A Note on k-Plane Integral Transforms*

Donaid C. Solmon
Department of Mathematics, Oregon State University, Corvallis, Oregon 97.331
Submitted by P. D. Lax

Let Π be a k-dimensional subspace of $R^{\prime \prime}, n .: 2$, and write $x-=\left(x^{\prime}, x^{\prime \prime}\right)$ with x^{\prime} in Π and $x^{\prime \prime}$ in the orthogonal complement Π^{\perp}. The k-plane transform of a measurable function f in the direction Π at the point $x^{\prime \prime}$ is defined by $L f\left(\Pi, x^{\prime \prime}\right)-\int_{\Pi} f\left(x^{\prime}, x^{\prime \prime}\right) d x^{\prime}$. In this article certain a priori inequalities are established which show in particular that if $f \in L^{\nu}\left(R^{u}\right), 1<p<n / k$, then f is integrable over almost every translate of almost every k-spacc. Mapping properties of the k-plane transform between the spaces $L^{p}\left(R^{n}\right), p \leqslant 2$, and certain Lebesgue spaces with mixed norm on a vector bundle over the Grassmann manifold of k-spaces in R^{n} are also obtained.

1. Introduction

Let Π be a k-dimensional subspace of $R^{n}, n \triangleq 2$, and write $x=\left(x^{\prime}, x^{\prime \prime}\right)$ with x^{\prime} in Π and $x^{\prime \prime}$ in the orthogonal complement Π^{\prime}. The k-plane transform of a measurable function f in the direction Π at the point x is defined by

$$
\begin{equation*}
L f\left(\Pi, x^{\prime \prime}\right)-L_{\Pi} f\left(x^{\prime \prime}\right)=\int_{I I} f\left(x^{\prime}, x^{\prime \prime}\right) d x^{\prime} \tag{1.1}
\end{equation*}
$$

provided the integral exists in the Lebesgue sense.
From the point of vicw of applications, the k-plane transform is of particular current interest in the following cases: $k:=1$, where it is the transform arising in radiographic reconstruction; $k-2$, where it is the transform arising in nuclear magnetic-resonance reconstruction; and $k=n-1$, where it is the Radon transform [2-5, 7].

It is easy to see that if $f \in L^{1}\left(R^{n}\right)$, then for any fixed Π the integral in (1.1) exists for almost every $x^{\prime \prime}$ in $I I^{-}$and $; L_{i n}\left\|_{I^{1}(\Pi-)}^{\prime} \leqslant\right\|_{j} \|_{L^{1}\left(R^{n)}\right.}$. On the other hand, again with Π fixed, it is easy to give examples of functions f which lie in all $L^{p}\left(R^{n}\right), p>1$, while the integral in (1.1) does not exist for any $x^{\prime \prime}$. With f fixed, however, such subspaces Π are exceptional. One purpose of this article is to establish certain a priori inequalities which show in particular that if $f \in L^{p}\left(R^{n}\right)$, $1 \leqslant p<n / k$, then f is integrable over almost every translate of almost every k-space Π. Such is not the case for $p \geqslant n / k$, as is shown by the function $f(x)==$

[^0]$(2+|x|)^{-n / p}\left(\log \left(2-\left|x^{\prime}\right|\right)\right)^{1}$, which lies in $L^{p}\left(R^{n}\right)$ if $p>1$, but is not integrable over any k-plane of dimension $?=n i p$.

A second and related purpose of the article is to establish the identity $L L f=$ $(2 \pi)^{k} R_{k} f, L^{*}$ being the formal adjoint of L, and R_{k} the Riesz potential of order k. The adjoint L^{*} is expressed cxplicitly, so that the identity contains an explicit formula for the inverse of the k-plane transform L.

Some of these results are given for $p-2$ in $[6,9]$.

2. The Rifsz Potential

The Riesz kernel of order α is the function

$$
\begin{equation*}
R_{x}(x)-\cdot \frac{\Gamma((n-\alpha): 2)}{\pi^{n / 2} 2^{x} \Gamma(\alpha ; 2)}|x|^{\alpha-n}, \quad 0<\alpha<n . \tag{2.1}
\end{equation*}
$$

The Riesz potential of a measurable function f is the convolution

$$
\begin{equation*}
R_{a} f(x)-R_{n} * f(x)-\int_{R^{n}} R_{2}(y) f(x-y) d y \tag{2.2}
\end{equation*}
$$

whenever the integral exists in the I cbesguc sense.
We set

$$
\begin{equation*}
\nu_{n}(x)-=(1+!x: 2)^{(x-n)!2} \tag{2.3}
\end{equation*}
$$

and write $L^{p}\left(\nu_{\alpha}\right)$ for the L^{p} space with measure $\nu_{\alpha}(x) d x$. Since

$$
\begin{equation*}
R_{k} \nu_{\mathrm{a}-k}(x)<c \nu_{k}(x), \quad \alpha<k \tag{2.4}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
!\cdot R_{k} f^{!} \dot{L}^{1}\left(r_{1, k-k}\right) \quad \because c^{\prime} f^{\prime}\left(L^{1}\left(v_{k}\right), \quad a<k .\right. \tag{2.5}
\end{equation*}
$$

In particular, if $f \in L^{1}\left(v_{k}\right)$, then $R_{k} f$ is defined almost everywhere and lies in $L^{1}\left(\nu_{\alpha-k}\right)$ for all $\alpha<k$. On the other hand, if $f \notin L^{1}\left(\nu_{k}\right)$, it is easily seen that $R_{k} f$ is defined nowhere.

With the Fourier transform on R^{n} given by

$$
\begin{equation*}
\hat{f}(\xi)=(2 \pi)^{-n \cdot 2} \int_{R^{n}} e^{i\langle x \cdot \xi\rangle} f(x) d x \tag{2.6}
\end{equation*}
$$

the Fourier transform of R_{x} is given by

$$
\begin{equation*}
\hat{R}_{\alpha}(\xi)=(2 \pi)^{-n / 2}!\xi!^{-x}, \tag{2.7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left(R_{\alpha} f\right)^{\wedge}(\xi)-|\xi|^{-\alpha} \dot{f}(\xi) . \tag{2.8}
\end{equation*}
$$

Conditions on f for the validity of (2.8) are discussed in some detail in [6]. Here the formula is needed only in simple cases.

According to (2.8) the inverse of the operator R_{α}, commonly denoted by \wedge^{x}, is expressed in Fourier transforms by

$$
\begin{equation*}
\left(\wedge^{\chi} f\right)^{\wedge}(\xi):=\mid \xi!\times \hat{f}(\xi) \tag{2.9}
\end{equation*}
$$

3. Lower Dimensional Integrability

Let $d \Pi$ be the unique finite measure on the Grassmann manifold $G_{n, k}$ of k-spaces in R^{n} which is invariant under orthogonal transformations and normalized so that the measure of $G_{n, k}$ is $\left|S^{n-1}\right| /\left|S^{n-k-1}\right|$, the bars denoting the appropriate area measures on the spheres. If f is a function on R^{n}, then $L f$ is a function on the bundle $T\left(G_{n, k}\right)=\left\{\left(\Pi, x^{\prime \prime}\right): \Pi \in G_{n, k}, x^{n} \in \Pi^{\text {j. }}\right\}$. A natural measure η is defined on $T\left(G_{n, k}\right)$ by the formula

$$
\begin{equation*}
\int_{T\left(G_{n, k}\right)} g\left(\Pi, x^{\prime \prime}\right) d \eta=\int_{G_{n, k}} \int_{\Pi^{\prime}} g\left(\Pi, x^{\prime \prime}\right) d x^{\prime \prime} d \Pi \tag{3.1}
\end{equation*}
$$

We consider L as an operator from measurable functions on R^{n} to measurable functions on $T\left(G_{n, k}\right)$.

The following integration formulas are valid when f is a nonnegative measurable function on R^{n} or when either side is finite when f is replaced by its absolute value [6].

$$
\begin{gather*}
\int_{G_{n, k}} \int_{I^{i}}\left|x^{n}\right|^{k} f\left(x^{n}\right) d x^{n} d \Pi=\int_{R^{n}} f(x) d x \tag{3.2}\\
\left|S^{n k} 1\right| \int_{G_{n, k}} \int_{\Pi}\left|x^{\prime}\right|^{n-k} f\left(x^{\prime}\right) d x^{\prime} d \Pi \cdots\left|S^{k-1}\right| \int_{R^{n}} f(x) d x \tag{3.3}
\end{gather*}
$$

Theorem 3.4. The formal adjoint of L is given by

$$
\begin{equation*}
L^{*} g(x)=\int_{G_{n, k}} g\left(\Pi, P_{\Pi^{\perp}} x\right) d \Pi, \tag{3.5}
\end{equation*}
$$

where $P_{I I \perp}$ is the orthogonal projection in R^{n} on Π^{\perp}.

Proof. If f and g are nonnegative measurable functions on R^{n} and $T\left(G_{n, k}\right)$, respectively, then

$$
\begin{aligned}
\langle L f, g\rangle & \cdots \int_{G_{n, k} \pi^{-}} L_{\Pi} f\left(x^{\prime \prime}\right) g\left(\Pi, x^{\prime \prime}\right) d x^{\prime \prime} d \Pi \\
& =\int_{R^{n}} f(x) \int_{G_{n, k}} g\left(I I, P_{I I} x\right) d \Pi d x=:\left\langle f, L^{*} g .\right.
\end{aligned}
$$

Theorem 3.6. If f is nonnegative and measurable on R^{n}, then

$$
\left(L^{*} L f\right)(y)=(2 \pi)^{k} R_{r} f(y) .
$$

Proof. Formulas (1.1), (3.5), a change of variable $z^{\prime}=x^{\prime} \cdots y^{\prime}$ on $\Pi \mu$, and (3.3) give

$$
\begin{aligned}
\left(L^{\star} L f\right)(y) & -\int_{G_{n, k}} \int_{I I} f\left(x^{\prime}, P_{\Pi^{+}} y\right) d x^{\prime} d \Pi \\
& \because \int_{G_{n, k} k^{\prime \prime}}\left|z^{\prime}\right|^{n k}\left(\left.z^{\prime}\right|^{k-n} f\left(z^{\prime}: y\right)\right) d z^{\prime} d \Pi \\
& \because-\left.\left|S^{k}{ }^{1}\right| S^{n-k-1}\right|^{-1} \int_{R^{n}} f(y-z)|z|^{k n} d z:=(2 \pi)^{k} R_{k} f(y) .
\end{aligned}
$$

As a consequence of (2.4), Theorem 3.6, and the simple identity

$$
\begin{equation*}
I_{\Pi_{\Pi}} \nu_{\alpha-k}\left(x^{\prime \prime}\right)=c_{\alpha}\left(x^{\prime \prime}\right), \tag{3.7}
\end{equation*}
$$

we have the following a priori inequality.
Theorem 3.8. For each $\alpha<k$ there is a constant c such that

$$
\int_{G_{n, k}}\left|L_{l l} f \sum_{L^{\prime}\left(v_{2}\right)} d \Pi \leqslant c\right| f f_{i L^{\prime}\left(\sigma_{k}\right)} .
$$

Proof. It suffices to establish the inequality when $f=0$, in which casc we have

$$
\begin{aligned}
\int_{G_{n, k}} \mid L_{\Pi} f!_{L^{\prime}\left(v_{1}\right)} d \Pi & \cdot \int_{G_{n, k}}\left\langle L_{\Pi} f, v_{\alpha}\right\rangle d \Pi \\
& =c \int_{G_{n, k}}\left\langle L_{I I} f, L_{\Pi^{\prime}} \nu_{\sim}-k^{\prime}\right\rangle d \Pi=c\left\langle f, L^{4} L_{v_{x-k}}\right\rangle=c\left\langle f, R_{k} v_{x-k}\right\rangle \\
& \left.\because c\left\langle f, v_{k}\right\rangle \cdots c|f| L^{1} v_{k}\right)
\end{aligned}
$$

Theorem 3.8 shows that if $f \in L^{1}\left(v_{k}\right)$, then $L f$ is defined almost everywhere on $T\left(G_{n, k}\right)$ (i.e., for almost every k-space Π, f is integrable over almost all translates of Π) and $I f$ is locally integrable on $T\left(G_{n, k}\right)$. For nonnegative functions the converse is true:

Theorem 3.9. If f is nonnegative, then $L f$ is defined almost everywhere and is locally integrable on $T\left(G_{n, k}\right)$ if and only if $f \in L^{1}\left(\nu_{k}\right)$.

Proof. It remains to establish the only if part. Choose $M>0$ and let χ_{M} be the characteristic function of the ball of radius M centered at the origin in R^{n}. Since $L f$ is locally integrable on $T\left(G_{n, k}\right)$, Theorem 3.6 gives

$$
x>\left\langle L \chi_{M}, L f\right\rangle=\left\langle\chi_{M}, L^{\neq L} L\right\rangle=(2 \pi)^{k} \int_{|x|<M} R_{k} f(x) d x .
$$

Thus $R_{k} f(x)$ exists for almost every x with $|x|<M$. The remark following (2.5) now shows that $f \in L^{1}\left(v_{k}\right)$.

Corollary 3.10. For $1 \leqslant p<n / k$ and $\alpha<k$,

$$
\int_{G_{n, k}} \mid L_{I I} f\left\|_{L^{1}\left(v_{\alpha}\right)} d \Pi \leqslant c\right\|_{i} f \|_{L^{\nu}\left(R^{n}\right)},
$$

Proof. Since $\nu_{k} \in L^{q}\left(R^{n}\right), q>n /(n-k)$, the result follows from Theorem 3.8 and Holder's inequality.

Since the Riesz potential R_{k} is one to one on $L^{1}\left(\nu_{k}\right)$, Theorem 3.6 shows that the k-plane transform is also.

Coronlary 3.11. The k-plane transform is one to one on $L^{1}\left(p_{k}\right)$.
Remark. Formulas (2.8) and (2.9) show that formally $f=\wedge^{k} R_{k} f$. This, together with 'Theorem 3.6, gives the inversion formula

$$
\begin{equation*}
f=(2 \pi)^{-k} \bigwedge^{k} L^{*} L f \tag{3.12}
\end{equation*}
$$

for the k-plane transform. Various conditions for the validity of (3.12) can be found in $[6,9]$.

4. L^{p} Mapping Properties

In this section we establish a priori estimates for the k-plane transform as a map between $L^{p}\left(R^{n}\right)$ and certain L^{q} spaces with mixed norm on the bundle $T\left(G_{n, k}\right)$. The case $p=2$ was treated in [6].

Let X_{M} be the characteristic function of the ball of radius M centered at the
 $\left\|_{1} X_{M}\right\|_{L^{p}\left(R^{n}\right)} \cdots c_{2} M^{n, ~ "}$, it follows that an inequality of the type

$$
\begin{equation*}
\int_{G_{n, k}} i_{\|} L_{\Pi} f_{\|_{L^{\prime \prime}\left(\Pi^{s}\right)}^{r}}^{r} d \Pi \leqslant c_{i_{i}} f_{\|_{L^{p}\left(R^{n}\right)}^{r}}^{r} \tag{4.1}
\end{equation*}
$$

can hold only if $(k q-n-k) i q=n_{i}^{i} p$, or equivalently only if $q=$ $p(n-k) /(n-p k)$. We will establish (4.1) when $r=2, p<n_{i} k$, and $p \cdot 2$. The restriction $p<i n / k$ is necessary as is shown in the Introduction. The restrictions $r=2$ and $p \leqslant 2$ are probably artifacts of the proof.

Theorem 4.2. Suppose that $f \in L^{p}\left(R^{n}\right), p \leqslant 2, p<n / k$. Then

$$
\int_{G_{n, k}}\left\|L_{\Pi} f\right\|_{L^{\eta}\left(I I^{\prime}\right)}^{2} d \Pi \leqslant c\|f\|_{L^{n}\left(R^{n}\right)}^{2}, \quad \text { where } \quad q \cdots p(n-k) /(n-p k)
$$

We begin with two reductions.
(a) It suffices to prove the theorem when $p \therefore 2 n_{i}^{\prime}(n \quad k)$. Indeed, the theorem is obvious for $p=-1, q==1$, and the intermediate values of p and q are taken care of by the interpolation theorem for L^{n} spaces with mixed norms [1], since $T\left(G_{n, k}\right)$ is locally a product space.
(b) For a given value of p it suffices to prove the theorem for f in $I_{0}{ }^{x}\left(R^{n}\right)$, i.e., bounded with compact support. Indeed, if $f=0$ we can approximate by a nonnegative increasing sequence in $L_{0}{ }^{\circ}\left(R^{n}\right)$ and use the monotone convergence theorem. The point of this assumption is that there is then no difficulty with the validity of (2.8) either for f itself or for $L_{\Pi} f$. (See [6,1 emma 4.1].)

In the course of the proof we shall need the Fourier transform relationship

$$
\begin{align*}
\left(l_{\cdot I I} f\right)^{\wedge}\left(\xi^{\prime \prime}\right) & =(2 \pi)^{(k-n) 2} \int_{1 I} e^{-i\left\langle x^{\prime \prime}, \xi^{\prime \prime}\right\rangle} L_{I I} f\left(x^{\prime \prime}\right) d x^{\prime \prime} \\
& =(2 \pi)^{k ; 2} \dot{f}\left(\xi^{\prime \prime}\right) \quad \text { for } \xi^{\prime \prime} \in \Pi^{\perp} \tag{4.3}
\end{align*}
$$

Proof. Under conditions (a) and (b), set

$$
\begin{equation*}
\alpha=:=n(2-p) / 2 p, \quad \beta=k / 2-\alpha=(p(n+k)-2 n) / 2 p . \tag{4.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{1}{2}==\frac{1}{p}-\frac{\alpha}{n} \quad \text { and } \quad \frac{1}{q}-\frac{1}{2}-\frac{\beta}{n-k} \tag{4.5}
\end{equation*}
$$

According to (2.9), Parseval's theorem, (4.3), (4.4), (3.2), and (2.8),

$$
\begin{align*}
\int_{G_{n, k}} \|\left.\wedge^{\beta} L_{I T} f\right|_{L^{2}\left(\Pi^{\perp}\right)} ^{2} d \Pi & =\int_{G_{n, k}} \int_{I^{\perp}}| | \xi_{;}^{\prime \prime} ;\left.\left(L_{\Pi} f\right)^{\wedge}\left(\xi^{\prime \prime}\right)\right|^{2} d \xi^{\prime \prime} d \Pi \\
& ==\left.(2 \pi)^{k} \int_{G_{n, k}} \int_{\Pi^{\perp}}\left|\xi^{\prime \prime}\right|^{l}\left|!\xi^{\prime \prime}\right|{ }^{\alpha} \hat{f}\left(\xi^{\prime \prime}\right)\right|^{2} d \xi^{\prime \prime} d \Pi \\
& =-\left.(2 \pi)^{k} \int_{R^{n}}| | \xi^{-\alpha} \hat{f}(\xi)\right|^{2} d \xi=(2 \pi)^{k} \mid ; R_{a} f \|_{L^{2}\left(R^{n}\right)}^{2} \tag{4.6}
\end{align*}
$$

Now, (4.5) and Sobolev's inequality [8] in Π^{\perp} give

$$
\begin{equation*}
\left|\mid L_{\Pi} f \|_{L^{\eta}\left(\Pi^{\perp}\right)}={ }_{-1}^{i} R_{3} \Lambda^{\beta} L_{\Pi} f_{\left.\right|_{L^{q}\left(\Pi^{\perp}\right)} ^{\prime}}^{\mid} \leqslant c_{i \mathrm{i}}^{\vdots} \Lambda^{\beta} L_{\Pi I} f_{{ }_{\cdot L^{2}\left(\Pi^{\prime}\right)}^{\prime}}, \quad \text { for a.e. } \Pi,\right. \tag{4.7}
\end{equation*}
$$

while (4.5) and Sobolev's inequality in R^{n} give

$$
\begin{equation*}
\left|R_{\alpha} f_{L^{2}\left(R^{n}\right)} \leqslant_{i}\right||f|_{L^{p}\left(R^{n}\right)} \tag{4.8}
\end{equation*}
$$

Squaring (4.7), integrating over $G_{n, k}$, and applying (4.6) and (4.8) give the desired inequality. (If $\alpha==0$, then (4.8) is not needed.)

By duality we obtain an a priori inequality for L^{*}.
Theorem 4.9. Assume that g is a measurable function on $T\left(G_{n, k}\right)$, $p \geqslant 2(n-k)_{i} n$, and $p>1$. Then

$$
\therefore L^{\mu} g \|_{L^{q}\left(R^{n}\right)}^{2} \leqslant\left. c \int_{G_{n, k}} i g\left(\Pi, x^{\prime \prime}\right)\right|_{L^{n}\left(I^{\perp}\right)} ^{2} d \Pi \quad \text { with } \quad q==p n_{i}(n-k) .
$$

'The assumption $p>1$ is nccessary, but the assumption $p \geqslant 2(n-k) / n$ appears to be an artifact of the proof of Theorem 4.2.

References

1. A. Benedek and R. Panzone, The spaces L^{p} with mixed norms, Duke Math. J. 28 (1961), 301-324.
2. T. F. Budinger, Current and future applications of reconstruction techniques, in "Proc. FASEB Symp., 1976."
3. S. Heigason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces, and Grassmann manifolds, Acta Math. 113 (1965), 153-180.
4. D. Ludwig, The Radon transform on Euclidean spaces, Comm. Pure Appl. Math. 23 (1966), 49-81.
5. J. Radon, Uber die Bestimmung von Functionen durch ihre Integralwerte langs gewisser Manigfaltigkeiten, Bayer. Akad. Wiss. Math.-Natur. Kl. S.-B. 69 (1917), 262-277.
6. K. T. Suith and D. C. Solmon, Lower dimensional integrability of L^{3} functions, J. Math. Anal. Appl. 51 (1975), 539-549.
7. K. T. Smith, D. C. Solmon, and S. L. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977), 1227-1270.
8. S. L. Sobolev, Sur un théorème de l'analyse fonctionelle, ('. R. Acad. Sci. U.R.S.S.S. 29 (1938), 5-9.
9. D. C. Solmon, The X-ray transform, J. Math. Anal. Appl. 56 (1976), 61-83.

[^0]: * Partially supported by NSF Grant No. 7801980.

