

From the point of vicw of applications, the k-plane transform is of particular
current interest in the following cases: & -= |, wherc it is the transform arising
in radiographic reconstruction; 2 — 2, where it is the transform arising in
nuclear magnetic-resonance reconstruction; and %k —=n — 1, where it is
the Radon transform [2-5, 7].

It is easy to see that if fe L!(R"), then for any fixed [T the integral in (1.1)
exists for almost every " in IT-and | Ly f |';1¢72) << |i fil 1gm) . On the other hand,
again with IT fixed, it is easy to give examples of functions f which lie in all
L?(R™), p > 1, while the integral in (1.1) does not exist for any x”. With f fixed,
however, such subspaces IT are exceptional. One purpose of this article is to
establish certain a priori inequalities which show in particular that if f € LP(R"®),
1 < p << n/k, then f is integrable over almost every translate of almost cvery
k-space I1. Such is not the case for p .> njk, as is shown by the function f(x) -=
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2+ 1xyn/?(log(2 — 1 x1) ', which lics in L?(R") if p>>1, but is not
b

integrable over any k-plane of dimension =nfp.

A second and related purpose of the article is to establish the identity L*Lf =
(27)* R, f, L* being the formal adjoint of L, and R, the Riesz potential of order k.
The adjoint L7 is expressed cxplicitly, so that the identity contains an explicit

formula for the inverse of the k-plane transform L.
Some of these results are given for p .= 2 in {6, 9].

2. THE Riksz POTENTIAL
The Riesz kernel of order « is the function

I'((n — a):2
R, (x) - w—n(gz%jw(i—z%

[ 2]>7, 0 Cw<n

The Riesz potential of a measurable function f is the convolution
R.f(x) = R+ f(¥) - | R f(x— ) d,
Jan

whenever the integral cxists in the I.ebesgue sense.
We set

n®) = (L4 & 2y
and write L?(»,) for the L” space with measure v (x) dx. Since
Ryv, (%) " evp(x), a -k,
it follows that

PRy f g, € fhnte a < k.

@.1)

(2.2)

(2.3)

(2.4)

(2.5)

In particular, if feLl(v,), then R, f is defined almost everywhere and lies in
L\(v,_;) for all @ << k. On the other hand, if f ¢ L'(»,), it is easily seen that R, f

is defined nowhere.
With the Fourier transform on R" given by

f(f) — (277)_""2 f ) e K"E)f(x) dx,

the Fourier transform of R, is given by

R(&) = Qmymir £,

(2.6)

2.7
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so that

RSV (&) = E11(8). (2.8)

Conditions on f for the validity of (2.8) are discussed in some detail in {6]. Here
the formula is needed only in simple cases.

According to (2.8) the inverse of the operator R, , commonly denoted by A®,
is expressed in Fourier transforms by

(M) (&) = 1 £ f (&) (2.9)

3. Lowkr DIMENSIONAL INTEGRABILITY

Let dIT be the unique finite measure on the Grassmann manifold G, ; of
k-spaces in R" which is invariant under orthogonal transformations and
normalized so that the measure of G, is | §7-1 || S*—*-1|, the bars denoting
the appropriate area measures on the spheres. If f is a function on R”, then Lf is a
function on the bundle 7(G,,) ={({I,x"):II1€G,,,x"cII*}. A natural
measure 7 is defined on T(G,, ;) by the formula

oI, 5"y dn = f [ g, %" dx" aIl. 3.1)

JT(G",,,) [ v

We consider L as an operator from measurable functions on R™ to measurable
functions on T(G,, ).

The following integration formulas are valid when f is a nonnegative measur-
able function on R” or when either side is finite when f is replaced by its absolute

value [6].

[ ] 1 ds dil = fRnf(x) dx, (3.2)

G 1

|ser i [ [ ey dy dll - (s [ fde (33)
VG, IT “R"
THeOREM 3.4. The formal adjoint of L is given by

L#g(x) = f g, P.x) dIl, (3.5)

n

where Py is the orthogonal projection in R* on IT+,
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Proof. 1If f and g are nonnegative measurable functions on R” and 7(G,, ;),
respectively, then

Lfig> - | '| Lf(«") g(IT, «") dx" Il

Y Gk

= JRn f&) | gl P, x)dll dx == f, L7 .
k

THEOREM 3.6. If f is nonnegative and measurable on R", then

(L L) () — (2=)* R.f(9).

Proof. Formulas (1.1), (3.5), a change of variable 2 = &" - 3" on Ilu, and
(3.3) give

WL ) = [ [ 16, Py a anl
NN
S AR C Y R
VG,

— | AS‘I.' 1 : ! b‘n—l.'—-] i—l

| Sl v de o= onf RS()

As a consequence of (2.4), Theorem 3.6, and the simple identity
Ly, _(x") = ev{(x"), 3.7
we have the following a priori inequality.

THEOREM 3.8. For each o < k there is a constant ¢ such that

| HLufivey d <l fipg, -

© G

nak
Proof. Tt suffices to establish the inequality when f > 0, in which casc we

have

[ |Lafing diT- -L (Lirf, v Al
n.k

VG .k

o[ b Ly, Al = o f L s - o f Ry

“Go,k

C<f7 Vk> - 'Ifl Ly



NOTE ON k-PLANE INTEGRAL TRANSMISSIONS 355

Theorem 3.8 shows that if f € L'(v,), then Lf is defined almost everywhere on
T(G,.;) (i.e., for almost every k-space I1, f is integrable over almost all translates
of IT) and Lf is locally integrable on T(G, ;). For nonnegative functions the
converse is true:

TueoreM 3.9. If f is nonnegative, then Lf is defined almost everywhere and is
locally integrable on T(G,, ;) if and only if f € L(vy).

Proof. 1t remains to establish the only if part. Choose M > 0 and let X,; be
the characteristic function of the ball of radius M centered at the origin in R".
Since Lf is locally integrable on T(G,, ), Theorem 3.6 gives

w2 Ly If > = Oy LI = QP [ Ref(x) d.

viri<

Thus R, f(x) exists for almost every x with | x| < M. The remark following
(2.5) now shows that feLl(v,).

CoroLLARY 3.10. For | <p <nlk and o <k,

| ALnfliney diT < clifllam
k

ny

Proof. Since v, € L(R™), ¢ > nf(n — k), the result follows from Theorem 3.8
and Holder’s inequality.

Since the Riesz potential R, is one to one on Li(v,), Theorem 3.6 shows that
the %-plane transform is also.

CoroLLARY 3.11. The k-plane transform is one to one on Li(v;,).

Remark. Formulas (2.8) and (2.9) show that formally f == A¥ R, f. This,
together with Theorem 3.6, gives the inversion formula

fo=Q@m)* K L7Lf, (3.12)

for the k-plane transform. Various conditions for the validity of (3.12) can be
found in [6, 9].

4. L?» MAPPING PROPERTIES

In this section we establish a priori estimates for the &-plane transform as a
map between LP(R") and certain L7 spaces with mixed norm on the bundle
T(G,.;)- The case p — 2 was treated in [6].
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Let X,, be the characteristic function of the ball of radius M centered at the
origin in R™. A simple computation gives | LgXsys | azyy = cp M™% 1. Since
| Xag Mpoqgmy - = €M™, it follows that an inequality of the type

[ i Laf il AT < €3 [ @.1)

Gk

can hold only if (kg —n — k)/qg = njp, or equivalently only if ¢ -
p(n — R){(n — pk). We will establish (4.1) when r =2, p <<mk, and p -1 2.
The restriction p <2 n/k is necessary as is shown in the Introduction. The
restrictions 7 = 2 and p <{ 2 are probably artifacts of the proof.

TueoreM 4.2. Suppose that feLP(R"), p <C 2, p < njk. Then

f WEf Bagre, @ <<l fl3ngmy,  where  q .- p(n — R)i(n — pk).

N Gﬂ.k

We begin with two reductions.

(a) It suffices to prove the theorem when p > 2a/(n k). Indeed, the
thearem is obvious for p = 1, ¢ = |, and the intermediate values of p and ¢
are taken care of by the interpolation theorem for L? spaces with mixed norms
[1], since T(G,, ;) is locally a product space.

(b) For a given value of p it suffices to prove the theorem for f in Ly* (R"),
i.e., bounded with compact support. Indeed, if f 2> 0 we can approximate by a
nonnegative increasing sequence in Ly“(R") and use the monotone convergence
thecorem. The point of this assumption is that there is then no difficulty with

the validity of (2.8) either for f itsclf or for Lz f. (Sce [6, Lemma 4.1].)

In the course of the proof we shall need the Fourier transform relationship

(Laf) (€)= (2myth-—m 2 f 1L F(x) dy”

A
(4.3)
= (Qmt2f(&")  for & c [T

Progf. Under conditions (a) and (b), sct
w2 —p)2p,  Beck2—a=(ptR) —2)2.  (44)
Then

4.5)
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According to (2.9), Parseval’s theorem, (4.3), (4.4), (3.2), and (2.8),

[ NRLaff, cam=[ [ 1i¢#@ary @)eaean
Gn.ki‘ & |iL2(HJ') Gy Vit A

s [ e Ee e a
Gn,k 17
= ) | 1€ 7P dE = @R Filtapn -
Rﬂ
(4.6)
Now, (4.5) and Sobolev’s inequality [8] in JT* give
v £ | 8
I Laf lisirsy = Ry NLf| <o NLgfl , foraedl,  (47)
| L) il -L2(17I)
while (4.5) and Sobolev’s inequality in R? give
| RS pomy <5 €1 pmgany - (4.8)

Squaring (4.7), integrating over G, , and applying (4.6) and (4.8) give the
desired inequality. (If « == 0, then (4.8) is not needed.)
By duality we obtain an a priori inequality for L.

THEOREM 4.9. Assume that g is a measurable function on T(G, ),
p=2n— k)n, and p > 1. Then

| L#g ||i"(R") \< c JG 1. g(H7 x” Iﬁ_ﬂ([]J—) dH wlth q == Pn.";(n - k)

nk

'The assumption p > 1 is nccessary, but the assumption p > 2(n — k)/n
appears to be an artifact of the proof of Theorem 4.2.
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